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We review the origin of the physical consistency of the lorentz- Poincaré symmetry.
We outline catastrophic physical inconsistencies recently identified for noncanonical-
nonunitary generalizations defined on conventional spaces over conventional fields. We
review Santilli's isotopic lifting of the Lorentz-Poincaré symmetry, by proving its in-
variant, resolution of said inconsistencies, and universality for the representation of all
possible spacetimes with a symmetric metric. The explicit 1sosymmetry transforms are
identified. Particular care is devoted to the recent discovery of the 11-th dimensionality
of the conventional Poincaré symmetry and the consequential emergence of an axiomat-
ically consistent grand unmification of electroweak and gravitational interactions. The
article closes with an outline of the broader geno- and hyper-symmetries and their iso-
dual for the description of single-valued irreversible systems, multivalued irreversible
systerns and antimatter systems, respectively.

1. Lorentz-Poincaré Symmetry.

Physics is a discipline admitting the reduction of events to primitive symmetries,
the most important ones being the symmetries of our spacetime (1], namely, the
rotation, boosts, translation and discrete symmetries, hereon called the Lorentz
-Poincaré symmetry (or the L-P symmetry for short) and denoted P(3.1).

We are referring to the most general possible, linear, local-differential and canon-
ical (for classical formulations) or unitary (for operator formulations) symmetries
of the Minkowski space M = M(z,n, R) with: spacetime coordinates z = {z#} =
(zF,2%), 2% = eot,p = 1,2,3,4,k = 1,2,3, ¢, being the speed of light in vacuum;
unit I = Diag. (1, 1, 1, 1); metric n = Diag.{1,1, 1, ~1); and invariant on the field
R = R(n,+, x) of real numbers n with conventional sum + and associative product
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(2~ = (e ~v) X x (& ~y)* =

= (s=y) x (e =~y +(—v)? % (@ =)+ (2 ~1)* x (2 =)’ — (2 —v)* x (2~ y)* = inv.
(L1}

All spacetime theories possessing the Lorentz- Poincaré symmetry have an im-
peccable axiomatic and physical consistency, es it is the case for relativistic quantum
mechanics, special relativity, unified gauge theories of electroweak interactions, and
other theories.

These historical successes of the L-P syrnrnetry are due to the invariant (rather
than covariant) character of the theories, which, in turn, is permitted by their
(canonical or) unitary structure on a Hilbert space H over the field C(e, +, x) of
complex numbers c,

UxUl=UTxU=1I (1.2)

The fundamental Lorentz-Poincaré invariance begins with the invariance under
the time evolution of the theories, and implies the numerical invariance of the basic
units used for measurements, the preservation in time of Hermiticity-observability,
the invariance of the special functions and transforms used in data elaboration, the
uniqueness and invariance of the numerical predictions, and other features esseniial
for physical consistency.

In the final analysis, the above mathematical and physical consistency can be
traced to the fact that classical or operator Lorentz-Poincaré invariant theories
possess & Lie structure.

Even though well known, it may be useful for subsequent referrals to recall the
basic invariances for unitary theories

I-UxIxUi=1'=],
AXB-oUx{(AxB)xUl=UxAxU'xUxBxU'= A x B
HxW>=Ex|[p>-UxHx|p>=UxHxUl xUlv>= H x|¢/ >=

UxEx|¢>=E xk' > E' = E, (1.3)

THEOREM 1: All theories with e unitary structure on o Hilbert space over the
field of complez numbers possess numerically inveriant units, products and eigen-
values, thus being suiteble to represent physical reality.
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2. Inconsistencies of Noncanonical-Nonunitary Generalizations.

This paper will have achieved its first objective if it contributes to stimulate the
awareness by the contemporary physica community to come to its senses, and ad-
dress the rather serious physical inconsistencies of spacetime theories with a non-
canonical or nonunitary structure treated via the mathematics of canonical or uni-
tary theories.

Physics is a quantitative science in which, sooner or later, physical truths alweays
emerge. Therefore, silence on these inconsistencies can only damage the authors of
papers on neoncanonical- nonunitary theories,

The lack of universality of the Poincaré symmetry for the description of the entire
universe was identified immediately following its appearance and then confirmed
throughout this century. This scientific process lead to the construction of numerous
theories representing events in our spacetime, yet violating the Lorentz-Poincaré
axioms in favor of broader axioms.

No understanding of the topic of this paper (the isotopies of Lorentz-Poincaré)
can be claimed without at least a rudimentary knowledge of the now considerable
literature on the indicated inconsistencies.

The first generalization is due to Einstein himself who, immediately following
the formulation of the special relativity, identified the impossibility of representing
gravitation with the realization of the Lorentz-Poincaré axioms of the time, and
formulated the general theory of relativity on Riemannian spaces [2].

While Einstein’s studies based on the Lorentz-Poincaré symmetry have passed
the test of time and are nowadays more valid than ever, Einstein’s theory of grav-
itation, which departs from said symmetry, has been the subject of endless, still
unresolved and actually increasing controversies during this century (see, e.g., rep-
resentative papers [3] and references quoted therein).

The origin of most of these controversies has been recently identified by Santilli
(3f] and can be summarized as follows. The map from the Minkowski metric 5 to
the Riemannian metric g(x) is clearly a noncanonical transformation at the classical
level and a nonunitary transformaotion at the operator level,

n—g(z)=Ulz) xnxUl{a), U xUT = I, (2.1)

As a result, any theory on a curved manifold is structurally noncanonical-non-
unitary, beginning with its time evolution,

Despite an undeniable mathematicsl beauty that has attracted so many scholars
throughout this century, a host of rather serious problems of physical consistency
then follows.

THEOREM 2 (8f]: Al theories with a nonunitary structure on o conventional
Hilbert space over the field of complez numbers, thus including (but not limiting
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to) all operator theories of gravity formulated on a curved manifold, possess the
following physical inconsistencies:

1) lack of invariant units of space, time, energy. etc., with consequentially im-
possible applications to real measurements;

2) lack of preservation of the original Hermiticity in time, with consequential
absence of physically acceptable observables:

3) general violation of causality and probability lows;

4} lack of invarience of conventional and special functions and transforms used
in data eloborations;

3) lack of unigueness and invariance of numerical predictions;

and have other inconsistencies which render them inapplicable to represent phys-
ical reality

The proof of these occurrences is elementary. The lack of invariance of the
basic units is inherent in the very conception of nonunitary transforms (see later
on for details), The lack of preservation in time of Hermiticity-observability is
known as Lopez’s lemmae [3g]. The violation of prebability laws is an evident con-
sequence of the lack of invariance of the basic units, with consequential violation of
causality. Nonunitary transforms do not preserve elernentary functions such as the
exponentiation, let alone special functions and transforms. The lack of uniqueness
of the numerical predictions is evident from the lack of uniqueness of the value of
nonunitary transforms, while the lack of invariance of the numerical predictions is
so evident to require no cornments.

Even though known, it may have graphical value to review the fundamental non-
invariances under nonunitary transforms from which all the physical inconsistencies
follow [31]:

I UxIxUl=r+£1,

AXB 5 Ux(AXB)xUT=UxAxUx(UxUN) I xUxBxU'=A'xTx B,
T=(UxUY}?,
Hx}¢>=Ex}¢>—»UxHxl¢>=UxHxU?x(UxU")“lexiw:»:

H'xTx|¢' >=UxEx|y>=E x|¢ > E #E, (2.2}

namely, under nonunitery time evolutions and transforms we have the alteration of
the numericel value of all basic units, all product and all eigenvalues.

Santilli [3f,51,6¢] has identified additional catastrophic inconsistencies which ap-
ply to both noncanonical and nonunitary theories. Recall that all physical theories
are based on numbers and fields which, in turn, are based on the fundamental (mul-
tiplicative} unit. The alteration of the unit by noneanonical-nonunitary transforms
then implies the shift to different numbers and fields. But noncanenical-nonunitary
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theories continue to be defined on conventional numbers and fields. This implies
the collapse of the axiomatic consistency of the entire theory, including the inap-
plicability of vector and metric spaces, geometries and topologies, algebras, groups
and symmetries, etc., with no known exceptions.

Note that the latter arguments rules out the physical value of any classical
noncanoitical theories, again, because they imply the alteration of the basic unit
with consequential inapplicability of the carrier spaces used to elaborate the theory.

The above catastrophic physical and axiomatic inconsistencies apply in their
entirety to the classical and operator formulation of gravity on curved manifolds.
As an example, there is no known physical meaning or consistency in attempting
the "experimental verification” of the general relativity at a given time t defined
via field equations on a Riemannian space over the fields of real numbers, when
the basic unit [ is altered at a subsequent time t’, Eq. (2.2a). We then have the
consequential lack of physical meaning in preserving the Riemannian space itself
because defined on a field no longer applicable at t’. The physical inconsistencies
of the operator formulation of gravitation on a curved space are so serious and
transparent to require no further comments. ‘

The ultimate origin of the above gloomy scenario investing about one century
of studies in gravitation is the very notion of curvature itself, because it implies the
breaking of the fundamental Lorentz-Poinearé symmetry in favor of "covariance”
under a broader, often undefined symmetry, with the indicated catastrophic conse-
quences. In fact, the Lorentz-Poincaré invariance and the notion of curvature are
mutually exclusive in a transparent and irreconcilable way in their current formu-
lation (see next sections for an alternative).

The limitations of the Lorentz-Poincaré symmetry have also been felt by nu-
merous other scholars besides Einstein, particularly during the recent decades. We
here quote: the studies by Y. S. Kim and others (see [4a] and references quoted
therein), which have the important function of extending the applicability of the
Lorentz-Poincaré axioms to their ultima possibilities for the representation of ex-
tended particles; the use of broader symmetries in an attempt to reach a grand
unification inclusive of the gravitational interactions (see, e.g., (4b]); the broaden-
ing of the Lorentz-Poincaré symmetry inherent in contemporary string theories {4cj;
and numerous other theories (see other papers in this collection [4d]).

[t is important for the contemporary physics community to study, understand
and, above all, admit that all generalized theories with a noncanonical or nonuni-
tary siructure, even though possessing an undenioble mathematical beauty, have no
known physical epplication.

Along these lines, in memoir [6¢] of 1996, Santilli clearly states the physical
inconsistency of his Birkhoffian generalizetion of Hamiltonian mechanics published
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in monograph [6g] (by Springer-Verlag in its most prestigious physics series...),
precisely because of its noncanonical structure formulated on conventional spaces
over conventional fields. The reader should be aware that the Birkhoffian mechanics
was proved in the same monograph to be universal for all well behaved, local-
differential and nonhemiltonian systems with a generalized Lie-isotopic structure. In
the same memoir [6e] Santilli clearly states the additional; physical inconsistency of
his broader classical Lie-admissible mechanics of monograph [12f] which is universal
for all Newtonian system with a non-Lie, yet algebraically consistent structure. In
the same memoir [6e] Santilli presents new invariant classical mechanics of Lie-
isotopic and Lie-admissible type we cannot possibly review here for brevity.

Similarly, in memoir [5]] of 1997, Santilli clearly states the physical inconsistency
of all his generalized operator studies prior to 1997, including all numerous papers
written on hadronic mechanics since its proposal of 1978 [6b], including all papers
on operator Lie-isotopic and Lie-admissible theories (which are also universal for
all possible nonlinear, nonlocal and nonunitary theories with and without an anti-
symmetric algebras, respectively). In the same memoir [51] Santilli proposes fully
invariant operator, Lie-isotopic and Lie-admissible formulations we shall outline in
the next sections).

Regrettably, the same clear statements of physical inconsistencies are lacking at
this writing, to our best knowledge, on numerous other generalized theories with
a transparent and incontrovertible nonunitary structure, each theory possessing a
rather vast literature, such as (see [3f] for complete list and references):

1) Dissipative nuclear models with imaginary potentials, # = Hy+1iV, and time
evolution idA/dt = AxH1—-H x A = [A, H, H] (these theories lose an " algebra” as
comumonly understand, in favor of a triple system - as a result of which names such
as ”proton” and "neutron” lose their physical meaning because of the impossibility
to even define spin, mass and other besic characteristics, let alone treat them);

2) Statistical models with external collisions terms with time evolution idp/dt =
lp, H| + C (besides being nonunitary, these theories have no units al all - let alone
2 noninvariant units - and have no exponentiation at all, under which catastrophic
conditions any application to physical reality implies exiting science);

3) g- deformations of the Lie product A x B — g x B x 4, "*-deformations” of
the enveloping associative algebra *with generalized product 4 x B = A x T x B,
and other deformations which change the Lie structure while preserving the old
mathematics, all being transparently nonunitary (all these deformations were first
introduced by Santilli in his Ph. D. Thesis of 1967 [12a], although this paternity is
ignored in the rather vast literature in the field, evidently to the sole detriment of
the authors);

4) Certain quantum groups (evidently those with a nonunitary structure);
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5) Weinberg’s nonlinear theory with nonassociative Lie-admissible envelopes
{(which lacks any unit, viclates Okube’s no quantization thecrem prohibiting the
use of nonessociative envelopes [3h], and has other serious flaws);

6) All known theories of quantum gravity (the indication of theories in this field
with a unitary structure would be appreciated);

7) All known supersymmetric theories {evidently because they broaden the very
structure of Lie algebras and groups via the addition of anticornmutators, thus
resuiting in an evident nonunitary structure):

8) ell known studies on Kac-Moody superalgebras (also because they depart
from Lie’s structure with a phase term depending on anticommutators);

9} All known string theories whose nonunitary structure was known since the
introduction of the Beta function by Veneziano and Suzuld, and reinforced via
supersymmetries in the recent studies (see the specific study (3i]).

Other theories which have a seemingly unitary structure, but depart from other
axioms of Lie's theory equally possess serious physical flaws. This is the case, for
instance for theories with Hermitean Hamiltonians, yet a structure nonlinear in the
wevefunction of the type H(z,p,¥,..} x | >= E x | > (again, see [3f] for details
and regferences). These theories violate the superposition principle, thus being
inapplicable to composite systems; they violate Mackay imprimitivity theorem, thus
viclating the integrability conditions for the Galilean and Einsteinian relativities;
and have other other flaws. i

Yet other theories violate the locality condition of Lie’s theory, e.g., via "inte-
gral potentials” in the Hamiltonians. These theories are fundamentally flawed on
both mathematical grounds (because the assumption is incompatible with the ba-
sic topology) and physical grounds (because nonlocal interactions generally are of
contact-zero range type, thus having no potential}. As such, these theories deserve
no further comment (or attention).

In summary, Santilli has established that all theories which violate any of the
Jundamental azioms of linea'rity, locality and canonicity-unitarity of Lie’s theory is
physically inconsistent when formulated via the mathematics of quantum mechanics.

In other cases, the existence of possible inconsistencies requires specific investi-
gations. This is the case of Kim’s [4a] theory which replaces the Lorentz-Poincaré
tnvariance with a broader covarfance. These studies are left to the interested read-
€rs.

We close this section by indicating that classical theories of antimatter are gen-
erally inconsistent because they only have one channel of quantization for matter
and antimatter. As a result, their orator image does not yield charge conjugste
states, but merely states of particle with the wrong sign of the charge.

The Riemannian treatment of antimatter is afflicted by more catastrophic phys-



450 J. Kadeisvil

ical inconsistencies because, in addition to the above inconsistent operator im-
age, they can only represent antimatter via the usual energy-momentum tensors
which are notoriously positive-definite, thus being in dramatic disagreement with
the negative-definite energies need for antiparticles.

These inconsistencies should not be surprising because the biggest unbalance
in the physics literature of this century is precisely the treatment of matter at all
possible levels, from Newton to quantum field theory, while antimatter is solely
treated at the level of second quantization. But antimatter is expected to exist at
the macroscopic level, i.e., that of entire galaxies or quasars, thus demanding the
restoration of a fully equivalent treatment of matter and antimatter at all levels of
study,

By no means all generalized theories of the contemporary physical literature are
wrong. In fact, numerous generalized theories constructed on sound foundations
have an impeccable axiomatic structure, such as the theories by Ahluwalia {4e],
Dvoegiazov [4f], and others.

3. Lorentz-Poincaré-Santilli isosymmetry

By initially working in a rather solitary way, the Italian-American physicist R. M.
Santilli [3] has constructed a new realization of the Lorentz-Poincaré axioms which:

1) is "directly universal” for the representation of all infinitely possible, nonlin-
ear, nenlocal and noncanonical-nonunitary theories in our (3+ 1)-dimensional space-
time with a well behaved, nowhere singular and symrmetric metric (universality),
directly in the x-coordinates of the observer without any use of the transformation
theory (direct universality);

2) reconstructs the canonicity or unitarity and invariance, on suitably general-
ized spaces over generslized fields; and

3) resolves the physical inconsistencies indicated in Sect. 2.

Remarkably, Santilli [5] constructed the most general known symmetry of the
following most general possible invariant in (34+1)-dimensions with the indicated
topological condition on the metric:

(2-9)7 = (2 - 9)¥ X A, 0, d, 1,0, ) X (2 — )" =
= (z — y}¥ x f‘ﬁ(z,u,d,r,rp,..) X oy X (2 —y)¥ =
= (z—y)? xf'n(a:, v,d, 7, %, ) x{g—y) + (e —y)? x ’f‘gg(a:,v, d,7,%,..)x (z—y)%+

+z—y ¥ xTaa(z, v, d, 1,9, )X {z—y)3-(z—y)? xTyalz, v, d, 7,9, e dx(z—y)t = inv.

(3.1)
where all functions T,,.(= f‘: ) are positive definite but otherwise possess an unre-
stricted, generally nonlinear, non locel and nonhamiltonian functional dependence
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on spacetime coordinates x, velocities v, density d, temperature r, wavefunctions
w, or any other needed local quantity.

Unexpectedly, Refs. [3] then proved that the universal symmetry of interval
(3.1} is locally isomorphic to the symmetry of the conventional invariant (1.1), of
course, when properly formulated. In fact, Santilli insists in his writings that the
symmetry of invariant (3.1) is not new, because it is merely a new realization of
the conventional Lorentz-Poincaré axioms. This implied the reconstruction of the
Lorentz-Poincaré symmetry as being ezact when popularly believed to be broken,
as we shall see (e.g., for gravitation).

Santilli [5] then proved the ”direct universality” of this symmetry via the explicit
construction of the most salient applications.

These results were achieved via the prior construction of a new mathematics,
originally proposed in Ref. [6a] under the name of isomathematics from the Greek
meaning oif being "axiom-preserving”, and then developed by various authors [6-
8] (see [7n| for & comprehensive literature up to 1984, [50] for literature up to
1995, and Web Site [7o], Page 18, for a readable outline). The new mathematics is
essentially characterized by new numbers, new fields, new spaces, new algebras, ete.
called isonumbers, isofields, isespaces, isoalgebras, etc. For this reason-the universal
symmetry of invariant (3.1) is known as the Lorentz-Poincaré-Santilli isosymmetry
{also called the L-P-S isosymmetry or Santilli’s tsopoincaré symmetry for short),
and it is generally denoted P(3.1) [6-9]. ‘

‘The main working ideas are essentially the following:

1) the generalization (called !ifting) of the Minkowski metric 5 into the most gen-
eral possible, well behaved, nowhere singular and symmetric metric 7i(z, v, 2, 7, ¥, )
T(z,v,d, 7,9, .} xn, where T is a 4 x 4 well behaved, nowhere singular and positive-
definite (thus diagonalizable) matrix;

2) the joint lifting of the fundamental unit of the Minkowski space, I = Diag.
(1. 1, 1, 1), by the inverse of the lifting of the metric, / = 1/T; and

3) the reconstruction of the entire mathematical foundations of Lorentz and
Poincaré into a form admitting I , rather than I, as the correct left and right unit
of the new theory.

The latter condition requires the lifting of the conventional associative product
A X B smong generic quantities A, B (numbers, matrices, operators, etc.) into the
form AXB = A x T x B, with T fixed, for which [XA = A% = A for all possible
A. In this case {only), I is called the isounit, and T is called the isotopic element.

In turn, the latter liftings imply, for evident reason of consistency, the new
isofields R = R(fi, +, X) [6b] of isonumbers # = nx ] with isosum a4 = (n4m)xi,
isoproduct A xm = (n xm) x [, isoquotient A?B = (A/B)x I, and other generalized
operations.
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Under the above conditions, it is evident that R and R are isomorphie, and
actually coincide at the abstract level {(because I and I are topologically identical).
Despite this simplicity, the reader should abstain from jumping at conclusion of
mathematical triviality to avoid insidious misrepresentations. As an illustration,
" two multiplied by two is sixteen” and the number 4 becomes prime for isounit [ = 4,
This indicates the dependence of number theory from the assumed unit. Following
mermoir [d] the Santilli’s isonumber theory has been the subject of comprehensive
studies by C. X. Jiang [7g,7m], Kamiya [7h], Trell 7], and other mathematicians,

By recalling that metric spaces are defined on a given field, the availability of
new numbers and fields permitted the construction of the isotopies of the Minkowski
space, presented for the first time in Ref. [5a} (see also 5,6]), today called Minkowski.
Santilli isospaces and denoted M = M(&, #.R) with spacetime isocoordinates 3 =
z x I defined precisely on R, and consequentisl lifting of algebras, groups, geome-
tries, topologies, ete. [5,6,7).

Under the above liftings, i.e.,

n—*ﬁ:(r}wxf):(f;fxn)f,,,xf,f>0,f—>f:1/1",‘4 x B —
— AXB = A xT x B, etec. (3.2)

the new isospaces M are locally isomorphic to the conventional space M ; the isosym-
metry }3(3.1) is locally isomorphic to the conventional symmetry P(3.1); and ol
properties, axioms and physical laws helding on M over R admit an identical image
on M over &. These are the reasons for the original suggestion of the name isotopies
[6a] from the Greek meaning of being " axiom-preserving”.

In this way, the isorelativistic theories coincide, by conception and construe-
tion, with conventional relativistic theories at the abstract, realization-free level, by
therefore bringing the applicability of the Lorentz-Poincaré symmetry and Einstein
special relativity to the unexpected level of universality,

Moreover, Santilli [5] proved that the conventional Poincaré symmetry is eleven
dimensional, and not ten dimensional as belicved throughout this century. This ad-
ditional unexpected property was proved via the new invariance of the Minkowskian
line element [6e],

(2 X xz¥) x [ = [z# x (p™2 x 1) xz¥} x (p?x ) = (¥ % fip x2¥) x I, (3.3)

where p is an ordinary parameter, with corresponding novel invariance of the Hilbert
product [5]]

SO X > xI=<g|xp7% x|y > x(p? x I) =< ¢|%Je > x/. (3.4)

It is evident that Eqs. (3.3) characterizes the isominkowski spaces M over R in
their simplest possible realization, that with isounit characterized by an ordinary
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parameter, | = p°. Egs. {3.4) then characterize the simplest possible realization
of the isohilbert spaces M defined on the isofield ¢ (&, +, x) of isocomplex numbers
&=cx I, used for the operator formulation of the isosymmetry. It is also evident
that the above new symmetries persists at the full isotopic level,

(2% X By X ) x = [1# % (072 x Aua) x 37) % (52 X F) = (2# x Ay x 5°) x I/

<olkle > xI=< @] xp 2xT x|t > x(p?x1)=<a|x |6 > x1'. (3.5)

As a result, the Lorentz-Poincaré-Santilli isosymmetry is also eleven dimensional
(see Sect. 5 for details).

By recalling that any new symmetry of spacetime has far reaching physical
implications, Santilli’s discovery of a hitherto unknown additional dimension of the
fundamental symmetries of our spacetime also has important and novel physical
implications outlined below.

The reader should not be surprised that the new symmetry (3.3} has remained
unknown since Lorentz-Poincaré-Minkowski’s times, and the additional new sym-
metry (3.4) has remained unknown ’since Hilbert’s time. In fact, their identification
required the prior discovery of new numbers, those with arbitrary units f6d].

As a guide to the existing main literature, we here indicate the frst construc-
tion of the isotopies of: rotational symmetry in Ref. [5b]; Lorentz symmetry in
Ref [5a); SU(2)-spin symmetry in Refs. [5c,5d]; Poincaré symmetry in Ref. i5e];
and spinerial covering of the Poincaré symmetry in Ref. [5f]. In Refs. [5g,5h]
Santilli achieved the first axiomatically consistent grand unification of electroweak
and gravitational interactions known to this author precisely via the use of the 11-
dimensional isopoincaré symmetry; and in Ref. [5i] he presented the isopoincaré
invariant isocosmology. In memoir [5j] one can find a comprehensive presentation
of the underlying isorninkowskian geometry and related reformulation of gravity;
the operator formulations originated in paper [6b] (of 1978), continued in numerous
publications (see, e.g., Ref. [5k,5-10,12-14]), and reached maturity in memoir 51).
Classical realizations of the (isogalilean and) isopoincaré symmetries were studied
in detail in monographs [5m,5n], while the operator counterparts were studied in
detail in monographs [50,5p].

Pre-requisites for the above results were the isotopies of Lie’s theory in its vari-
ous branches, the universal enveloping associative algebras (including the Poincaré
Birkhoff-Witt theorem), Lie algebras (including the celebrated Lie first, second and
third theorem), Lie’s groups, transformation and representation theories. These
isotopies were proposed for the first time in Ref. [6a), and then studied in a vari-
ety of works (see monograph [6g] for the status of the knowledge as of 1983, and
monograph [50] for the status as of 1995). The emerging theory is today properly
called Lie-Santilli isotheory and it is the subject of numerous independent studjes,
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such as those by: Tsagas and Sourlas in the papers of Refs. {7} and monograph
[7i]; Lohmus, Paal and Sorgsepp in monograph [7k]: Vacaru in papers [7] and mono-
graph [7l]; Kadeisvili in Refs. [8]; and additional authors quoted therein {see the
miscellaneous list of papers [9}).

It is evident that we cannot possibly provide a technical treatment in this note
of all the above results. To avoid lecture-notes for a two-semesters course, we must,
therefore, restrict ourselves to only the most essential aspects.

The feature of paramount importance for these introductory lines is the recon-
struction on isohilbert spaces H over isofields C{é, +x) of unitarity for all conven-
tionally nonunitary transforms, according to the isouniterity conditions

Ux0t=0txu =1 (3.6)

In particular, all possible conventionally nonunitary transforms on M over C can
always be identically rewritten in the isounitary form on * over C {first identified
in [3]]) _

UxUl#1,U=0 =T, (3.7)

Once such an isounitary structure is achieved, it remains invariant under all
possible, additional isounitary transforms,

by
!

-3
x>
by
X
¥
It

ARB - Wk(ARB)xWt=A'%8,
HXp >= Ex|p >0 WRH XY >= B[ >= WXEX|d >== Ex|¥' > (3.8)

Note the invariance of the numerical values of the isounit, isoproduct and the
isoeigenvalues, as necessary for physical consistency. Classical noncanonical trans-
forms are similarly turned into identical isocanonica! versions with resulting invari-
ance not considered here for brevity.

In summary, all nonunitary transforms are rewritten in an identical isounitary
form which reproduces all the original invariances of conventionally unitary theories,
thus resolving the inconsistencies of Sect. 2.

Along the same lines, Santilli reconstructs theories that are nonlinear (in the
wavefunction) on H over C into identical isolinear forms on X over C via the
identifications H (r,p, ¥} x [t >= H{(r, p)T (¥, o) X >= Hor,p}x|p >= E x
l$ >, namely, by embedding all nonlinear terms in the isotopic element. This
reformulation implies the regaining of the superposition principle, and the resolution
of the other inconsistencies,

Similarly, isotheories are nonlocal-integral (e.g., because admitting volume in-
tegrals to represent wave-overlappings). These theory are however reconstructed
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as local-differential on isospaces over isofields, called isolocal-isodifferential, via the
embedding of all nonlocal terms in the isotopic element.

In this way, the universal symmetry of invariant (3.1) is the largest possible
isolinear, isolocal and isocanonical or isounitary symmetry of isospacetime.

In inspecting the literature on isotopies, the reader should keep in mind that
all references prior to memoirs {51,6¢], even though formulated on isospaces over
isofields, are not invariant. After laborious studies, Santilli identified the origin
of the problem where one would expect it the least, in the ordinary differential
celculus which, contrary to popular beliefs, resulted to be dependent on the funda-
mental unit of the base field. This point is absent on the vast literature on different
calculus through various centuries because for the tacitly assumed trivial unit I =
+1, we have d(+1) = 0, while for more general units with a nontrivial functional
dependence, we evidently have df(z,v,..0 £ 0,

The latter occurrence required a reformulation of the differential caleulus into a
form, ealled isodifferential celculus, which is compatible with the generalized umit
of the base field, first achieved by Santilli in memoir [6¢] via the main rules

ii# = [ x d8¥,8/68% = T x 8/82", bzkjdav=dt =68 xI. (39

The above new calculus was then applied in memoir [5] to the construction of
s novel geometry, the isominkowskian geomefry which resulted to be a symbiotic
unification of the Minkowskian features (as reported above), plus the machinery of
Riemann (because the isominkowskian metric has an x-dependence), including the
isochristoffel’s symbols, isocovariant isodifferential, isocovariant isoderivative, ete.,
isocurvature tensor

Popy = ix(aa’?ﬁ'y‘{'afr’?aﬁ-aﬂ’?aq)XI,DXﬁ:d ﬁ+ngXXax z7

,X,i =8, X% 4+ T8, %X, RS 5 = 818, — 6,185+ TEs518., — 08, xI%5. (3.10)

The isominkowskian geometry then permitted the identical formulation of con-
ventional gravitational field equations, such as the Einstein-Hilbert field equations,
althougfh now formulated in a space which is isofiat, thus resolving the main prob-
lems of the conventional formulation outlined in Sect. 2 (see Sect. 4 for details).

By keeping in mind that conventional and isotopic differentials and derivatives
coincide at the abstract level, all papers on isotopies prior to 1996 can be easily
completed into & fully invariant form via the mere re-interpretation of the symbols
?d” and " as being isotopic.

Numerous applications and experimental verifications of the isorelativistic the-
ories have been worked out to date by various authors, among which we indicated:
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A) Particle physics: the universality of the isominkowskian geometry for
the geometrization of all physical media, whether of low density {such as our at-
mosphere) or of high density {(such as the interior of hadrons and stars) with an
excellent fit of experimental data [10a]; the universality of the Lorentz-Poincaré-
Santilli isosymmetry for the representation of arbitrary local speeds of light [10b] as
established by evidence [11]; the exact-numerical representation of the Minkowskian
anomalies in the behavior of the meanlife of unstable hadrons with speed [10¢c]; the
exact-numerical representation of the experimental data from the Bose-Einstein cor-
relation {10d]; the achievement of a true confinement of quarks (with an identically
nult probability of tunnel effects for free quarks) within a perturbatively convergent
theory and conventional SU(3) quantum numbers [10e,10f,10g]; the reconstruction
of the ezact parity, Lorentz and Poincaré symmetries in particle physics when be-
lieved to be broken [5p]; and other verifications.

B) Nuclear Physics: the reconstruction of the eract isospin symmetry in
nuclear physics [5d]; the first exact-numerical representation of all total nuclear
magnetic moments via the invariant representation of the deformation of shape of
the nucleons [10h); the first exact representation of the synthesis of neutrons as they
oceur in stars at their beginning, from protons and electrons only (thus excluding
the yet unavailable remaining baryons with consequential impossibility to use quark
theories) [3f]; the prediction that the neutron, a naturally unstable particle, can
be stimulated to decay via suitable resonating mechanisms which are possibie for
2 nonunitary theory although simply inconceivable for quantum mechanics, and
consequential prediction of a novel subnuclear energy currently under industrial
development [10i]; and other verifications.

C) Astrophysics and cosmology: the exact-numerical representation of the
large difference in cosmological redshift between quasars and galaxies when phys-
ically connected according to gamma spectroscopic evidence (as due to Santilli’s
isodoppler shift within the huge quasars chromospheres according to which light
exits quasars already redshifted to the value of the associated galaxy) {10i]; the first
and still the only available numerical representation of the internal quasars redshift
and blueshift [10k]; the elimination of the missing mass in the universe [5i]; and
other verifications.

D)} Superconductivity: the first and only known model of the Cooper pair
with an explicitly attractive force between the two identical electrons of the pair in
remarkable agreement with experimental data {101,10m]}; and other verifications.

E} Chemistry: the first known representation of the binding energy, electric
and magnetic moments, and other characteristics of the hydrogen, water and other
molecules which are ezact to the seventh digit (quantum chemistry still misses about
2% of the binding energies, with much bigger insufficiencies in electric and magnetic
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moments, which at times even have the wrong sign) [10n,100]]; several independent
experimental verifications of the prediction of a new chemical species composed of
conventional molecules and atoms under a new magnetic bond originating from
the polarizaiion the orbits of the valence electrons (which produce a field about
1,400 times stronger then nuclear magnetic fields) and related new industry of
magnetically polarized gases [10p,10ql; and other verifications.

4. Direct Universality of the L-P-8 Isosymmetry

The Lorentz-Poincaré-Santilli (L-P-8) isosymmetry is directly universal for closed-
isolated systems verifying conventional total conservation laws, with linear and
nonlinear, local and nonlocal and potential-Hamiltonian as well as nonpotential-
nonhamiltonian internal dynamics, where: 1) the verification of conventional total
conservation laws is established by the fact that the generators of the isopoincaré
symimetry are conventional (see next section); 2) all linear, local and potential forces
are represented via the conventional Hamiltonian; and 3) all "non-non-non” effects
are represented with the isounit.

"The understanding of isotopic theories requires at least a rudimentary knowl;edge
of the above direct universality, if nothing else, to prevent the alternative use for
the same problem of theories with catastrophic physical inconsistencies. The best
way to achieve a rapid and intuitive understanding is the geometric, way. In turns
this is useful to understand the local isomorphism of the conventional and isotopic
spacetime symmetries even prior to their treatment in the next section.

As it is well known, the Minkowskian geometry and the rotational-Lorentz-
Poincaré symmetry can only characterize perfectly spherical and perfectly rigid
shapes r2 = 22 4 42 + z2 which are geometrically represented via the unit of the
Buclidean subspace I = Diag.(1,1,1). In fact, any shape other than the perfect
spere and any deviation from its perfect rigidity imply the collapse of the pillar of
spacetime symmetries, the rotational symmetry.

Santilli [5b} achieves the most general possible, signature preserving (compact)
deformation of the sphere while preserving the rotational symmetry as ezact. Re-
call that the Euclidean unit represents in a dimensionless form the basic units of
length elong the three space axes, I = Diag.(lem?, lem?, 1em?), where the square
is evidently due to quadratic character of the interval. Then, jointly with the lifting
of the sphere into the most general possible spheroidal ellipsoids, Santilli lifts the
corresponding units by the inverse amount,

e R T i R a:z/n% o+ y2/n% + 2%/n3,

I = Diag. lcmg, lem%;lem?) — [ = Diag.{n?em? n2em? niem? ) 41
1 2 3
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It is then easy to see that the deformed sphere is indeed the perfect sphere in
isoeuclidean space 133‘(::,3,}31),7‘- =rxIé= Diag(n{i’,ngz,ngg) x 6, called the
isosphere [5]. In fact, each semiaxis is subjected to the lifting 1 — n; 2 but the
corresponding units are lifted by the inverse amount, 1xem?2 — nZem?. This implies
the preservation of the original numerical value of the semiaxes in isospace. The
latter oceurrence is due to the fact that all invariants are elements of the underlying
field. As such, they should be written in general r2 = (2?4 42 2 xI=nx I,
where I is the unit of the field. The preservation of the perfect spheridicity under the
liftings (4.1) then follows, as established by invariant (3.3). The extension to shapes
other than spheroidal ellipsoids is easily achieved via nondiagonal positive-definite
isounits {see monograph [5p] for brevity).

The understanding of the perfect spheridicity of r2 = z2/n? + y?/nd + z%/n3
in isospace then permits the understanding of the property that, contrary to all
popular beliefs throughout this century, the rotational symmetry remains indeed
perfectly exact for all infinitely possible compact deformations of the sphere.

By comparison, the representation of extended particles by Y. 8. Kim [4a] is
a particular case of Santilli broader representation [52,5b]. As indicated earlier,
the former can only oceur for perfectly spherical and perfectly rigid shapes, while
the latter occurs for arbitrarily nonspherical and deformable shapes. Whenever the
former is extended to include the latter, the catastrophic physical inconsistencies
of Sect. 2 are activated, trivially, because the map from a perfectly spherical to a
nonspherical shape is necessarily noncanonical- nonunitary.

The restriction of particle/ charge distributions to be perfectly spherical and
perfectly rigid has rather serious physical implications. As an illustration, it pro-
hibits the achievement (indicated in Sect. 3} of an exact representation of nuclear
magnetic moments (which require precisely a nonspherical deformation of nucleons),
and other applications.

This lustrates the comment of Sect. 2 to the effect that the work of Ref. {4a
and literature quoted therein is invaluable to establish the maximal capability of
the conventional realization of the Lorentz-Poincaré axioms, with the clear under-
standing necessary not to exit science that, by no means, it is the final theory. At
any rate, the little groups of Ref. [4a] are contained as a particular case of Refs.
[5]; Ref. [4a] departs from the Lorentz-Poincaré teaching of "invariance” in favor of
a "covariance, while Refs. [5] restore the "invariance” in its entirety; and, finally,
the entire mathematical treatment of Ref. [4a] can be used for the representation
of the missing nonspherical and deformable shapes via Santilli’s re-interpretation of
all symbols as being of isotopic character.

The representation via the Lorentz-Poincaré-Santilli isosymmetry of extended,
nonspherical and deformable shapes is only the beginning of its direct universality.
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‘The next important applications are the representation of arbitrary speeds of light
while preserving on isospace M of the maximal causal speed of M {the speed of
light in vacuum), and consequential preservation of the light cone. Contrary to a
popular belief throughout this century, this feature establishes that the Lorentz-
Poineard symmetry 1s ezact for arbitrary speeds of light.

Recall that Minkowski originally wrote his metric in the form g = Diag.(1,1,1, —c2).
Therefore, the fourth component of the Minkowski metric represents in a dimension-
less form the unit em?/sec?, and the metric explicitly reads 7 = Diag.(1,1,1, ~1)
(em?/see?). In the isominkowskian space, Santilli [58] considers: 1) the lifting from
c2 to an arbitrary local speed ¢? = ¢2/nd(z,v,d, 7, ¥, ...}, where n is the local index
of refraction; and 2) the joint lifting the unit by the inverse amount. It is then
evident that the dual lifting .

1= Diag.(1,1,1,~c2) — fi = Diag.(1, 1,1, ~c%/ni(z, v,d,7,%,..}),
I = Diag.(1,1,1, lem?/sec?) — | = Diag.(1,1,1, —n2em?/sec?), (4.2)

implies the preservation of the maximal causal speed ¢, on isospaces over isofields
{that is, when considered with respect to [ ).

It is evident that, when projected in the ordinary spacetime (that is, when
considered with respect to I) the isorelativistic theory represents the local speed
7= Cofng.

The additional use of the isosphere then yields Santilli’s light isocone [3] which
is the perfect cone in isospace. The abstract identity pf the isocone with the con-
ventional cone is such that even the characteristic angles of the two cones coincide
(to prevent insidious misrepresentation, one should know that the proof of this oc-
currence requires the use of the isotrigonometric and isohyperbolic functions [5p],
the use of conventional mathematics in isospace being as fundamental inconsistent
as the treatment of conventional theories via isomathematics ).

Recall that speeds ¢ < ¢, are known since the discovery of the refraction of light,
while speeds ¢ > ¢, have been experimentally measured in recent times, and can be
considered as established for all interior media of high density, such as those in the
interior of hadrons or of stars [11].

A 1 SRS BT .

It then follows that the isopoincaré symmetry extends the applicability of the
conventional Einsteinian azioms, from their sole validity for speeds of light in vac-
uum, to arbitrery speeds within physical media. To put it differently, the special
relativity becomes "directly universal” when formulated in the form today known
as Santilli’s isospecial relativity [5-10].

A glimpse at the applications may be of some value here. Nowadays the light
cone is used for all calculations outside gravitational horizons and in similar con-
ditions. However, in the outside of gravitational horizon we have something dra-
matically different than the vacuum. In fact we have a region of space filled up of
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hyperdense chromospheres in which the speed of light, first of all, positively is not
that in vacuum and, second it is locally variable. As z result, outside gravitational
horizons we have highly deformed ”cones”. Santilli’s light isocone permits a more
scientific study of these regions thanks precisely to the admission of local arbitrary
speeds.

Note thet the traditional hopes of representing light within physical media via
photons scattering among molecules (to maintain the speed of light in vacuum c,)
has been discredited by the recent experimental evidence of speeds bigger than e,.
At any rate, we are referring here to a purely classical event {the propagation of
electromagnetic waves within physical media at speeds ¢ < ¢o} which, as such, can-
not be credibly reduced to photons in second quantization without a prior classical
representation.

By no means the above topics are pure semantic, because they have deep impli-
cations in the numerical velues of physical characteristics throughout the universe.

As an illustration in the macrocosm, the belief of the validity of the conventional
light cone everywhere in the universe leads to the current beliefs of the size of the
universe (generally derived from the cosmological redshift). However, the admission
of the physical reality that the speed of light decreases within astrophysical chro-
mospheres implies the necessary consequence that light exits said chromospheres
already redshifted (see Santilli’s companion paper [10b] for the explicit treatment).
The decrease of the currently believed size of the universe is then simply incontro-
vertible.

As an illustration in the microcosm, the possibility to stimulate the decay of the
neutron and related new forms of energy mentioned in Sect. 3, originates precisely
from the admission that light travels in the hyperdense ’ medium inside hadrons at
a speed different than that in vacuum.

Next, it is easy to see that all infinitely possible Riemannian metric g(x) are
simple particular cases of the isometric (z, v, d, 7, ¢, ...). In fact, Santilli [5§} has in-
troduced the novel isominkowskian formulation of gravitation and general relativity
based on the Minkowskian factorization of the Riemannian metric

9(3) = f‘grav.(z) X7, fgrav.(m) = I/Tgmv., (4.3)

and consequential reconstruction of the entire Riemannian formalism into such a
form to admit fg,.,,,,, as the correct left and right new unit.

This result was possible thanks to the construction of the novel isominkowskion
geomeiry [loc. cit.] as a symbiotic unification of the Minkowskian and the Rieman-
nian geometries indicated in Sect. 3.

A visible llustration is the fsominkowskian formulation of Schwarzschild [5])

- ~ o ~ 2 n -
de? = d72 4 #25(d0% + sin’0 x dp2) — df2 x 2,
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dr=1I, xdr,dt =y xdt,f, = (1 -2M/r)" Y f, = 1-2M/r, (4.4)

where, as one can see, curvature disappears completely because it is embedded
in the differential calculus, thus permitting the regaining of a fully minkowskian
structure for Schowarzschild’s metric.

Santilli’s isominkowskian formulation of gravity implies considerable structural
novelties, such as:

1) The formulation, for the first time to our knowledge, of gravitation under the
rigid validity of a symmetry (rather than the usual covariance), which results to be
isomorphic to the Poincaré symmetry.

2) The abandonment of the conventional curvature in favor of isoflatness, that
is, flatness in isospace, as transparent in the reformulation (4.4).

3} The unification of the special and general relativities which are now differ-
entiated by the unit, rather than by the geometry, while the underlying geometry
remains unchanged. Equivalently, we can say that Santilli’s isominkowskian repre-
sentation of gravity extends the direct universality of the special relativity to include
gravitation where nobody looked before, in the unit of the theory.

As shown in Ref. {5)], this reformulation of gravity permits the resolution of at
least, some of the controversies in gravitation that have raged through this century,
such as:

A} The reconstruction on isospaces over isofields of full canonicity or unitarity
(isocanonical or isounitary laws). In turn, this permits the regaining for gravi-
tation of invariant basic units of measurements, the preservation of Hermiticity-
observability at all times, and resolves the other physical inconsistencies of general
relativity indicated in Sec. 2.

B) The compatibility between relativistic and gravitational total conservation
laws, which is established via the mere visual inspection that the generators of the
isopoincaré and conventional Poincaré symmetries coincide {see next section). It is
instructive to compare this geometric- algebraic simplicity with the complexity of
the conventional proof of total conservation laws in general relativity.

C) The existence, for the first time to our knowledge, of a consistent relativistic
limit of Riemann, which is now established via the limit fg.,.w, — I}; and other
resolutions.

Moreover, the regaining of flat gravity in isospace permitted the achievement
of the first grand unification of electroweak and gravitational interactions which is
axiomatically consistent {5g,5h]. In Ref. [5h], p. 324, one can read the viewpoint
according to which: ” gravitation has always been present in unified gauge theories.
It did creep in un-notices because occurring where nobody looked for, in the unit’
of gauge theories”. Electroweak gauge theories can be identically formulated on
isospaces. Then, gravity is contained in the unit of the isosymmetries /(2) x U (1).
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The resulting iso-grand-unification (IGU) also identifies the technical reasons
for the axiomatic inconsistency of other unified theories. In fact, electromagnetic
interactions, as well as electrowesk interactions in general, rigorously follow the
Poincaré symmetry. Any attempt at adding gravitation without a symmetry is
then doomed to failure. Via his reformulation of gravitation in such a way to admit
a symmetry isomorphic te Poincaré, Santilli has resoived the apparently deepest
historical obstacle against a grand unification. This illustrates a reason why all
attempts initiated by Einstein and continued by many scholars were doomed to
fail from their very foundations. Other resolutions of structural incorapatibilities
between gauge and gravitational theories are related to the treatment of antimatter
and will di discussed later on.

Santilli has also pushed his studies to the formulation of the novel 1socosmol-
ogy [5i] which brings the validity of the studies by Lorentz, Poincaré, Einstein,
Minkowski, and others te a true “universal” level, that of cosmological character
inclusive of gravitation, Some of the rather intriguing implications of the isocosmol-
ogy are: the elimination of the need for a " missing mass” in the universe because
the energy equivalence is now E = m xc? = cZ/n?, rather than E = m x ¢2, with an
average value of ¢ for galaxies, quasars and the universe in general much bigger than
co when considering all interior gravitational problems; a significant reduction of
the currently believed dimension of the universe (indicated earlier in this section):
and other intriguing features.

By no means this exhausts all the applications of the isominkowskian geometry,
. Isopoincaré symmetry and isospecial relativity. The next application is the study of
relativistic and gravitational interior problems at large, e.g., the formulation of the
Schwarzschild solution for interior problems with local speed ¢ = co/nq4(z,v,d,7,...)
[5]]-

In particular, gravitational horizons (singularities) result to be the zeros of the
time (space) component of the isounit, as one can verity from structures (4.4). This
is not a mere mathematical curiosity. Gravitational collapse is one of the most
complex physical events in the universe, with the consequentially most complex
possible dependence of the metric on all conceivable local quantities. In particular,
as typical of interior trajectories (such as those of missiles in atmosphere), we must
expect in the gravitational collapse an arbitrary dependence of the metric in the
velocities (which is simply impossible for Riemann), nonlocal- integral effects due
to total wave-overlappings of a large number of wavepackets in a small region of
space (which effects are precluded by the topology of Riemann), and interactions
which violate the integrability conditions for the existence of a Lagrangian (the
conditions of variational selfodjoininess [6g]) which is also beyond any dream of
representation via Riemann. In short, the assumption of the Riemannian geometry
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as being exact for gravitational collapse in general and for the study of gravitational
singularities in particular, is so questionable to imply exiting science.

All the above interior features are directly represented by Santilli’s isominkowskian
geometry, thus permitting, for the first time, more realistic studies of interior gravi-
tational problems in general, gravitational collapse in particular. and related topic,
such as whether or not the universe started from a “big bang”.

The direct universality of the isorelativistic formalism is alzo established by the
fact that it admits as a particular case all infinitely possible Galilean-types of space
and time. They are evidently admitted under the particular Kronecker structure of
rhe isounit

f= {fSpacc} X ftimg. {45)

with consequential factorization of the isopoincaré symmetry into the isogalilean
symmetry [5m.5n]. The latter aspects are not considered here for brevity.

5. Explicit form of the L-P-8 Isotransforms.

In this section we outline the operator version of the L-P-S isosymmetry P{3.1),
with particular reference to the explicit form of the isosymmetry tramsformations
(called isotransforms).

In inspecting this section the reader should keep in kind that it provides a direct
operator theory of gravity called operator isogravity [5],51] under the sole restriction
of the isominkowskian metric (z,v,d,}7,¥,...) to be the conventional Riemannian
metric g{x). The resulting new theory coincides at the abstract level with the
conventional relativistic quanturn mechanics, thus preserving all its properties. This
occurrence is sufficient, alone, to establish the axiomatic consistency of operator
isogravity beyond scientific doubt. Such a ’consistency should then be compared,
for scientific objectivity, with the catastrophic physical inconsistencies of quantum
gravity outlined in Sect. 2,

The clear understanding is that the operator isorelativistic theory outlined below
has applications much beyond that of the mere operator formulation of gravity (Sect.
4).

The isosymmetry P(3.1) is characterized by the conventional ten generators
and parameters of P(3.1), only lifted into their corresponding forms on isospaces
over isofields, plus the 11-th generator § for the new symmetries (3.3), {3.4) with
parameter p

X = {Xk} = {Muv =Ty XPy — Ty X P.u:pass} s
-+ X = {M'uv = ipiﬁv - fv;‘ﬁmﬁmg}a
w={w;} = {{6,v),a,0} ER =¥ =wx [ e R(A,+ %),
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pv=1,234k=12 .11 (5.1)

The isotopies preserve the original connectivity properties of the Lorentz group
L(3.1) {5-8]. The P(3.1) isosymmetry is then given by

P(3.1) = [LB.1)RT(3.1)] x 8, (5.2)
where L(3.1) is the isolorentz group [5al, T(3.1) is the group of isotransiations [5e],
and & is the one-dimensional group of symmetries (3.3), (3.4), which is evidently in
the center of the isogroup. Note that the latter essentially acts as the isotopies of
the conventional " scalar extensions” of Lie’s symmetries, as familiar for the Galilei’s
{but not for the Poincaré) symmetry. Santilli has identified their origin in the change
of the unit of the underlying field and found its explicit symmetry transforms.

The isoezponentiation characterized by the Poincaré-Birkhoff- Witt-Santilli -
theorem [6a,62,7g,8] of the underlying enveloping iscassociative algebra ./1(}5(3.1))

=F+ A0+ A%A/2 4 .= (VT < ] (5.3)

permits to write the connected component of the L-P-§ isosymmetry P, (3.1) =
SO(3.1)%T(3. 1) in the form

Po(3.1) 1 A(@) = My 108X %% = (e X 3Ty 5 f = A(z,0,d, 7,9, ..} x 1.
(5.4)

Note the appearance of the isotopic element T'(z,v,d, 7, ¥, ...}) in the ezponent
of the group structure. This illustrates the nontriviality of the Lie-Santilli isotheory
and, in particular, its nonlinear, nonlocal and nonunitary characters in its projec-
tion on conventional spaces over conventional fields. Intriguingly, the isopoincaré
symmetry recovers linearity, locality and unitarity on M over R.

Conventional linear transforms on M violate isolinearity on 3 and must then
be replaced with the isotransforms

2 = A(b)xE = A(9.3,8,..) x T(z) x & = Aw,z,v,...) X &. (5.5)

The preservation of the original ten dimensions is ensured by the isotopic Baker—

Campbell-Hausdorff Theorem [6a]. Structure (5.4) then forms a connected Lie-
Santilli isogroup with laws

A@YXA@E@) = A% A(d) = A(@ +9"), A($)x A(~3) = A(0) = [ = 71,

(5.6)

The use isodifferential calculus on A then yields the L-P-S isoalgebra p(3.1) [5]
Mpvfﬁaﬁ] =i X (fua X Muﬁ — Tpa X Mvﬂ = fhg X f‘:f;m + flug X A:Iav):

Mﬁw: ﬁa] =iXx (f]po: X Py — e X ﬁy);
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{ﬁcxsﬁﬁﬁl = [Mpv:g] = [?5;4:3} =10
Prx| >= bl >, [ABl=Ax T xB~BxTxA (5.7)

where [4]B] is the Lie-Santilli isoproduct (first proposed in [6b]), which does indeed
satisfy the Lie axioms in isospace, as one can verify.

Note for the particular case 7j = g(x) the appearance of the Riemannian metric
as the ‘structure functions’. Note also that the momentum components isocommute
(while they are notoriously non-commutative for quantum gravity). This confirms
the achievement of the isoflat representation of gravity indicated in Sect. 4, which
is seemingly mandatory to achieve a consistent grand unification of gravity with
other interactions,

The local isomorphism B(3.1) ~ p(3.1) is ensured by the positive-definiteness
of 7. In fact, the use of the generators in the form M B o= gFxp, — §Y %P, yields
the conventional structure constants under a generalized Lie product, as one can
verify. The above local isomorphism is sufficient, per se’, to guarantee the axiomatic
consistency of the L-P-S isosymmetry and all applications in which it is exact,
including operator isogravity.

'The isocasimir invariants of p(3.1) are the simple isotopic images of the con-
ventional ones

Co=i= [f(a:,u,d,v‘,w, SO

=p = prP# = ﬁ“p b ﬁ.u;(ﬁw
CW = W kWH W, =€La: MOPx5™. (5.8)

From them, one can construct any needed isorelativistic equation, such as the Dirac-
Santilli isoequation [5f]

(3 %Py + XA K| >= (2,0, ) X P X T xp* —ixmx [ x T x | >=0,

{3# 37 = 48 X T X 3+ 3 X T x 3% = 25 M, 4% = ’f&f x v x I (no sum), (5.9)

where v# are the conventional gammas and 4* are the isogamma mairices.

Note that, again for the particular case n(z, v,d, ...) = g(z), the anti-isocommut-
ators of the isogamma matrices yield twice the Riemannian metric, thus confirming
the representation of gravitation in the structure of Dirac’s equation.

As an illustration, we have the Dirac-Schwarzschild isoequation characterized
by ¥& = (1 -2M/r)"Y2xy x [ and 34 = (1—2M/r)*? x v x I. Similarly one can
construct the isogravitational version of all other equations of relativistic quantum
mechanics.

These equations are not a mere mathematical curiosity because they establish
the compatibility of operator isogravity with experimental data in view of the much
smaller value of gravitational over electromagnetic, weak and strong interactions,
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The isotopic unification of the special and general relativities is, therefore, compat-
ible with experimental evidence at both classical and operator levels.

The explicit form of the isosymmetry transformations are by:

1) Isorotations [5b], which can be computed from isoexponentiations (5.4)
resulting in the explicit form in the (x,y)-plane (were we ignore hereon the factor-
ization of T for simplicity)

~ 4 ~ 4 ~ ol ~ L ~ A -1
=z xcos{TE x Ty x 83) —y X Ty ® % T xsin(Th x T x 83),

, T S ! Al g
y=szn><T222xsm(Tﬁng’izx83)+yxcos(T1’1xT§Qx83), (5.10)

{see [5p] for general isorotations in all there Euler angles). Isorotations {5.10) leave
invariant el ellipsoidical deformations of the sphere indicated in Sect. 4, as the
reader is encouraged to verify. The local isomorphism between O(3} and 0(3) then
confirms the perfect spheridicity of ellipsoids on isospace (the isosphere).

Note that the space components of all gravitational theories characterize an
isosphere when reformulated on isoeuclidean spaces over isofields.

2) Isolorentz transformations [5a], which are characterized by the isorota-
tions and the isoboosts, e.g., in the (3,4)-plane

~ -~ ~_ 1 ~ 1 ~ "
z® = msxsinh(TB%xTé,><v)—x4><T33¥xT@xcosh(TS’%ng X v} =
~a_l ~ & -
’7X{:E3—T332XT424><6><$4)
4 _ 3. A “1 F=F o einh(FE « 7
20 = -z XT3 Xeg~ X Tyy? xsinh(TF x Ty x v)+

+a? x cosh(fé; X ’f"ﬁi xv) =% x (¢ - TS% X ﬁ;é x 8 % z%),

B = wexThleoxthi=-3)t  (5.11)

Note that the above isotransforms are formally similar to the Lorentz transforms,
as expected from their isotopic character.

Note &lso that all (3-+1)-dimensional Riemannian models of gravity, when sub-
jected to their isominkowskian reformulation, characterize precisely light isocones
on M over R. All possible gravitational models are therefore unified into one single
primitive geometric notion.

3) Isotranslations [5¢], which can be written

o= (B PN = [+ ax An,v,d,..)) x [, 5 = (6%P*e)Lp = 5,

Ap=THMZ+ 0% x [T12 B/ + .. (5.12)

and they are also nonlinear, as expected.
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4) Isoinversions [5¢], which are given by
ixz=nrxz=(-rz!),fXe=rxz=(r,—z?) (5.13)

where# =n x I, #=1x1 , and 7, 7 are the conventional inversion operators.

Despite such a simplicity, the physical implications of the isoinversions are non-
trivial because of the possibility of reconstruciing as exact discrete symmetries when
believed to be broken, which can be achieved by embedding all symmetry breaking
terms in the isounit {5p).

One should be aware that the reconstruction of exact spacetime and internal
symmetries is a rather general property of the Lie~Santilli isotheory, thus holding
also for continuous symmetries. In fact, contrary to popular beliefs, this section
shows that the Lorentz and Poincaré symmetries are ezact for gravitation

5) Isoselfscalar transforms {5h], which are characterized by invariances (3.3)-
(3.4}, ie.,

f=T=pxIfi—=d=p"2x4, (5.14)

where p is the parameter characterizing the novel 11-th dimension.

The implications of the 11-th invariance of spacetime is now clear: it permits
the achievement of a consistent grand unification of gravitation and electroweak
interactions according to a mechanism essentially equivalent to the unification of
electromagnetic and weak interactions, the generalization of the parameter p into
the positive-definite function ’f’gmu_(z) and the rule

(@ x oy x %) x I = {z¥ x [’fgf‘ﬂ”-’(m);pz X Nl X 27} X ifg_riv(z) x I} =

[z x Ghrav.(2) X 2¥] % fg,.a,,_(z). (5.15)

where the equality holds for the two sides computed in their respective spaces and
fields.

By looking in retrospect, we can say that the apparent reason why a grand -
unification was not achieved during this century until recently was theabsencek of
one dimension in the basic symmetry of spacetime {5g,5h).

The above results can be summarized with the following:

THEOREM -8 (Direct universality of the L-8-P isosymmetry [5/j: The 1I-
dimensional, Lorentz-Poinceré-Santilli isosymmetry on isominkowski spaces over
real isofields with common, 4 x 4-dimensional, positive-definite isounits constitutes
the largest possible isolinear, isolocal end isocenonical-isounitary invariance of isosep
aration (8.1), thus being directly universal for all possible, Galilean, relativistic or
gravitetionel, interior and exterior spacetime theories with a well behaved symmetric
metric.
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It should be stressed that for any arbitrarily given diagonal metric 4 = T x n
there is nothing to compute because one merely plots the T,y terms in the above
given isotransforms. The invariance of interval (3.1) is then assured by Theorem 3.
The (2+2)-~de Sitter or other diagonal cases can be derived from the above theorem
via mere changes of signature or dimension of the isounit. The case of nondiagonal
metrics will be considered in the next section.

6. Santilli’s geno- and hyper-symmetries and their isoduals.

The limitations of fundamental theories can be best identified in the writings of
their originators (rather than of their followers). For instance, Lorentz was the first
to identify the insufficiency of his historical symmetry for the speeds of light of the
physical reality and conducted the first search for a possible broader symmetry for
speeds ¢ < ¢, [11a] (while his followers proclaimed for the rest of this century the
”universal constancy of the speed of light™).

Recepﬁive to the and other historical teachings, Santilli has identified the major
limitation of his isotopies as bneing iheir inability to permit aziomatically correct
studies on irreversibility . In fact, being ” axiom-preserving”, the isotopies preserve
the original inability by the L-P axioms to describe irreversibility.

For these reasons, Santilli conducted his studies via the broader genomathemat-
ics initiated in his Ph.D. thesis back in 1967, (128} and then studied in various
works [3a,5b,5¢, 51,6¢,12]. Invariance was achieved for the first time in mermoir (12¢]
of 1997. This is a broader mathematics possessing a Lie-admissible (rather than
Lie-isotopic) structure (a generally nonassociative algebra U with abstract product
ab is said to be Lie- admissible when the attached algebra U™, which is the same
vector space as U equipped with the product [a, b] = ab - ba, is Lie-isotopic).

We cannot possibly provide a technical review of the covering genotopic formal-
ism to avoid another two-semesters volume of lecture notes, However, this presen-
tation would be insufficient in our view (if not potentially misleading) without at
least the main idea of the genotheories.

In essence, while other scholars searched for departures from the Lie axioms,
Santilli devoted his research life to preserve the * same axioms and search instead
for broader realizations. This approach was eventually rewarded because, while
other generalizations outside Lie have the catastrophic physical inconsistencies of
Sect. 2, the preservation of the abstract Lie axioms permitted their resolutions
while achieving a structurally broader theory. ’

The main idea of the genoties is best presented in Ref. [12d] and consists in the
identification in Lie groups and algebras the following abstract bimodular structure

A(w)=U x A(0) x Ut = X*¥ x 4(0) x ¢~ xX = X% 5 A(0) < egtu<X
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;
b
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WdAjdw=AxX ~X xA=A<X - X >A=(4,X),

X7 = A ©1)

characterized by: I) a modular associative action to the right >; II} a modular-
associative axioms to the left <; and III) an inter-relation between the two actions
generally given by Hermitean conjugation.

The genotopic/Lie-admissible formulations then introduce a realization of these
axioms more general than that by the isotopc formulations given by the mere re-
lozation of the symmetric characier of the isounit.

This yields two different generalized mathematics, one for the ordered product to
the right > (representing motion forward in time), and one for the ordered product
to the left < (representing motion backward in time), with two genounits, two
genoproducts, etc.,

[7=18,A>B=Ax8§xB "> A=4> =4,
f=1/PLA<B=AxRxB<[<A=A4<I=4
A=A"B=B R=35 (6.2)

The above elements rust then be completed, for necessary reasons of consis-
tency, with the forward and backward genofields, genospaces, genodifferential cal-
culus, genogeometries, etc. {6e,12¢]. The explicit Lie-admissible realization of Lie’s
axioms I, II and III then reads (at a fixed value of the parameter w, thus without
its ordering)

Alw) = 2% > A(0) < eTHSX = [E XX [ O x A(0) x Rx [€] e X BXX)

idfdw=(A,X)=A<X~-X>A=AxRx X -Xx8§xA,
X=x"k=4§" (6.3)

As one can see, the above structures permit an axiomatic treatment of irre-
versibility. In fact the formulation is structurally irreversible in the sense that it is
irreversible for all possible conventional, reversible Hamiltonians. This is precisely
what needed for a serious study of irreversibility because all action-at-a-distance
interactions are well known to be reversible while physical reality is irreversible.

The observation (and admission) of this physical reality is sufficient, alone, to
establish that irreversibility should be represented with anything except the Hamilio-
nian. Santilli represents irreversibility with nonhermitean, thus irreversible, gener-
alized units. The selection of the units is evidently preferable over an other possible
choices because it assures the invariance of the representation.

In memoirs [51,6e,12¢] Santilli identifies the Lie-admissible structure of the his-
torical Hamilton equations (those with external terms); introduces a new invariant
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genohamiltonian mechanics; identifies the new genoquantization; and works out
the invariant Lie-admissible operator theory. These studies have permitted the
reduction of the irreversibility of of our macroscopic physical reality to the most
elementary levels of nature, such as an electron in the core of a star considered as
externsal

Mutatis mutandae, the belief that an electron in the core of & star is a reversible
system or, worse, that it can be described by quantum mechanics, implies the exiting
of science (because it implies the bekief of the perpetual motion within a hyperdense
physical medium because of the usual conservation laws of the theory). Rather than
adapting physical reality to [re-existing theories, Santilli has constructed a theory
that can represent physical reality in an invariant way,

Note that the theory is manifestly open-nonconservative because idH [dt =
(HH)=H x(R-8) x H = 0. Yet, the notion of gemohermiticity on 7> over
€ coincides with conventional Hermiticity. Therefore, the Lie-admissible theory
provides the only operator representation of open systems known to this author
in which the nonconserved Hamiltonian and other quantities are Hermitean, thus
observable. In other treatments of nonconservative systems the Hamiltonian is gen-
erally nonhermitean and, therefore, not observable.

Intriguingly, Ref. [12¢] proves that the product A < B—B > A = AXRxB—Bx
$ x A, A # B, is manifestly non-Lie on conventional spaces over conventional fields,
yet it becomes fully antisymmetry and Lie when formulates on the bimodule of the
respective envelopes to the left and to the right, {<A, A>} (explicitly, the numerical
values of A x B computed with respect to L is the same as that of A > B = A x & x B
when computed with respect to /> = 1/ 3.

The same quoted contributions on genotopies identified the limitations of the
formulations themselves as being single-valued (e.g., a Hamiltonian has only one
genoeigenvalue per each direction of time). Illert and Santilli (13a] provided evidence
of the need for multi-valued methods in biclogical structures.

In fact, mathematical treatments complemented with computer visualization
establish that the shape of sea shells can be described via the conventional single-
valued three-dimensional Euclidean space according to the empirical perception of
our three Eustachian tubes. However, the same space is basically insufficient to
represent the growth in time of sea shells. In fact, computer visualizatic}n show
that, under the exact imposition of the Euclidean axioms, sea shells first grow in
time in a distorted way and then crack.

Ref. [13a] then showed that the minimally consistent representation of sea shells
growth requires six dimensions, But sea shells exist in our environment and can be
observed via our three-dimensional perception. The solution proposed by Santill
[13b] is that via his multi-vaiued hypermathematics essentially characterized by the
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relaxation of the single-valued character of the genounits (while preserving their
nonsymmetric character as a necessary condition to represent irreversibie events).
We have in this way the ordered hyperunits and hyperproducts [6e,13b]

P={}K.Z .}=18,
A>B={Axé’le,Ax.é‘ng,Axéng,...},f:’>A=A>f>=A,
<F o [y, S Iy} = 178,

A<B={AXxR xB,AxhatRyx B, AxRyxB,. . }<fcA=4<<f=4

A=A'"B=B1R= 51 (6.4)

All aspects of the dual Lie-admissible formalism admit a unique, and significant
extension to the above hyperstructures {for their expression viaweak equalities and
operations one may consult Ref. [13¢]}.

The belief in the existence of a *final theory for everything” can only occur to
feverish minds because so dissonant with the complexity of our reality. Despite
their remarkable generality, hyperformulations too cannot describe the entire uni-
verse. In fact, as indicated in Sect. 2, all available classical theories {including
conventional, isotopic, genotopic and hyperstructural theories) cannot consistently B
represent antimatter at the classical level (see the end of Sect. 2).

After several years of research, Santilli resolved the unbalance between matter
and antimatter in the physics of this century by Jintroducing (for the first time in

Refl. [5b] of 1985), the map, called isoduality, for an arbitrary quantity A with
underlying spaces and fields

Az, v,9,..) = A% = —AT (=21, o1, =91, ) (6.5) — v

The above map is mathemsatically nontrivial, e.g., because it implies the first
construction on records of numbers with negative units and norm [6d]. Physically
the map is also nontrivial because it implies an isodual image of our universe which
coexists with our own, yet it is physically distinct.

We have in this way the isodual conventional, isotopic, genotopic and hyperstruc-
tural mathematics [14}, which he then applied to the construction of a new isodual
theory of antimetier. In particular, at the operator level, isoduality is equivalent
o charge conjugation. The main property here is that charge conjugation is only
applicable at the level of second quantization, while isoduality holds for all levels of
study, from Newion to second guantization, thus resolving the historical unbalance
of this century indicated at the end of Sect. 2.

The reader can see the inevitability of the isodual treatment of antimatter by
noting that the fundamental novel invarients (3.8} and (8.4) also hold for negative-
definite units. This guarantees that all properties and physical laws of the con-
ventional invariants also apply to antimatter under isoduslity, the main difference
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being that the treatments of matter and antimatter are anii-isomorphic to each
others, as they should be.

The most general formulation of the theories presented in this paper is the
isoselfdual hypercosmology [51], in which the "universe”: has a multi-valued structure
perceived by our Eustachian tubes as a single-valued three-dimensional structure;
is defined to include biological structures (as it should be); is open-irreversible;
admits equal amounts of matter and antimatter {in its limit formulation verifying
Lies axioms III of Eq. (6.1)); and pessesses all identically null total charecteristics
of time, energy, linear and angular momentum, eic.

In closing, the reader should be aware that isotopic, genotopic and hyperstruc-
tural formulations and their isoduals can be constructed in their entirety via sim-
ple nonunitary transforms of conventional theories, provided that they are applied
to the totality of the original mathematics. For brevity, we refer the reader to
[51,10b,12¢].

The latter methods are easily applicable for the explicit construction of the iso-,
geno- and hyper-liftings of the Lorentz Poinicaré symmetry, including the case of
nondiagonal-nonsymmetric metrics.

7. Concluding remark

The question raised by the studies reviewed in this paper is: why use generalized
theories with limited representational capabilities and catastrophic physical incon-
sistencies, rather when we have available axiomatically consistent, invariant and
universal formulations 7
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