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ISOTOPIC LIFTING OF SU(2)-SYMMETRY
WITH APPLICATIONS TO NUCLEAR PHYSICS!

R.M.Santilli?

We introduce the axiom-preserving, nonlinear, nonlocal and noncanonical
Isotoples/Q-operator deformatlons § |:.?(2) of the SU(2)-symmetry; construct

their isorepreseniations; and prove thelr fack of unliary equivaience 1o conven-
tional representations under the local isomorphism SUQ(Z) = SU(2). We then

apply the theory to the reconstruction of the exact isospln symmetry under
electromagnetlc and weak Interactions and 1o (he exact represeniation of totsl
magnetic moments for the deuteron and few-body nuclel under the exact Isospin
symmelry. ’

Hzoronnueckas SU(2)-cummerpus
B NPHMEHEHHH K 9AcprOit Dusuke

P.M.Cantinnn

BBOASTCR AKCHOMOCOXPAHRIOWIMECS, HEMHHERHDIE, HEAOKAAbHEIE M HEKA-
HOHHNECKHE H3UTONHULCKK/Q-oncpatophse RedopMaLHy SUQ(2) SU(2)-

CHUMMETPHH; COMAKITCY HX HIOTPEACTABNEHHI M IOKATEIBAETCH HELOCTATOK B
HHX ERH!JO“ JKDHBAJIEHTHOCTH oGu:.cnpuamuM NPCACTARNEHHK]IM B 1OKANBHOM
wzomopdimame QJQ(Z) == SU(2). TeopHs 3aTeM NPHMEHAETCH K BOCCO3ARHHIG

TOKHOH HIOCNMIOBOR CHMMETPHY B BACKTPOMALHHTHAIX K caabbix B3aKMOnEH-
CTRHSAX I K TONHOMY NPCACTRANEHHK) BCEX MAFHHTHLIX MOMEHTOS ACATDOHA M
MANOHYKAOHHOA CHCTEMIN B TOUHOM M3OCNHHOBON CHMMETPHH,

1. Statement of the Problem

It is generally assumed that the SU(2)-spin symmetry (see, e.g., [1 ]}
can solely characterize the familiar eigenvalues jG+1) and

J 2

In this note we shall show that the isotopic/Q-operator deformation of
SU/(2), herein denoted SUy(2), while being locally isomorphic to SU(2), can

characterize the more general eigenvalues

i . .,
m!jzos"z") eyl =1, ] ly seey
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and others, where fand m have conventional values and f(A) is a real valued,
positive-definite function of A = detQ such that f(1) = 1.
For the {wo-dimensional case, the condition detQ =1 for

Q = diag(g, ,, &;,) is realized by g,, = g;, = A. This implies the preserva-
tion of the conventional value % of the spin, but the appearance of a non-

trivial generalization of Pauli’s matrices, herein called isopauli matrices,
with an explicit realization of the «hidden variables 4 in the structure of the
spin % itself.

As a first application, we construct the isotopies of the conventional
isospin (see, e.g., [2,3 ) and show that they permit the reconstruction of an
exact § ﬁ(Z)-isospin symmeiry under electromagnetic and weak inferactions
because protons and neutrons acquire equal masses in the underlying
isospace. ~

It should be noted that the isotopic lifting SU(2) = .SUQ(2) can be inter-
preted as an application of the so-called g-deformations [4 ], although in
their isotopic axiomatic formulation for the most general possible, integro-
differential operator Q |51 -

In the recent note |6 ] we have presented the isotopies of Dirac’s equa-
tion and shown their capability to provide a numerical representation of the
magnetic moment of few-body nuclet, As a second application, in this note
we re-inspect this result under an exact isospin symmetry realized with the
same magnitude of the magnelic momenlis of proions and neutrons in
isospace. Additional applications in nuclear physics, such as for the intro-
duction of a small nonlocal-nonhamiltonian term in the nuclear force, will be
presented elsewhere. '

2. Isotopies of SU(2)-Symmetry

The undersianding of this note requires a knowledge of: the nonlinear-
nonlocal-noncanonical, axiom-preserving isolopies of Lie's theory, origi-
nally introduced inA[‘?] (see the recent review [8 ] and general presentation |
[9D; the isotopies O(3) of the rotational symmeiry ©(3) submitted in {10 ];
the isotopies O(3.1) of the Lorentz symmetry O(3.1) submitted in [11 ]; and
the isotopies of quantum mechanics (QM), called hadronic mechanics
[HAf], originally submitted in [12 ] and then elaborated by various authors
(see recent studies [5,8,13 ] and monographs |14 ]).
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The fundamental notion is the isofopy of the unit of the theory consi-
dered [5—14], in this case, the generalization of the conventional trivial
unit f = diz’x\g (1, 1) of SU(2) into the most general possible, two-dimensio-
nal matrix [ preserving the original axioms of / (smoothness, boundedness,
nonsingularity, Hermicity and positive-definiteness) as a necessary condi-
tion for isotopy,

I=diag(l, )>0=F=1(1,2,% 5,79, ¢!, op, apt,.) 500 @)

The isotopy of the unit then demands, for consistency, a corresponding, |

compatible lifting of all associative products A8 among generic QM quan-
lities A, B, into the isoproduct

AB= A+ B:= AQB, Q fixed, 2.2)

where the isotopic character of the lifting is established by the preservation
of associativity, i.e., As (Bs C) = (A+ B) « C,
~ ”,

The assumptiop\l = Q'"' lhEn implies that / is the correct left and right
unit of the lhe’?ry, Ie A= As[m A, inwhich case Q is called the isofopic
element, and 7 is called the isounit, Note the appearance of g-deformations
in their Q-operaior form at the very foundation of the theory {5 ).

The isolopics of the unit /= [ and of the product AB = A « 8B then
imply the necessary lifting of a/f mathemaiical structures of QM into those
of HM [5—18 |. Here we mention the lifting of the field of complex numbers
C(x, +, x), wilth elements ¢, ordinary sum + and multiplication
¢ X ¢’ = ¢c', into the infinitely possible isotopies 60(5‘, +, &), with iso-
g\ome\lex ﬂum’{mrs €= cj:, conventional sum + and isomultiplication
€ ¢ ¢y = Qc; = ()1 (see [16,17 ] for details),

The isotopies of the unit, multiplication and fields then demand, for
mathematical consistency, corresponding compatible isotopies of the basic
carrier space, the two-dimensional complex Euclidean space E(z, Z, &, C)
with familiar metric 8 = diag(l, 1) into the complex two-dimensional iso-
euclidean spaces introduced in [11] )

E'Q(z; z, 3- a) 2= (zll -"-'2)'

3\2Qasgzdiag(guvgzz)=g1’>0| (2.38)
zfgu(t, z,z, -..)zj = 'Elgl 12+ 2,8,2, = inv,, 2.3t

where the assumed diagonalization of Q is always possible (although not ne-
cessary) from its positive-definiteness,
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The isotopic character (as well as novelty) of the generalizali'gn is estab-
lished by the fact that, under the joint lifting of the metlricd 20 = Q@ = g
and of the ficld C=» 69, f= Q~!, all infinitely possible isospaccs
Ea(z, Z, 3, 6) are locally isomorphic to the original space E(z,z, 9, C)
under the condition of positive-definiteness of the isounit J [{1]. In turn,
this evidently sets the foundation for the local isomorphism of the corres-
ponding symmetries.

Note that separation (2.3) is the most general possible nonlinear, non-
local and noncanonical generalization of the original separation z'2 under

the sole condition of remaining posilive-definite, i.e., of preserving the topo-
logy sigd = sig & = (+, +). The symmetrics of invariant (2.3) are then

expected to be nonlinear, nonlocal and noncanonical, as desired.
The preceding isotopies imply, for consislency, the isotopics of Hilbert
spaces :{w |y ) € Cinlo the so-called isohilbert space 0 with isopro-

duct and isonormalization
Tei(Pte)=(dlo|f)fely ($1i)=T e

" Then, operators which are Hermitean (observable) for QM remain Her-
mifcan (observable) for HM, as was first proved in {15 ].

The liftings of the Hilbert space then require corresponding isotopies of
all conventional operations |13,14]). We here mention isounilarity
D i}f =yt a,j) = f'\, the isocigenvalue  equalions H e @) =
+ HQ |#) = Es | ¥ ﬂ'Euﬁ % the isocxpectation values (A f=
=(y|0AQiw)/{v|Q]w¥)ect.

The lifting of the unit, base ficld and carricr space then require, for
mathematical consistency, the lifting of the entire structure of Lie’s theory,
that is, the isotopies of enveloping associative algebras £, Lie algebras L, Lie
groups &, represenfalion theory, etc. [7—91 Here we mention the
isoassociative enveloping oaperator algebras EQ with isoproduct (2.2);

A= B = AQB the Lie-isolopic algebras EQ with isoproduct

14, Bl = |[ATBl=A% B~ BrA= AQB ~ BOA; 2.5
e
the (connected) Lie-isofopic groups ag of isolinear isounitary transforms on

Ey2,2,8,0)
2= Dwyezm OwQz = Dw)Q(2, %, £, 1, §, 91, w)z Q6@
Uw) = e‘l"g'g = (¥, (2.6b)

]
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U(w) » U(w') = D(w') » D(w) = D(W + w),

Uy = 1, 2.6¢)

where the reformulation in terms of the conventional exponentiation has
been done for simplicity of calculations.
The isounitary UQ(Z) symmeiryis the most general possible, nonlinear,

a(w) » ?I(—w) =

nonlocal and noncanonical, simple, Lie-isotopic invariance group of separa-
tion (2,3b) with realization in terms of isounitary operators on o

uwufauhu=1=g", @mn

verifying isotopic laws (2.6),
U(Z) can be decomposed into the connected, special Isounitary sym-
metry SU (2) for
det(UQ) = +1, 2.8)
plus a discrete part which is similar to that for 0(3) 110} and is here ignored

for brevity.
The connecled SU (2) componenis admit the realization in terms of the

gencrators Jk and paramelers 8, of SU(2)

A

U= I ei AL {H e”*QH*} ) 2.9
k

2

under the conditions ~

7,0 =0, k=1,2,3. .10

The isorepresentations of the isolopic algebras fUQ(2) can be studied by
. imposing that the isocommutation rules have the same structure constants of
SU/(2), i.e., for the rules

lJf,J l—JQJ —JQJ --xe[jkl .10

with isocasimir ~n
= &
}l‘: T+ dp
N
and maximal isocommuling set Jﬁand ? as in the conventional case, These
assumpuons ensure the local 1somorph|sms SU(2) SU(2) by construction,
Let | bd) be the d-dimensional |soba3|s of fUQ(2) with iso-orthogona-

lity conditions

2,12)
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(Blelshy:=(& e 18y=0, ij=12un @13

By putting as in the convenlional case ‘?x = .?, + .?2, and by repeating the
same procedure as the familiar one {l ], we have
Ty By = 8118, 4 -|b">wb"(b"-1)lbd

d=1,2y0y k=1,2,0,d, b7 = =83, 6]0~ 1) = p90%+ 1), 219

A consequence is that the dimensions of the isorepresentations of
UQ(Z) remain the conventional ones, i.e., they can be characterized by the
familiar expressionn =2j+ 1, j= 0, %. 1,... as expecled from the isomor-

phism SV (2) = SU(2). .
However, the explicit forms of the maltrix representations are different
than the conventional ones, as expressed by the rules

~ 1 R ~ ~ ~
Vdy=7i |bf>‘("_“-’+)*|bf), (2.15a)
I T P

Uy=vi 8 red_ a8, 2.15b)
’ (;3)fj=(3d| "'J * |bd), {2.15¢)

under condition (2.10),

The isorepresentalions of the desired dimension can then be con-
strucled accordingly, In the next section we shall compute the two-dimen-
sional isorepresentations, while those of higher dimensions are studied else-
where [14].

A new image of the conventional SU(2)-symmetry is characterized by
our isotopic methods via the antfiawtomorphic map 1 = diag(l,1) =
= J% = —| called isoduality, first introduced in [10], which provides a
novel and intriguing characterization of antiparticles [14]. The correspon-

ding isodual 8@3(2) symmetry will be studied in a separate work.

In summary, our isotopic methods permit the identification of four phy-
sically rclevant isolopies of SU/(2) which, for the case of isospin, are given
by: the broken conventional St/(2) for the usual treatment of p -~ n; the
exacl isotopic SU (2) for the characlerization of p - n (see next seclion);
the broken isodual .S'Ud (2) symmetry for the characterization of the antipar-
ticles p — 7 in isodual spaces; and the exact, isodual, isotopic ﬁ!‘é(ﬁ’.) for the
characterization of antiparticles p — 7 in isodual isospace.
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The reader may be interested in knowing that, when the positive- (or
ncgative-) definiteness of the isotopic elemnt Q is relaxed, the isotopes
S$U(2) unify all three-dimensional simple Lie groups of Cartan classification
over a comples field (of characteristic zero), In fact, we have the compact
isotopes SU(2) = SU(2) for g, > 0, G,, > 0 and the noncompact isotopes

SU2) = SU(1,1) for g, >0 and g,, <0 (see 110] for the corresponding

unification of orthogonal groups over the reals). In this nole we consider
only positive-definile isolopic elements Q.

3. Isotopies of Pauli Matrices

Recall that the conventional Pauli matrices g, (see, e.g. |2 ) verify the

rules o; o, = ”fjk o, bf k= 1,2, 3, la this section we show that the iso-
[

algebra SUq(2) implies the existence of intriguing generalizations of these

familiar matrices.

To have a guiding principle, we recall that |12 ], in gencral, Lie-isofopic
algebras are the image of Lie algebras under non unitary transformations, In
fact, under a transformation LUt = 4, a Lic commutator among generic
matrices A, B, acquires the Lie-isotopic form

U(AB — BAUY = A0 - BO A, (3.1a)

A" =vavt, B =usut, g=wuty ! = gt (3.1b)
We  therefore expect a first class of fundamental (adjoint)
isorcpresentations characterized by the maps'.lk = %ak -+ '?k = UJkU*,

vt el =1y % £(A), 3/4 = (3/4) FYA), herc called regular adjoing

isorepresentalions of & UQ(2).

An example is readily consiructed via Eqs. (2.15) resulting in the follo-
wing generalization of Pauli's matrices here called regular isopauli matrices

0 g 0 -ig
~ -1/2 1 ~ -1/2 11
g = A 3y O,= A . ]
=) 5 (+ igy 0 )

(3.2a)

Pa o

19,70, 1=6,05, -~ 6005, =2, 5, Q=diag(g,,, g,)), (3.20)
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where A = dciQ = g,,8,,>0, with generalized isocigenvalues for

”~
fA) = A2 and T, = 15, k=123,

2
T | B2y = £(1/2)a" 2| B2, @.32)
P8y =(3/9A| 8, i=1,2 (3.3

which confirm the «regulam characler of the gencralization here considered.
The isonormalized isobasis is then given by a simple exiension of the con-
ventional basis, |5} =g"'/2|b).

Recall that Pauli's matrices are essenlially unigue, in the sense that
their transformations under unitary cquivalence do not yield significant
changes in their structure, as well known. The situation is different for the
isopauli matrices, because isorepreseniations arc based on various degrees
of freedom which are absent in the conventional SU(2) theory, such as: 1)
infinitely possible isotopic elements Q; 2) formulation of the isoalgebra in
terms of structure functions |7 I; 3) use of an isotopic element for the isohil-
bert space different than that of the isoalgebra [13,14 |; and others.

We shall call irregular adjoint isorepresentations of .SQIQ(Z) those with
generalized eigenvalues other than (3.3), e.g., those of type (1.1). A first
example is given by the irregular isopauli matrices

~ on _ A -1y _
op = (l 0) =0p 0y = (+i 0) =%
~ £, 0 )
g, = =Alo .4

which verify the isocommulation rules with structure functions
LML N AN . ~ AN A
(5,051 = 20y, [5Gy, 0y 1 = 2i A5, 105 0,,1=2iA0,, (3.5

without evidently altering the local isomorphisms SUQ(Z) = SU(2).
The new isocigenvalue equations are given by

A ~

" § .. vl
-;:Alfs}), PNy =aGa+ )8 GH

which comfirm the «irregulars character under consideration and provide an
illustration of Eqs.(1.1),
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Yet another realization of irregular isopauli matrices is given by

~ [0 &) ., [0
Y= 12 10,
gy 0

o= 12 -1
—=ig,, Som g, 0

-1/2 0 L | 0 -1 (3-7)

8 &
with isocommutation rules and isocigenvalues

”~ ~ ~ ”~ o~ ”~ ~ A ~
IJ“ ’lel'] = t‘A J-'a" {Jll, ‘13] - i."[', IJH \ Jil! l an iJvﬁzr, (3-83)

N T Iall S U I B A B
Jastbi)ntzib,..l ltl.{wl,)-,‘2 5+ A2 Lo (3.8b)

Note that the regular isorepresentations (3.2) are characterized by
structure constants; while irregular isorepresentations (3.4) and (3.7) are
characterized by structure functions, Intriguingly, the former generally
occur in the mathematical study of qu(Z). to have the local isomorphism

su q(2) = S{/(2) by construction, as done in Sect.2. However, the latter ge-

nerally occur in physical applications [13,14 }. This is due to the fact that
generators are not changed by isotopies {7—9 | (recall thal they represent
physical quantities). Their embedding in an isotopic algebre then generally
implies the appearance of the siructure functions.

By no mcans the above two classes exhaust ail possible, physically
significant isorcpresentations (in fact, we do not study here for brevity the
isorepresentations with different isotopic elements for the isoenvelope and
isohilbert space). We therefore iniroduce a third class under the name of
standard adjoint isorepresentations, which occur when the eigenvalues are
the conventional ones, but the algebra is isotopically nontrivial.

In fact, regular isopauli matrices (3.2) admit the conventional cigen-

value—% for A = 1. This condition can be verified by putting g, = 352' =],

We discover in this way the existence of the standard isopauli matrices

~A (0 2 A 0 =AY A (27! 0

o= (J._l 0)! Ty = (a—l O)I 03 = (0 -i r 3.9
which admit ail conventional eigenvalues and struciure constants,

A AN _ ~ o~ l,n %

Wdi=ieyd, JoBy=x316 J By =(3/415 (3.10

yet exhibit a «hidden variables A in their very structure, Note however that
the funclional dependence of A is left completely unrestricted by the isotopy.
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Thus, A can be an arbitrary, real-valued, nowherce nult, nonlinear-iniegral

function, A = A(z, ¢, ety =3=0
Necdless 1o say, irregular isorepresentations also become sla_nfiard
snder the condition det g = 1. We therefore have the following additional

standard isopauli maftrices

A~ ~ 0 —-i ~ A""Ir 0
o= (? (]1) =% %27 (+i o) =% %7 (0 u-.l)' @)

1
. o .y ~r -1

i

Ul -

nNj-

Isopauli matrices with generalized eigenvalues are useful for interior
struclural problems, i.e., the description of a neutron in the core of a neutron
star or, along the same lines, for a hadron constiluent, As Sl.lch, the
applications of the 'general case of the .S‘?JQQ) isosymmetry is studied else-

where {18} ‘
When studying conventional particles, e.g., those of nucle'ar physu_:s,
the subclass of §UQ(2) which is physically relevant is the special one with

" conventional eigenvalues which is studied in the next sections. The image

3“: of (3.9) under isoduality, called isodual Paull matrices, will be studied
elsewhere. '

4, Applications to Isospin in Nuclear Physics

As well known 121, the conventional SU(2) -isospin symmetry is Pmken
by electromagnetic and weak interactions, One of the first applicat.mns ?f
our isotopic/Q-operator deformation of SU (2 is to show that the isospin
symmetry can be reconstructed as exact at the isolgpic level, narflely. there
exist a realization of the underlying isospace Eg(z. z,0, a) in which protons

and neutrons have the same mass, although the conventional values of mass
are recovered under isoexpectation values. .

The main idea is that the SU{2)-isospin symmetry is broken when reali-
zed in its simplest conccivable form, that via the Lie product AB—BA. How-
ever, when the same symmelry is realized via a lesser trivial product, such as
our Lie-isotopic product AQB—-B8QA |7, it can be proved to be exact even
under electromagnetic and weak interactions, Actually, the con.s.tam Q-mat-
rix acquires the meaning of a suitable average of these inleractions.
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The reader should be aware that, by no means, this is an isolated occur-
rence, because it represenis rather general capabilities of the Lie-isolopic
theory referred to as the isofopic reconstruction of exact space-time and in-
ternal symmelries when conventionally broken. For example, the rotational
symmetry has been reconstructed as exacl for all infinitely possible ellip-
soidical deformations of the sphere |10 ]; the Lorentz symmetry has been
reconstrucicd as exact at the isotopic level for all possible signature preser-
ving dcformations n = QO of the Minkowski metric |11 }; elc,

The reconstruction of the exact SAUQ(Z)-isospin symmetry is so simple

lo appear trivial. Consider a twelve-component isostate
A ?,(2)
v = (@p(x)] ’
"

where $a(.t) and ﬁn(x) are solutions of the isodirac equation of note [6]
which transfroms isocovariantly under Q(B.I)xﬁjg.&) for the particular

subclass with conventional eigenvalues, In this note we study only the
SUQ(2) part without any Isominkowskian coordinates, thus restricting our

attenlion to the isonormalized isostates

4.1

1
~ A-_ ~ 0 ~ ~ [l
W) = (o ) Vo= (ﬁ)‘ W lQPp=lk=pn 4D

where Q = diag. (1,471, I'= 0~ '= diag. @', 2).

We then introduce the .flla(l)-isospin with realization (3.9) admitting
conventional eigenvalues = % and 3/4, defined over the isospace
”~ - -~
Eyz7.8,0),8=0s.

We now select such isospace to admil the same masses for the prolon
and the neutron. This is readily permitied by the «hidden variables A when
selected in such a way that

mA~'=mA, ic, A’ =m/m, =099862. “.3)
The mass operator is then defined by
~ 1 ~ - ~ l
M = {-i-l(mp-i- m ) + %4 '(mp_ m,)o}l = (;}n‘{l m‘:l] (4.4

and manifestly represents equal masses m = m pA*‘ = m A in isospace.
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The recovering of conventional masses in our physical space is readily
achieved via the isoeigenvalue expression on an arbitrary isostate

~ S m 0
Me19) = MIQI9) = M1§) = (0" m}h’p‘), (4.5
k n
or, equivalently, via the isoexpectation values
B,1QMQIP ) = m, (F,1OMQIY) = m. (4.6)
Similarly, the charge operator can be defined by
4.7

I - R [ R
q—zle(l+as)-(0 0).

Thus, the SAUQ(2) charges on Isospace are ¢, = e} and g, = 0. However,
the charges in our physical space are the conventional ones,

?,10001%,) =, @,100017,)=0. .8

The isodual SAUdQ(.?)-:'sospin characterizes the antiparticle p and 1 will

be studied clsewhere,

The entire theory of isospin and its applications {2 Jcan then be lifted in
an isotopic form which remains exacl under all interactions | 14 ). This is not
a mere mathemalical curiosity, because it implies a necessary isofopy of the
nuclear force, ¢.g., via .QJQ(Z)—isotopic exchange mechanism,

These dynamical implications are studied clsewhere. We only mention
that their physical origin lies in the old hypothesis that nuclear forces have a
(very small) nonlocal-nonhamiltonian component due to the overlapping of
the charge distributions of nuclcons. The «hidden variable» 4 here intro-
duced merely provides an average of these novel components of the nuclear
force. ‘

5. Application to Few-Body Nuclear Magnetic Moments

In the recent note 6 | we have shown that the .S‘UQ(SE) symmelry permits

a direct representation of: 1) the expected nonspherical shapes of the charge
distribution of nucleons; 2) al} their infinitely possible deformations due to
external forces; and 3) the consequential elteration of the «infrinsicy mag-
netic moment of protons and neutrons under sufficient conditions.
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These r.esulls were then applied in note [6 ) to the apparently first, exact
representation of the total magnetic moment of the deuteron and other few-
body nuclei.

It is now recommendable to re-examine these results within the context
of the exact isospin symmetry of this note,
Consider nuclei with A even and introduce (4/2)-dimensional isospaces

B(2,8,8),8 =0, isotopic elements Q= diag. (1, A; '), det Q, = 1,
B s —1 .
isounits [, = @, °, and related .5‘21(2) isosymmetry for isospin% (the exten-

sion to odd A is.the same as in QM). As well known (see, e.g., [2,3 ], total
nuclear magnetic moments are compuled via the familiar expressions

pO= g (eht2m c) 5, g = 5.585,

£ = - 3.816, eh/2m cp= 1, (5.1a)
WO =B, D=y, g, (5.10)

. In the preceding section we selected the «hidden parameters 4 to iden-
tify lhe? p and # masses. We here select the A-parameter to render equal the
(magnitude of the) p—n magnetic moments via the model

5

~ 1 S ~ -
B={5Me,+ g )T+ 5147 (g, ~ g,) 3} = diag. (547, g ), (5.22)

Fe= 1! = - 0 "
g=4 gff) Aggs)v (¢k|Q“Q|!0*)=8k- k=p,n

A simple isotopic lifting of the conventional QM i i
isospin treatment (see
[14 ] for delalls), then leads to the following altern i
ative formulat -
det (3.9) of note [6] s ation of me

(5.2b)

AM L ? 1 -~
Brop = 2% lkak3+§ (7 Lig T3 %Spy): 5.3

Recall that, in the conventional treatment we have two terms, called sca-
lar and vt.:c!or components, with the latter being dominant over the former,
The dominance of the latter becomes greater under isotopies, and consti-
tutes the sole contribution for L = 0. ’

Consider now the case of the Deuteron (D) and the experimental value
of its magnetic moment
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”gxp____ 0.857. (ﬂpz l). (5.4)

As well known, in OM we have the theoretical value
' u@M =g+ g, = 0879, (5.5

which, as such, does not represent value (5.4) exactly, while significant dif-
ferences persist under relativistic, L = 2 and other corrections (L = 1 is pro-
hibited by parity {2,3 ], while many-body techniques are evidently inappli-

cable for the deuteron),
In note (6] we provided the exact representation of value (5.4) via a

~

mutation ﬁ o By of the p—n magnetic moments ducto a small deformation of

their charge distributions. In this note we present the same result, but this
time obtained in an isospace with exact isospin symmetry and equal mag-
nitudes of the p—n magnetic moments in the deutcron, which is achieved for

value, in E(r, 7, 8,0
1%= Ig,l/1g,! = 3.816/5.5816 = 0.685, g=0.428.  (5.6)

The use of the HM formalism then yields the isoeigenvalues of (5.3
HoMa G = 251 x 5,00 + 20 = 08577 S

This illustrates the possibility of exactly representing p‘,’;"’ as already done

in Sect. 3B of [6], but under the additional condition of having the same
magnitude of the p—n magnetic moments in isospace.
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