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The primary objective of this paper is to stimulate the experimental verification of the validity or invalidity of
Pauli's principle under-strong interactions, accordmg to a proposal which has recently appeared in the literature.
For this ob;ect:ve. we first outline the most relevant steps in the evolution of the notion of particle, from the classical
notion of massive point, to the quantum-mechanical notion of massive, spinning, and charged particle under
electromagnetic interactions, as characterized by the Poincaré symmetry and as experimentally established. We then
recall recent studies according to which this iatter notion of particle might stiil reed suitable implementations when
referred to the additional presence of strong interactions. By recalling that no experimental evidence of direct, or
final or unequivecal character is available at this moment on the value of the spin under strong interactions, the
following hypothesis of these studies is recalled. It consists of the idea that the spin as well as other intrinsic
characteristics of extended, massive, particles under clectromagnchc interactions at large distances are subjected to a
mutation under additional strong interactions at distances smaller than their charge radius, These dynamical effects
can apparently be conjectured to account for the nonpointiike nature of the particles, their necessary state of
penetration to activate the strong interactions, and the consequential emergence of broader forces which imply the
breaking of the SU(2)-spin symmetry, Among the rather numerous technical problems which must be studied to
reach & quantitative assessment of these ideas, in this paper we study a characterization of the mutated value of the
spin via the transition from the associative enveloping algebra of SU(2) to a nonassociative Lie-admissible form. The
departure from the original associative product then becomes directly representative of the breaking of the SU{2)-
spin symmetry, the presence of forces more general than those derivable from a potential, and the mutated value of
the spin. In turn, such a departure of the spin from conventional quantym-mechanical values implies the
inapplicability of Pauli's exclusion principle under strong interactions, because, according to this hypothesis,
particles that are fermions under long-range electromagnetic interactions are no longer fermions under these broader,
short-range, forces. The case of nuclear physics is considered in detail, It is stressed that, in this case, possible
deviations from Pauli's exclusion principle can at most be very small. A class of nuclei for the test considered is
selected. It consists of all nuclei whase volume lies below the value predicted by the proportionality law of the
nuclear volume with the total number of nucleons. These experimental data establish that, for the nuclei considered,
nucleons are in 2 partial state of penetration of their charge volumes although of small statistical character. In turn,
this state of penetration of the charge volumes activates the model of breaking of the SU(2)-spin symimnetry reviewed
in this paper.

The primary purpose of this paper is to stimu-
late the experimental'resolution of the problem,
recently proposed by one of the authors, of wheth-
er Pauli’s principle is valid under strong interac-
tions in the same quantitative measure as it is in
the atomic structure, or deviations are experi-
mentally detectable at the nuclear and hadronic
levels.

The line of presentation which has been selected
to achieve this objective is as direct as possible
and consists of the study of whether a deviation
from the conventional value of lhe spin of hadrons
under strong interactions is conceivable, plaus-
ible, and quantitatively treatable. In turn, this
possible deviation from the value of the spin im-
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plies a corresponding deviation from Pauli’s prin-
ciple. The idea is that the most eifective way to
stimulate the experimental resolution of the prob-
lem is to study the plausibility of the inapplicability
of Pauli’s principle under strong interactions.

The hypothesis of a conceivable deviation from
conventional values of the spin of hadrons under
strong interactions is conjectural at this time, on
both theoretical and experimental grounds. Again,
this recent Hypothesis is studied in this paper for
the specific intent of stimulating the resolution of
the problem considered al the experimental level -
as the only way for the sound conduction of physi-
cal studies, .

We have attempted to write this paper in a self-
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contained way, to be readable without a prior
“knowledge of the Birkhoffian and Lie-admissible
generalization of mechanics.

[ INTRODUCTION

The notion of “particie” has been the subject of
a rather remarkable evolution since the beginning
of this century. It is an easy prediction that this
evolution has not reached a terminal stage with
the currently accepted notion of “elementary par-
ticle,” and that we are simply at one point in time
of a continuing scientific process. Without any
claim of completeness, we would like here briefly
to recall the following three, compatible, lines of
evolution,

(i} Evolution of Galzlez type. The first nontrivial
implementation oceurred in the early part of this
century in the transition from the classical notion
of massive point by Galilei,! Newton,? and other
authors to its quantum-mechanical extension, with
particular reference to the de Broglie conception
of wave structure,’ This latter notion of particle
resulted in being more adequate for the microsco-
pic world. Mevertheless, it scon revealed con-
siderable limitations. Indeed, clear experimental
evidence of the atomic spectra subsequently forced
the acceptance (not without initial skepticism) oi
a second nontrivial step: the addition of the in-
trinsic angular momentum or spin by Uhlenbeck
and Goudsmit.* This second implementation al-
lowed the achievement, via a body of contributions
ranging over the first part of this century, of the
nonrelativistic model of the atomie structure as
it is known nowadays. More recent studies by a
number of authors have identified the fundamental
role of the underlying relativity, the Galilei rela-
tivity,® for the proper characterization of the no-
tion of particle. These efforts have finally pro-
duced the notion of nonrelativistic, quantum-me-
chanical, massive, charged, and spinning particle
of the contemporary physical literature,

(ii) Evolution of Finstein type, The advent of
Einstein’s special relativity® implied a number of
additional nontrivial steps in the evolution of the
notion of partiele. First, there was the achieve-

ment of the notion of clagsical relativistic particle’

and then that of quantum-mechanical relativistic
type® as well as that of Dirac’s field-theoretical
character.” The role of the underlying reiativity
was in this case identified by a pioneering paper
by Wigner!® (which preceded the studies of the
corresponding Galilean case). In this way, and
thanks to a hody of contributions which are still
forthcoming, we have reached the notion of rela-
tivistic, gquantum-mechanical, massive, spianing,
and charged particle which. for the case of the

electromagnetic interactions, has been experimen=-
tally established on rather solid grounds, The
existence of still another line of evolution of the
notion of particle, this time of gravitational cha.r—
acter, should be kept in mind. b
(iii) Evolution of technical character. Despite
the physical consistency of the notions,of particles
along lines 1 and 2, much remained to be done to
reach a full technical characterization, A remark-

‘able physical and mathematical maturity has been

reached in this respect for both the Galilei and
Einstein approaches via the use of the symplectic
geometry of Souriau," Guillemin and Sternberg,'?
and other mathematicians. Despite a rather con~
siderable increase of the technical difficuities,
remarkable progress has also been achieved in
the quantum field-theoretical, axiomatic approach!?
and the constructive field theory."

Therefore we can conclude by saying that nowa-
days we possess a notion of (¢classical and quantum
mechanical, discrete and continupus, relativistic
and nonrelativistic) massive, charged, and spin-
ning particle undey eleciromagnetic interactions
which not only possesses unequivocal experimen-
tal verifications, but has also reached a remark-
able maturity of mathematical formulation. In
particular, we cannowadays claim to have achieved
the solution of the problem of the atomic structure
because we possess a theoretically and experimen-
tally consistent guantitative characterization of
the atomic constituents which, in this case, are
precisely massive, charged, and spinning parti-
cles under (long range) electromagnetic interac-
tions.

Despite these achievements, the currently avail-
able notion of particle is expected to constitute
only a given stage in a continuing scientific pro-
cess and to exhibit its own limitations when applied
to yet broader physical arenas, such as the joint
electromagnetic and strong intevactions experi-
enced by a particle within the core of a neutron
star'or, along rather similar lines, by a constit-
uent of a hadron, In particular, our lack of

achievement until now in arriving at the final so-

lution of the problem of the hadropic structure
might well be due to the fact that we simply do not
possess at this time a theoretically and experi-
mentally established notion ofparticle under strong
interactions.

This latter aspeect has been recently studied by
Santilli**'® who has pointed out the possible inappli-
cabilily of the contemporary notion of particle
under strong intevactions, and the possible need .
for new physical and mathematical generalizations.
Subsequently, the problem has been studied by a
number of authors, in particular, see Ref. 17,
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be sumamarized as follows. The Galilei and Ein-
stein notions of particle essentially characterize
a particle under action-at-a-distance interactions,
that is, with forces derivable from a potential (as
typicai of the electromagnetic interactions}, via
an articulated body of compatible mathematical
tools of analytic, algebraic, and geometric char-
acter.

At the classical discrete level, these tools are
expressible via Hamilton’s equations without ex-
ternal terms (analytic profile), with underlying Lie
algebra (algebraic profile), and symplectic struc-
ture (geometric profile), i.e.,

N
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da®
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The corresponding quantum-mechanical formula-
tion in terms of operators @ =(¥,5) and & is fur-
nished by Heisenberg’s equations

Rt

g ~%[&u’§} =0, [au,avl =", f=1, (1.2)

It is known that formulations (1.1) can represent
only part of Newtonian mechanics in a direct way,
that is, without equivalence transformations. In
fact, Newtonian forces are generally nondeyivable
Irom 2 potential. This occurrence creates the
need ol a generalization of the Hamiltonian me-
chanics, first, for local, generally nonpotential
forces, and second, for nonlocal unrestricted
forces. .

A generalization of'the Hamiltonian mechanics
capable of achieving direct universality for local
Newtonian systems is provided by the Birkhoffian
mechanics, as treated in details in monographs'?
(see also the original proposal’® and the more re-
cent review®®). The terms “direct universality”
express the capability of the Birkhoffian mechanics
of representing, under sufficient smoothness con-
ditions, all local Newtonian systems (universality)
in the coordinates of their experimental detection
(direct universality), i

On mathematical grounds the generalization of
the Hamiltonian into the Birkhoffian mechanics is
characterized by the following well~-defined trans-
ition: '

(1) from the conventional Hamilton’s variational
principle in phase space (Hamilton’s equations) to

the most general possible variational principle for
first~order systems (Birkhoff’s equations);

{2} from the realization of the Lie-algebra pro-
duct in terms of the Poisson brackets to the most
general possible realization of the Lie-algebra
product in Newtonian mechanics; and

(3} from the fundamental symplectic structure
to the most general possible (but exact) symplec-
tic structure {in local coordinates), that is, by
the generalization of Eqs. (1.1) into the form for
the autonomous case (see Refs. 18-20 for the non-
autonomous case)

9B{a)

a* -Q“"(a)—a}.—-— =0, det(*=z0, (1.3a)
- aA HV_Bé
{4,8]* = 0 P (1.3b)
o Qz=%9u,da”ada“=dﬂt , “{1.3¢c)
‘ 3R, OR
Bor=%a5 50 PutBL,
Q% = (9, 47 (1.3d)

A generalization of the Hamiltonian mechanics’
is predictably expected to lead to a generalization
of the Heisenberg mechanics. In fact; the follow -
ing quantization of Egs. (1.3) has been proposed in
Ref. 15 (see Ref. 20 for a more recent account)

s Lo, = R =~
a“—;{a“,B]*:O, [@%,d"]*=i""(@), (1.4a)

[4,B]*=ACE - BCA. (1.4b)

As indicated earlier, Egs. (1.3) have been pro-
posed for the case of local systems,!® A general-
ization of the Birkhoffian mechanies for nonlocal
systems has been identifieq in Ref. 18 (see Ref, 20
for a review). It is characterized by the transi-
tions

(a) from Hamilton’s equations without external
terms to the equations originally conceived by
Hamilton, those with external terms;

(b} from the Lie zlgebras to the covering Lie-
admissible algebras; and

(¢) from the symplectic geometry to the covering
symplectic -admissible geometry; according to
the equations!®-20
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gR, 3R
Sae =S, -—--a;ff --5;;“- , det(S,, -S,.)=%0, (1.5d)
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{1.5e)

Equations (1.5a), called Hamilton~admissible
equations, have been proved to be directly univer-
sal for the most general (unconstrained) Newtonian
systems known at this time, the nonlocal varia-
tionally non-seif-adjoint systems, that is, the
systems with a superposition of local and nonlocal
forces derivable and nonderivable from a poten-
tial ¥ The local part of the system derivable from
a potential is represented via the “Lie content” {(or
the symplectic content), that is, by the antisym-
metric component of the product {two-form), while.
the departure from these familiar formulations
(given by the symmetric part of the product or of
the two-form) represents the nonlocal component
of the system as well as the forces nondarivable
from a potential,

A quani:um-mechanieai version of Egs. (1.5) has
also been identified, and it is given by'5

i -3, B)=0, @,@)=8"@, (1.6)

-

- (A,BY=ARB-BSA, R++§, R,5=fixed.
(1.6b)

The pogsible relevance of formulations (1,3)—
{1.6) for the strong interactions is the following.!5+%
According to established experimental evidence,
the size (charge radius) of all hadrons is approxi~-
mately the same, and it coincides with the range
" of the strong interactions. A necessary condition
for hadrons to activate the strong interactions is,
therefore, that théy enter into a state of mutual
penetration {or overlapping of the wave packets).
This is along the lines of the rather old expecta-
tion thatthe strong interactions are nonlocal, in
which case they belong to the arena of applicability
of the generalized Lie-admissible formulations
{1.5) and (1.6). Nevertheless, nonlocal forces are
known to be well approximated by local nonpoten-
tial forces (e.g., polynomial expansions in the
velocities). As a result, under a local approxi-
mation, the strong interactions are expected to
belong to the arena.of applicability of the general-
ized Lie formulztions (1.3) and (1.4).

The possible relevance of formulations {(1.3)~
(1.6) for the notion of particle can further be put
into focus via the following considerations. The
conventional notion of particle under action at a
distance already mentioned (self-adjoint forces)
can be gquanlitatively characterized via the appli-
cable relativity, Galilei’s or Einstein’s {special).
In turn, ‘these relativilies are rather crucially de-
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pendent on Lie’s theory in its conventional formu~
lation compatible with Hamilton’s and Heisen-
berg’s equations. In particular, the integrated
version of Hamilton’s (Heisenberg’s) equations is
the time component of the classical (quantum-
mechanieal) Galilel relativity according to the
familiar canonical reatization for the classical
case

G4(): alt) -.exp(rw :H aa.. )a(n) (1.7)
The quantum-mechanical extension is given by the
unitary transformation

G{t): alt)=e'* 3(0)e "t F=H'.

{1.8)

"Owing to the deep link between dynamical equa-

tions, relativities, and the notion of particle,
Santilli conjectured that the replacement of the
dynamical equations with covering equations im-
plies: the replacement of conventional relativities
with covering relativities for more general forces
and dynamical conditions,!® In fact, he first iden-
tified the integration of Egs. (1.3) and (1.4) into
the Birkhoffian form'*?

GHt): a(t)=exp (mgaf- 2 )a(ﬂ) . (1.9)
with guantum-~mechanical image given by the (non-
unitary) unitary-admissible transformations!®+??

Gr(t): &(t)zeitﬂi‘a(o)e-ﬂaﬁ ,
5'=5, [B,C]#0

and then the integrations of Eqs. (1.5} and (1.5} into
the Hamilton-admissible form!®%®

dH 9

N e \aw), (1.10)
with quantum-mechanical image given by the

broader unitary-admissible form'%:20

Gty a(t)=e' 530N VR F=fT, |
. = . {1.11

[H,R]=0, [H,S] #0

Santilli therefore conjectured that structures {1.8)

and (1.9) are the time components of classical and

quantum-mechanical coverings of Galilei’s rala-

tivity, respectively, with 10-parameter exteasions

aX 3
alt)=exp (9,,52:"3 e )a{O), (1.12a) -
G*(3.1): N
a(2) =e 0 XeCr g ()g 10T | (1.12b)
X,eg3.1), C,eAlg(3.1))

where ¢(3.1) is Galilei’s algebra and A (£{3.1)) its
associative envelope (see below), and the ¢'s are
the conventional parameters., Structures (1.12)
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were catled the Lie-isolopic corevings %19 of
the canonical and unilary realizations of Galilei’s
reklutivity, respectively,

Along similar lines, structures (1.10} and {1.11)
are interpreted as the lime componentls of still
more general, classical, and quantum-mechanical .
coverings of Galilei's relativity, with 10-param-
eler extensions

. (at=exp (a,rs“”—Ea )a(o), (1.13a)
G(3.1%:¢
( a(t) =e'nirSng () 1O Ey | {1.13b)

X.eg(3.1), R,,8,cAlg(3.1),

called Lie-admissible genotopic coverings of the
canonical and uniiary realization of Galilei’s rel-
ativity, or Galilei-admissible relalivity ‘31320

For compleleness, it should be indicated here
that the generalized dynamical Eqs. {1.3)-{1.8)
and relativities (1.8)~(1.13) were derived by San-
tilli after working out the rudiments of corre-
sponding generalizations of Lie’s first, second,
and third theorems, following a generalization of
the Poincgré~Birkhoff~Witt theorem to nonassocia-

" tive enveloping algebras studied by Ktorides. !

For a review of these studies we refer the inter-
ested reader to Ref. 20, Sec. 1.2. The initiation
of the representation theory of Lie-admissible
algebras of operators on bimodular Hilbert spaces
hag been conducted in.Ref, 22. The study of the
integrability conditions of the generalized equa-
tions into unitary-admissible structures (as a
generalization of the known Nelson’s integrability
conditions) has been initiated in Ref. 23.

Predictably, numerous technical problems must
be resolved before reaching a quantitative assess-
ment of the proposed generalizations of Galilei's
relativity, with particular reference to their cap-
ability of characterizing a covering notion of par-
ticle. This paper is deveted to the study of the
“spin” part of the Galilei-admissible relativity,
i.6., the structure®

Su(z)“-: Al=ew"J"SAe-w*R"k,

I I 1.14
s Jyesuf2), R,,S,eAlsuf2)). ( )
More specifically, we shall study the propos-

al'®?® according to which, when a hadron performs
the transition from

(1) motion in vacuum under long-range electro-
magnetic interactions to

{2} motion under strong interactions, that is,
conditions of overlapping of its wave function with
that of other hadrons (e.g., for a proton inside the
core of a star),

[

fi2

we have the transition from

(1) the exact S8U(2)-spin.symmetry to

(27} the broken SU{2)-spin symmetry under vari-
ationally non-self-adjeint (local or nonloeat) forces,
which is quantitatively treatable via the SU(2)-
admissible structure (1.14);

as well as the transition from
(1”) the conventional magnitude of the spin com=-
puted via the associative Lie-admissible envelope
A(su(2)) (Ref. 25)
W 1 iman = (Jyd | +Jpy + Ty )9
=S5(5 + 1)y :- 3=Ol:7.llr- ‘e
J,J, =associative (1.15)

to
{2”) 2 mutated value of the magnitude of the spirf
computed via the nonaessociative Lie-admissible

envelope U(su(2))

I3 uuant =y 0 Jy +dp0d, +Jy0 Fu=£(SK,
Jyod, =4 8, -J,5F, =nonassociative , (1.18)

where the departure of the generalized product
J¢¢ J; from the conventional associative product
JJ; is a measure of the SU(2)-spin symmetry-
breaking forces.

In particular, our studies will be conducted for
the case when the elements R and S belong to the
field (i.e., are free parameters) in which case we
have a flexible Lie-admissible algebra®®™? with
product

Jyod, =2, +udd,, (1.17)

also known as the {3, ) mutation of the associative
algebra, according to the original proposals K
The motivation of this artizle pointed out at the
beginning now comes to light.  In fact, features 2,
2’, and 2" imply the possibility that the spin of
hadrons in mutated in the transition from the phys-
ical conditions of its current experimental detec~
tion (motion in vacuum under long-range electro-
magnetic interactions only} to the different physi-
cal conditions of motion “within hadronic matter”
(e.g., under conditions of overlapping of the wave
packets). In turn, a possible deviation from con-
ventional values of the spin implies a correspond-
ing inapplicability of Pauli’s exclusion principle
and other conventional laws. Still in turn, this
confirms the need for the experimental verifica-
tion of the validity or invalidily of Pauli’s exelu-
sion principle under strong interactions in a way

independent from its known, exact validity for the °

electromagnetic interactions.
Our studies will be conducted as follows. In
Sec. Il we shall work out the necessary mathemat-
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ical tools for an initial, yet quantitative treatment
of the physical problem considered. Although not
sulficiently emphasized in the physical: literature,
a rvather crucial part of Lie’s theory fo'r the con~
ve monal treatment of spin (as well as other phys-
lcdl quantities} is the universal enveloping a$so-
cu;tzve algebra A{su(2)), In fact, this algebra is
eshential for the definition of the magnitude J2
=, of the spin. In addition, A(su(2)} iz essen-
tial for a number of technical problems, such

as the transition {rom the Lie algebra su(2) to the
Lii group 8U(2). As is well known, the basis of
thé enveloping associative algebra is characterized
by the Poincaré-Birkhoff-Witt theorem.?® When a
Lic symmetry is broken, its enveloping associa-
tivz algebra and related Poincaré-Birkhoff-Witt
theorem cannot be used for physical calculations
{because they would imply both an exaet Lie alge-
bre as well as an exact Lie group).'>?® In this

‘caqe the use of a nonassociative envelope is pos-

sillle, but then it becomes important to identify
the new basis, that is, to work out the generaliza-
tion of the Poincaré-Birkhoff-Witt theorem to a
nonassociative envelope, Section IT is devoted to
the mathematical study of this problem, as a con-
tinuation of the studies initiated in Ref, 21. Section
II1 is devoted to the application of the mathemati-
cal tools of Sec, II to the treatment of the spin of
hadrons under conditions of penetration within
hadronic matter and expected forces more general
than the familiar potential forces. The paper con-
cludes with remarks on the experimental resolu-
tion of the physical problem considered,

A few additional comments appear advisable,
First, we would like to indicate that our studies |
apply to both the Birkhoffian and the Lie-admis-
sible generalization of Heisenberg’s equations, In
fact, Egs. (1.4b} admit a nonassociative envelope
according to the rule of nonassociative Lie admis-~
sibility!®

[4,B]*=(4,B)-(5,4), C=R+3, (1.18)

Second, we would like to indicate that the use of
the theory of nonassociative algebras in general,
and that of the Lie-admissible algebras in parti-
cular, is not a technical virtuosity, but it is ac-
tually needed for practical physical calculations.
This is the case not only for nonpotential forces
{as elaborated earlier), but also for conventional
forces derivable from a potential, although of non-
linear character.

The latter comment calls for a brief elaboration.
It refers to the known theorems of inconsistency
of Heisenberg’s quantization.*®% In essence, the
envelope of Hamilton’s equations is wof an associa-
tive envelope, as in Heisenberg’'s equations. In-
slead, it is given by a nonassociative Lie-admis-
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sible envelope with product

dA OB ‘
A B__B;T-EJ;;' (1.19)

As a result, the quantization for nonlinear systems

Hamilton’s equetions
A=[A,H]y=A " H-H A

A -H=nonassociative

Heisenberg’s equations

AH =associative

despite its use for over half a century, is incon-
sistent because it violates the structure of the en-
velope. For brevity, we refer the interested
reader to Refs. 20 and 30,

The above remark serves to illustrate the need
of the theory of nonassociative algebras for physi-
cal caleulations. It appears that, as a necessary
condition to preserve the structure of Hamilton’s
equations, the quantum-mechanical eguations
should be constructed within the frameWork of
nonassociative enveloping algebras. Thxs is exact-
ly the case of the proposed generalizations (1.4)
and (1.6), as well as of the flexible case workéd
out by Okubo®! for the quantum-mechanical profile,
and by Ktorides® for the quantum-field-theoretical
profile,

In conclusion, the theory of nonassociative alge-
bras has lately emerged as being useful to achieve
a consistent. quantization of conventioné.l {although
nonlinear) systems with local forces derivable )
fram a potential, and this situation simply persists
for more general forces, In this sense, it appears
that the relevance of the nonassociative Lie-admis-
sible enveloping algebra of Sec, II goes beyond the
spin aspect of an elementary.particle. In the pre-
sent study however, we shail focus our attention
on the spin only, ‘

fI. LIE-ADMISSIBLE UNIVERSAL ENVELOPING MUTATION
ALGEBRAS

Given a Lie algebra L over an arbitrary field F.
For a pair (A, u) of fixed scalars x,u € F, we con~

“struct a flexible Lie-admissible algebra Us, w

=U(L),,, with unit element 1 such that L is iso~-
morphically embedded into the attached Lie alpe-
bra U, , and U, , is generated by 1 and L, The
algebra U, ,'is in general nonassociative and is
called a universal enveloping (), u)-muiation al-
gebra of L. We also prove an analog of the well-
known Poincaré-Birkhoff-Will theorem for the al-
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gebra U, ,. Though the discussion in this section
applies to arbitrary Lie algebras, in the remain~
der ol this paper any of the applications will be
restricted to the Lie algebra su(2),

A. Preliminaries

We recall some identities. which are relevant to
Lie admissibility, For a nonassociative algebra
A; deline A~ to be the algebra with multiplication
[x,y] =%y -yx defined on the same vector space
as A. Then A is said to he Lic-admissible if A~
is a Lie algebra, that is, A" satisfies the Jacobi
identity

{{x,y],z]+[[y,z]x]+[[z,x],y] =0. -

The associative algebras are clearly Lie admis-
sible. Various Lypes of nonassociative Lie-admis-
sible algebras, which arise in both algebraic and
physical contexts, are discussed in Myung?®?" and
Santilli.t51@

Denote S('X,_\' 2)= (x,y,2) +y,z,x)+ (2 34,0
where (x,y,2)={xy)z —x(yz) is the associator in
A. Inany a2lgebra, by a direct computation we
have

fxy, 2 +yz, 0] +{ax,3) =50x,9,2).
From this we obtain

S(,y,2) =S(x,2,9) =[[x,3), 4 +[[y, 2], £}

+{[z,x] ]

which also holds in any algebra. Thus an algebra
A is Lie admissible if and only if 4 satisfies the
identity

S(x,y,2)=8(x,z,y). (2.1)

This identity is called the Lie-admissible law. In
particular, an algebra satisfying S(x,y,z)=0 for
all x,y,z is Lie admissible.

Suppose that 4 is Lie admissible and satisfies
third power-associativity e =xx® or (x,x,x)=0,
Albert®™ has shown that the linearization of (x,%,%)
¢ =0 implies

Lxv +yx,z] +[yz +zy,x] +[zx +x2,9] =0,

or gquivalently
S(x,y,z)+S(x,z,y)=0 .

This with (2.1) implies S(x,y,z'=0. Therefore,
we have the following lemma, |

Lemma 2.1. An zlgebra A of characteristic 2
satisfying x’x =x2’ is Lie admissible if and only if

A satisfies S{x,y,z)=0.

There are some well-known zlgebras which sat-
isfy third power-associativity, Recall that an al-
gebra A is called flexible if the flexible law (xyp)x

2
[

=x(yx) holds in A. The identity (xy)y =xv?¢ or
x(xy)=x%] is called the vight [or lefl] alfernatine
lmwe, Therefore, il is evident from Lemma 2.1
that any power-associative, flexible, right or left
allernative algebra is Lie-admissible if and only
if it satisfies S(x,y,z}=0. While it is known tHat
every right {or left) Lie-admissible algebra is
power-associative, flexible Lie-admissible al-
gebras need not be power-associative.’® Okube?®
has recently constructed a simple, [lexible Lie-~
admissible algebra which is not power- associative,
Let A* denote the algebra with multiplication -
x ¥ =3{cy +yx) defined on the same vector space
as A. Let us recall that A is called Jordan ad-
missible if A* satisfies the Jordan identity

(ex)s (vex)=[lrex)evi-x,

Schafer® has shown that an algebra of characteris-
tic#2 is flexible Jordan admissible if and only if

A is flexible and satisfies the identity v2(yy) =
={¢’}x. An algebra satisfyingthe latter identities
is called a nonconmmuniative Jordan alpebra. An
algebra can be both Lie and Jordan admissible.
While these algebras of nonflexible type have bsen
discussed in Myung,* the algebras we discuss in
this paper form a class of flexible algebras which
are both Lie and Jordan admissible. Note that an
associative algebra is clearly flexible Lie and
Jordan admissible. Let A be a flexible Lie-admis-
sible alpebra over a field of characteristic 22.

It was shown by Myung® that, for every xcA, the
linear mapping [ ,xj:y-~[»,x] is a derivation of

A, that is,

[yz,x]:y[z,x]+[y,x]z, (2.2)

for all x,y,z€ A. Conversely, let A be an algebra
satisfying the identity 12.2). Setting y =x in (2.2),
we have that [xz,x]=x[z,x] which implies the
flexible law (¢y)x =x(yx). Since the mapping

[ ,x]: y=[¥,x] is a derivation of 4, it is also a
derivation of the algebra A°. Thus the Jacobi iden-
tity holds in 4~ and so .4” is a Lie algebra. There-~
fore, A is flexible Lie admissible if and only if

A satisfies (2.2).

' B. Construction of the algebra

One of most significant flexible Lie-admissible
algebras which arose in physical contexts is the
{A, pu}-mutation algebra of an associative algebra.
As indicated earlier, let B be an associative al-
gebra over a field F of characteristic #2.  Let
A, 1t be two fixed independent scalars, Then the
algebra B(, u), called the (A, p)-mutation of B, is
defined on the same vector space as B but with
multiplication given by

aob=xab+pba, a,be B
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where ab indicates the associative product in B.
Denote {x,y’=x0y - yo x and (x,y,2z)°= fxoyloz
-xo(yo2z) as the commutator and the associator

-in B(A, ). Then it can be easily computad that

(2,91 = (0= W), 91, (2.3)
{a,b,¢)’=aule, 2], b] =6%E;IF {le,21°,5]°. (2.4)

Setting @ =¢ in (2.4) implies that B, 1t) is flexible.
If we put a®=¢, then (2.4) implies the Jordan iden-
tity {a,5,a%)°=0 in B(x, p). Thus B(x, y) is flexible
Jordan admissible. Also, it follows from (2.4)
that (a,5,¢)°+(b,c,a)+(c, a,b)°=0, since B is

Lie admissible. Therefore, by lemma 2.1, B(x, )’

is aiso Lie admissible. It ig also clear that the
mapping [ ,x]: y~[v,x] is a derivation both in B
and B(x, p). ,

Let L be a Lie algebra over z field F. Let T{L}
be the tensor algebra on L. By definition,

TL)=FIBL, GL, B+ DL, @+,

where Lo=Fland L =L®~+® L {2 times), Thus
T(L) is a universal associative algebra pgenerated
by L and the unit element 1in the sense that if f
is a linear mapping of L into any associative al-
gebra B with unit element 1, thenf can be extended
to a unique homomorphism f* of T(L) into B such
that f'(1)=1. Let R be the ideal of T{L.) generated
by the elements

© [ab]-a®b+b®a, a,bel

and let A=A{L)=T(L)/R. If j denotes the natural
homomorphism of T{L) onto A(L), then (4,7} be-
cames 2 universal enveloping algebra of L in the
sense that if B is any associative algebra and f is
a homomorphism of L into the Lie algebra B", then
there’exists a unique homomorphism # of A into

B such that f=f'j, Then the calculated Poincaré-
Birkhoff- Witt theorem (PBW theorem) states that,
given an ordered basis for L, the cosets of 1 and .
the standard monomials in this basis form a basis
for A(L). 1t is clear from the definition that j maps
F isomorphically into A, so0 A contains the scai-
ars. It is also immediate from the PBW theorem
that j is injective on I and so is a faithful repre-
sentation of L. Let {u;]i€ A} be an ordered basis
for L and identify u; with j(+,). Write the product
inA as xy. What the PBW theorem then amounts
to is that the elements, called standard mono-
mials,

1 R 7 4 i“si Leaea 2.5
1My Uy, 10 WS4 (2.5)

form a basis for A. It can be shown thgt®® any
associative algebra with a basis consisting of all
the standard monomials in (2.5) is a universal en-
veloping algebra of L.

Let T{L){(x, 1) be the (A, 1) mutation of the tensor
algebra T(L) of L. For subspaces H, K of T(L),
as usual, denote M ¢ K as the subspace spanned by
the elements hok, hcH, ke K. Since the agsocia-
tive operation in (L) is the tensor product “@, .

hok=X1®@k+ 120,

We define L, forn=0,1,2,.,, inductively as

nel :
Li=F, L{=L; Lj=L, L!=Y LjoL’

nei®
f=l

If we set
Ty =T(L)\,u ' e
=Fl1@LidL,d  aLic. .-

then T, , is a subzlgebra of T(L)(x, u) since
LyeLjCLy,,. Infact, it is readily seen that Ty, is
precisely the subalgebra of T(L)(A, ) generated

by 1 and L. Thus T, , inherits much of the alge-
braic properties in T(L)(A, ). In particular, T
is flexible and both Lie and Jordan admissible.
Let ! be the ideal of T,,. generated by the elements

Apit

[ab]=[a,b]°=[ab]~ (A= p)a®b-b®a), a,bel
where [ab] is the product in L and
(2,6 =acb-boa=(A~ p)(a®b~b2a)

t
[by (2.3)] is the commutator in Ty =TL), . We
now form the quotient algebra :

Uy =U(L)x.u =T(L)1,u‘”'

Let { be the natural homomorphism of T,,. onto
U,,.,» then clearly i maps I iscmorphically into
U,,. and hence U,,. contains the scalars. Note that
Uy,s is flexible Lie admissible and Jordan admis-
sible, but not in general associative because of
(2.4). Following Ktorides, we call U xou A tniver-
salenveloping (\, p)-miutation algebra (UE(, )
~MA) of L. The present approach is different
from Ktorides’s original one but is in essence the
same algebra as Kiorides constructed, In the re-
mainder of this section we will discuss a general-
ization of the PBW theorem to the algebra U(L e e

C. A generalization of the Poincaré-Birkhoff-Witt theorem

Ktorides® has obtained an analog of the PBW
theorem for the algebra Uy,u- A significance of
this study from the mathematical point of view lies
in the fact that the PBW theorem is extended for
the first time to a ilexible (nonassociative) Lic-
admissible algebra, From the physical poind of
view the algebra U, , resulted in the first construc-
tion of a possible nontrivial theory of quantum-
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mechanical interacting fields.® When L is taken
to be the Lie algebra su(3), an extension of the
Gell-Mann-Okubo mass formula to the algebra
U,,. is possible, 2
In the present paper we obtain even a closer
analog of the PBW theorem for the algebra Uy,u l;y
showing that the natural homomorphism
& Ty, =1, , is injective on L. Thus L is faith-
fully represented into a nonassociative but Lie-
admissible algebra. As we shall see shortly, this
is an immediate consequence of the following theo-
rem which is fundamental in our discussion.
Thesrem 2.2, Let L be a Lie algebra over a
field F, and B be any associative algebra with unit
element over F. 1ff is 2 homomorphism of L into
B", then there exists 5 unique homomeorphism g
of U, , into B\, p) such that
'}

1
A—p

g'{abl- - Waebr-boah=

since g is a homomorphism of T{L) into B and

the restriction of g’ to L is [1/(\~ p)]f. Thus g’
vanishes on the generators of / and since g’ is an
algebraic homomorphism, we haveg’(I)=0. There-
for, there exists a unique homomorphism g of

Uyu =Ty, /I into B(A, 1} such that the following
diagram is commutative;

’

T,w—gl—- B, p)
i\ / g
. U\,u

Thus gi=g"' and the restriction of this to L gives
gi=[1/(x - u)1f. The uniqueness of g follows from
the fact that {{L} generates the algebra U, .. This
completes the proof.

Theorem 2.2 generalizes theorem 2.2 of
Ktorides.® Intheorem 2.2, if one takes f to be a
faithful representation of L, then it follows from
(2.6) that i is injective on L. Note that L always
has a faithful representation. Thus we have the
following coroliary.

Corollary 2.3. The natural homomorphism
it Ty, ~U, , is injective on L.

Corollary 2.3 is a crycial step to obtain an analog
of the PBW theorem for U,,.» wWhereas each ele~-
mentas L can be identified with the coset @ +1.
Also, corollary 2.3 rezolves 3 question raised
by Myung.?” In view of this identification, U, , is

. 1
gi=s o0 . (2.6)

wiere 7 is the natural homomorphism of T, into
U,x and B(, u) is the (A, u)-mutation of B wilh
A, # distinet and both nonzero.

Proof. Since the tensor algebra T(L) is a uni-
versal assoeiative algebra generated byland L,
as noted earlier the linear mapping [1/(x - 1)

L =B can be extended to a unique homomorphism
g' of T(L) into B, that is, the restriction of £ o
L is {1/(x - w)}f. Since g’ is also a homomorphism
of T(L)(, p) into B(\, p), g induces a homomorph-
ism.of T, , into B(x, u) [note that T, , is the sub-
algzebra of T(L), p) generated by 1 and L.

We now examine the action of g/ on the generat-
ors of the ideal I. For a,h¢ L, we have

+

flad) = r~ plr'(a®b - b@a)
T @) A= = X’ (@l () - g 53 ()

T_l"',l @, 16 -5 (@), r0)) =0,

{
a flexible Lie-admissible algebra generated by 1
and L, and theorem 2.2 reads as follows: If f is

a vepresentation of any Lie algebra L into an as-
sociative algebra with unil element then lhe rep-
vesentation [1/(X - p)if of L into the flexible Lie-
admissible algebra B(A, 1) can be exlended lo a -
unique homomorphism of U, . inlo By, p). In view
of this, calling U, , a “universal” enveloping

{x, u)-mutation algebra of L is justified. Let
{u,{i< A} be an ordered basis for a Lie algebra L.
Since this basis and 1 generate U, .+ every ele-
ment in U, , is written as a linear combination of
nonassociative monomials

t

Liugou, o0 Uy, LEA

in some association of the product. At this point it
should be noted that the algebra U, . also satisfies
the identity (2.4). Let f be any representation of L
int> an associative algebra B. Then by theorem
2.2 there exists a unique homomorphism g of Urnu
into B(x, u} such that

g’(u,lo o °"fr)=-(i-_l;}?f("h) *f(uia,‘ s ‘.’*f(u;r) r
where ¥ «y indicates the product in B(, p). In
particular, if B is the universal enveloping alge- *
bra A(L) of L then, since f 2an be taken to be the
identity mapping on L, thers exists a uniciue
homomorphism g of U, , info A(L)(x, u) such that




1
d, oo ———
gl oy o ony ) B ) M Y, e,

(2.7

wheré both sides have the same type of associa-
tion,

Suppose that L is abelian; that is, [LL]= 0.
Then it is-readily seen that the universal envelop-
ing algebra A of L is a polynomial algebra which
is, of couirse, commutative and assoeiative. Thusg
A(x, p) is also commutative and associative by
(2.4) and x »v = (A + p)xy, so (2.7) becomes

h r
g(ullo ity o u;r) =('A_}%) LT TR
In particular, this implies that g is an isomorph-
ism and hence U, ,-is commutative and associa-
tive.

Corollary 2.4. If L is an abelian Lie algebra
then the UE(x, p)—~ MA Uy, of L is a2 commutative
associative algebra.

Let B be an associative algebra with unit ele-
ment 1. For elements b, a,,4,,...,a,€ B, using
the fact that the linear mapping [ ,x]: B~B is a
derivation of B, it can be easily seen that

-1
[b,aya,0 2 a,] 2_29 agy - aylb,ag,la;,, - a,, (2.8)
i=
where a,a,*~+a;=1, ifi=0and a,,**+a,=1, if
i=k-1,

Lemmaz.5. Let b,e,a,,. ..,a, be elements in
an associative algebra with unit element. Then
flb,a,a, < a,l,c] is 2 sum of products each of
which contains exactly two commutators or one
double commutator in b,c,a,,a,,...,a,,

Let {u, |i € A} be an ordered basis for a Lie al-
gebra L. A monomial u, o Nye*stotty inT(L),,
(or in U, ,) in certain association is called a
standard mononmial in T{L), , (or in U, ) if
iy i+ +<i and r is the degree of the mono-
mial. Since the product is not associative, an or-
dered subset {ui,, ..., u;,} with i, <+« <i_gives
: )
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rise to distinct standard monomials in U, ,. For
example,

-((uflo ugdoug o, ey uy ) o lupyoun, ),
(g 0 a0y Nouyy, ete.

To obtain an analog of the PBW theorem for-
U,,.» we first need to develop a machinery to in-
terchange two basis elements in a monomial. Lt
¥,y be monomials in T, , and let n, v be basis
elements for L. Then

fuoxlov=(xoulo v+{r¢,xi‘;o v
=low)ov+ (- piu,xlev

and by (2.8), the last term is a linear comhination
of monomials of degree <1 +degtee x modulo R.

A similar observation can be made for a product
of the form {xou)o (yov}). Therefore, it suffices.
to consider the following two types of products in
T

R.u:
rou)ou,, (rou)olu,ov),

where ¥ and y are monomials of degree m and n,
and u;,u; are basis elements. For this we make
repeated use of (2.4} and the fact that the mapping
{ yalis a derivation both in T, , and T(L). First,
we compute

(xoru)au; =20, ou‘,)+7l_u[[u!,x],:r,]r
=x oy ot ) +x 0 1,1,
+Apflay,x],0,]
=(xonou, +xo|uy,u,l’
~ xpffeeg, 21,00 e apmffeg, 27,0,

In the last expression, by (2.8) the second term
can be written as a sum of standard monomials
modulo R of degree sm +1 and by Lemma 2.5, the
last two terms are a linear combination of stand-
ard monomials modulo R of degree $m, Similar-
ly, using the fact that the mapping [ ,al: b—~|b,a] .
is a derivation of T(L) and T, ,, we compute

rouo(you)=(lrauyou)ov—anfly,xoul, ]=(cendon)oy—rpfxo v, 0]+ ¥,x]onyyn,]
T=llreuoudoy—npro [y, u)), 1)~ Aulx,u,) e [y,1,]
—A#Hy,x],nj]o uy=Aufy,xle ["ll”{] .

Now, u, and #; in ((xou,)eo ;) oy can be inter-
changed via the previous calculation. As before,
the remaining terms are linear combinations of
standard monomials modulo R of degree <ni 4+ 1.
- Note that xe#,) (¢;0v) is a monomial of degree
we+n+ 2. Therefore, we have proved the following
generalization of the PBW theorem for U, ,.
Theorem 2.6. Every element in the universal

{
enveloping (3, p)-mutation algebra U, , of a Lie
algebra L is a linear combination of J cosets of

I and T, , menomials, and R cosets of 1 and T(L)
monomials. ’

Let A, , =A(L), , subalgebra of A(L)(A, u) gen-
crated by 1 and L, where A (L) is Lhe universal
enveloping algebra of L. Notice that 4, , does not
equal A{L)(x, 1) in general, By (2.7), we see that



»

oz KTORIDES, MYUNG, AND SANTILLI 22

& is a homomorphism of U,  onto 4, ,. Due to
(2.4), the algebras U, , and A,,. are far from as-
sociative and an explicit description of the stand-
ard monomials in U, , or inA, , seems quite dif-
ficult. Let K be the kernel of &. Thus the quotient
algebra U, , =U, , /K is isomorphic to A, .. We
have seen that if L is abelian, then K =0; however,
we have no example for K+ 0.

Let L be a finite-dimensional semisimple Lie
algebra over an algebraically closed field F of
characteristic 0, Let Z{4)=2Z(4 IN={redl)|xy
=yx for all ye A(L)} be the center. Then Z(4) is
a subalgebra of A(L) and an integral domain.® Let
(r,3) be the Killing form of L. Let Uyythay ooyt

be a basis for L and let (u,,u,):ﬁ,,, §,i=1,2,...,n.

Since the matrix (8,;) is a nonsingular symmetric
matrix, it has an inverse matrix {@,,) which is
symmetrie also. Then it is shown that the Casimir
element

n

Q=3 o 1,

{7
15 in the center Z(4) of A(L). Since (a,,) is sym-
metric and u, su, +uyxuty= (+ 2o, +ugu,), in
terms of the (A, u)-mutation operation we have
i n

= e, wly.
ity vty
A+p.uﬂ

Therefore we have that @€ A(L), , and by (2.4) 2
is also contained in the center of the nonassociative
algebra A(L), .. Inview of this, we call

Q' = (A + U} the Casimir (A, Wi-mutation elenent

of L.

For the purpose of our discussion, let su(2) be
the Lie algebra of the Pauli matrices

. {01 0 - é 1 0
crl=(1 0)’ °=’-=(z' 0)' “?‘“(0 _1)
over the complex field C. Letting
u;=3i0y, u,=—%io,, uy=%io,,
we have the Lie multiplication
: [uy,1t,] =u,, (100, ] =2y, [teg,0,] =u,,

and this implies the Killing form (x,, )= -25,,,
4,7=1,2,3. Thus the Casimir element of su(?) is

Q=g g w10, sty 41 % 2g) = (4 R
=3 (A 0l a2 v ). (2.9)

In this case, it is shown that* the center of the al-
gebra A(su(2)} is precisely C[£2), the polynomial
algebra in @ over C, and thus the center of
Alsul@)), , is C[']. I fis an irreducible repre-
sentation of su(2) acting on a vector space V, then
F(@) acts on V as a scalar and so does f(R') on V.
Then we have ;

@)=+ p)f@),

1
IIl. APPLICATION TO THE MUTATION OF SPIN

In this paper we are primarily interested in mas-
sive, extended, strongly interacting particles
which possess spin + under electromagnetic inter-
actions, such as the nucleons. We shall therefore
apply the mathematical methods of Sec. 2toa
speculative study of the possible mutation of the
spin z. The hope is that such an application will
result in being of assistance-for the needed ex-
perimental resolution of the problem identified in
Ref. 15, whether the spin of extended particles is'
preserved or muited under strong interactions.
For this purposef we shall also briefly copiment
on the available proposals for experimental tests.

To suppiement;ft’he diseussion of the Introduction,
it may be valuable to elaborate in more detail on
some physical reasons for the expected mutation
of the spin, as well ag on its computation via the
Lie-admissible algebras. We shall follow the
traditional attitude of the exact SU(2) case, in the
sense of first presenting the basic ideas for the
case of the angular momentum and then extending
them to the case of the spin. -

The class of physical systems under considera-
tion at the Newtonian limit is constituted by the
most general, local class C° and regular systems
ina three-dimensional Euclidean space with co-
ordinates »*, k=1,2,.,.,»n a=x,%,2, These sys-
tems can be written

(T = foalt, , Dlos = oo, 5, Flhga =0, 3.1)

where SA (NSA) stands for variational self-ad-
jointness (non-self-adjointness), that is, the prop-
erty that the forces f,, (F,.) verify (violate) the in-
tegrability conditions for the existence of a poten-
tial energy U{t, ¥, T). This is, in essence, the
technical language of the inverse problem of the
calculus of variations®® tc express the fact that
Newtonian systems, as they occur in our environ-
ment, exhibit the presence of long-range forces
derivable from a potential (e.g., the Lorentz
force), as well as contact nonconservative forces
which are not derivable from a potential {e.£.,
drag forces quadratically dependent. on the veloci-
ties). In particular, the Mewtonian limit of the
forces which are used for the breaking of the SU(2)
angular momentum/spin symmetry is given pre-
cisely by the non-self-adjoint forces. i

A subclass of systems (3.1) (called nonessential-

ly non-self-adjoint'®) verifies the integrability con--

ditions for the existence of a Hamiltonian repre-
sentation without changing the coordinates and .
time variables of its experimental detection, This
is the first restriction on the class of non-self-
adjoint forces which is needed for the type of SU(2)
symmetry breaking we are refer?é‘ﬁg to here. The

3..‘
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second restriction is that they produce a semi-
canonical breaking,' that is, the equations of mo-
tion are form invariant under rotations, but the
angular momentum ¥ X mT is nonconserved. This
condition is attained in a number of cases in our

environment, such as the spinaing top under grav. -

ity. Consider, for simplicity, the case with only
one degree & of angular freedom. An exact SO(2)
symmetry would literally imply the perpetual mo-
tion, trivially, from the conserved nature of the
angular momenturn. To represent more closely
this physical system, the angular momentum must
instead be nonconserved, that is, the SO(2) sym-
metry be hroken, This breaking is produced by
the addition of a velocity-dependent drag torgue
T(9) y1eld1ng the particular case of systems (3.1)

{UG)SA-'T(B Vwea =0, (3.2)

where [ is the moment of inertia. The aspect
which is relevant for our analysis is that Eq. {3.2)
is indeed invariant under rotations, but the angular
momenturm is nonconserved. This is precisely the
case of the semicanonical breakings [of course,
the S0(2) symmetry of Eq. (3.2) implies a con-
served quantity, but this quantity does not coincide
with the angular momentum],

To summarize, the Newtonian limit of the sys-
tems we are considering is given by systems
which {1) possess self-adjoint as well as non-seli-
adjoint forces, (2) verify the integrability condi-
tions for the existence of a Hamiltonian represen-
tation within the coordinate and time variables of
their experimental detection, and {3) exhibit a
semicanonical breaking of the group of roiations
in the sense recalled above.

A necessary coudition for the existence of a
Hamiltonian representation of the systems consid-
ered which is erucial for the analysis of lthis paper
is that the conventional canonical algorithm
Mmurx Pean does not coincide with the physical
angular momentum Mphy, =T X Fpnys, Bonys =#T. This
isdue tothe fact that, for the nonconservative sys-
tems under consideration, the Hamiltonian has a
generalized structure of the type!’

H(t: -fsﬁ)=Hmhl(ts F,ﬁ)T(§)+Hint.2({’ F’ﬁ)’
- L B 1
. p= pcan-=p(t: T, pphvs)’ T=w2—;;§2 )

One uotices the (necessary) presence of multipli-
cative interaction terms # _,, to the kinetic (free)
term T (when these terms reduce to the identity,
all forces nonderivable frem g potential are null).
When the functional relationship between the canon-
ical and physical momenta is linear, we can write

Mean =X Pegy

=flt, BV X Bypye =S4, BN -
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Since M,,, is conserved from the symmetry under
rotations, the above relation is sufficient to ex-
press the nonconservation of the physical angular
momentur.

In the transition to a quantum mechanical de~
seription, this nonconservative aspect of both, the
energy and the angular momentum, persists in its
entirety, provided that we interpret with eare the
physical significance of the mathematieal algor-

ithms at hand.

In essence, whether directly used or not, the
quantization of the systems considered via a
Schridinger-type equation satisfying the corres-
pondence principle must be compatible with' the
naive rules
H~ifi2 57 B —--:,—f v
provided that they are referred to the canonical
quantities. It then follows that the quantum-mech-
anical algorithms “(1/{)V” and “¥x (i/1)%" do not
represent, for the systems considered, the physi-
callinear momentum and the physical angular mo-
mentum, respectively. This yields the mutation

I\7[171175 =-f(£$ Q)M—czn L] (3-3)

where we have ignored the possible dependence

of the multiplicative function on the coordinates
{we exclude possible spm-orblt couplings which
multiply the free term in the Hamiltonian) but we
have added a possible dependence on intrinsic
quantities ¢ (the spin-spin couplings which, again,
multiply the free term in the Hamiltonian'®),

On fully equivalent grounds, one can recompute
the physical energy T+ U in terms of the guantum
mechanical operators T and §,,, and see that this
encrgy is nonconserved. Nevertheless, it is in-
variant under rotations. This means that the no-
tion of semicanonical breaking of a space-time
Lie symmetry carries over to the quantum-mech-
anical cortext in its entirety.

The quantum-mechanical setting we are here
referring to can be visualized by thinking at the
motion of an extended, massive and charged parti-
cle within dense hadronic matter, such as, in the
core of a neutron star. The conventional Schrii-
dinger’s equation with familiar Hamiltonian H=T{p)
+ Vi) is expected to be insufficient to repre-
sent this motion. The simplest possible general-
ization which still preserves locality and linéarity
is that via the nonessentially non-self-adjoint
forces outlined in this' section. Some of the first *
necessary conditions for physical consistency are
that the physical eneré;y and lhe physical angular
momenturn of the particle considered are noncon-
served. Indeed, the idea that an extended particle
orbits within the core of a neutron star with con-
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served angular momentum would now be concep-
tually inconsistent to begin with.

The case we are here considering, the semican-
onical breaking of the group of rotations, is the
simplest conceivable, with an understanding that
there are additional, more complex breakings
{the canonical and essentially non-~self-adjoint
breakings'®). The significance of the semicanonic-
al breaking is due to the fack that Schridingerrs
equation is stil] invariant under rotation. This
allows the preservation of the conventional canon-
fical angular momentum of conservative quantum
mechanics (e.g,, that for'the stationary orbits of
the peripheral electrons in an atomie structure).
The only point is that now such a formalism does
not possess a direct physical m'eaning, although
the physieal quantities can be indirectly obtained
via expressions of the type {3.3).

We are now equipped to consider the algebraic
part of the problem. Let M,, i=x,y,2 be the gen-
erators of the exact SU(2) symmetry, where the
direct physical meaning of M, is understoed. To
compute the mggnitude of the angular momentum
vector M we need expressions of type (1.14), that
is, we first need to enveloping associative algebra
A(su(2)) and then the element (1.14) of its center.

Our problem is to identify an admissible general-
ization of this algebraic context which is capable
of representing.the value of ﬁpm under a semi-
cononical breaking. It is easy to see that the
UE(, u)MA of su(2) [i.e., U(su(2)),, ] is indeed an
acceptable candidate because the nonassociative
image (2.9) 'of (1.14) canindeed represent the value

T N L T (3.4)

for A+ pu=/% This approach holds at a given in-
stant of time. To reach the desired evolution in
time one needs only to extend the Aand u quanti-
ties into functions of time. For instance, an ex-
ponentially decaying angular momentum can be
trivially represented with A+ g =expn{-y#). Almost
needless to say, the use of time dependent x and il
quantities does not alter the mathematical analy-
sis of Sec. i because the parameter ¢ is not an
element of the su(2) angular momentum spin alge-
bra. :

In conclusion, for the simplest pcssible semi-
canonical breaking of the symmetry under rota-
tions, the new value of the square of the angular
momentumr, can be obtained by performing the
transition from the associative envelope A{su(2))
to its simplest possible nonasgociative extension,
that is, U(su{2)}, ,. The mutation of the value of
the apgular momentum, that is, its departure from
the value for the exact symmetry, is then charac-
terized by the quantity A+ p.

Although not essential for the content of this

[ 2]

Jlb

paper, the interested reader should keep in mind
that this Lie-admissible characterization of the
"broken SU(2) angular momentum symmetry has a
dynamical counterpart via a generalization of
Heisenberg’s equations which is also Lie admissi-
ble in algebraic character. '

The transition to the case of the spin & is
straightforward. On conceptual grounds we extend
the notion of particle considered earlier in this
Section with an intrinsic argular momentum {or
spin). The notion of mutation of such spin car ¢
then be introduced in a way paraliel to that of ang-
ular momentum. Indeed, the preservation of the
value of the spin under electromagnetic interac-
tions only, while the extended particle is in motion
within a dense hadronic matter, becores concep-
tually questionable on the same grounds as those
for the angular momentum. Our problem is then
that of identifying means to treat this mutation in
its simplest possible case, that of the Semicanon-
ical breaking. '

The latter nature of the breaking allows the pre-
servation of the Pauli’s matrices, even though [as
for the case of the angular momentum, Egs. (3.3)]
these matrices now do not directly represent the
spin. The U(su(2)), , mutation is then particularly
simple because Pauli's matrices {unlike the case
for the represgntations of su{2) of dimension higher
than two) verify the following closure properties
under the assoeciative product

U0, = 1€, 5,0, + 6,1 {3.5)

as well as, of course, the Lie multiplication given
by the basis u,, u,, u, in Sec. II. As a result,
Pauli’s matrices are also closed under the (A, )
product, i.e.,

00, = A0, + no,0,

A - ‘ Ad

=f""§‘"&€m°ﬁi‘"§‘*‘ 5“1. (3.8)

It then follows from (2.4) that the envelope
U(su(2)),, ¢ is indeed nonassociative, as can be
seen, for instance, via the property

0" (0% (0,7 0,)) # (,% 0 )% (0,4 5,). 3.7

Nevertheiess, fhe mechanism of reducing an arbi-
trary monomia} to a standard form is, in this
case, of quite simple realization. In actuality, all
standard and nonstandard monomials of order
higher than one can be reduced via rule (3.6).to
cosets of 1 and the elements o, 0, 0,. It should
be stressed for clarity that this is a direct con-
sequence of the associative closure (3.5) and that
for higher dimensional representations of su(2)
this situation does not oceur.

The above features are sufficient to identify the

.
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desired result. The value
- - i
Iiu“i(;u{29]=3/4, u=50

of the spin under electromagnetic interactions
only is now subjectad to the mutation

HENE u g = A+ N8 wen

=(A+ )i, .

which is here interpreted, according to Santilli
[Ref. 15, Eq. (4.19.11)] as characterizing the new
value of the spin urder strong non-self-adjoint
interactions producing a semicanonical breaking
of su(2}),

It is essential to know that the particles eonsid-
ered under the mutation are no longer fermions.
This is the statistical mutation for which the
analysis of Ref. 15 was primarily intended in the
first place. To illustrate this point, it is suffi-
cient here to consider the mutation of the exponen-
tial mapping for the case, of say, g,

= p=fi/200
Ek.u"e 3|U(su(z))
Kli‘
i 1

if
5 g, + '2—5"("5)20’3"‘ g,
1

ig\3
—5-?(%) (0-3*33)* 0-3_]_ -

_(ep) -1 ! COS[(M M(rf,)]

=1

Avp At p
s in[g(M- )] 3.9
4 «-A+u0'38 2 H )

:

and compaire it to the conventional form

O 1)
E=g /209 IA(: wzn =1 003(—;)" “735"1(") . (3.9)

2

One can then easily see that, for 6=2r,E,, , #~1.
Thus, the states which are spinors under electro-
magnetic interactions are no longer spinors when
subjected to the mutation U(su(2)), ,,.

Alsc, these theoretical ideas call for an experi-
mental verification. It might therefore be of some
value to recall the proposal for the experimental
verification whether Pauli’s exclusion principle is
exactly valid in nuclear physics or very small
deviations are experimentally detectable. In this
case, the mutation is expected to be of at most
very gmall character because the charge volumes
of the nucleons are generally separated within a
nuclear structure, with very small overlappings
of both space and time character (see Ref. 15
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TABLE L. As an iliustration of the topic of Sec. III, .
we here reproduce the established data for the miclear !
rms radius a as a function of the total number of nucleons '
A for the case of light nuclei {4 & 14) according to Ref.

43, The full line is the theoretical curve a=1,30 A}/3,
Experimental points, however, fail to siay on such a
curve, In particular, there are nuclei with radii larger
as well as smaller than that expected. The nuclei which

‘are significant for the analysis of this paper are those

which lie below the full line. In this case, we argue that
nucleons must be in a state of partial penetration of their
charge volume at least for small periods of time. Such
state of penetration is expected to produce nonlocal in-
teractions nonderivable from a potential, here approxi-
mated with local non-self-adjoint forces. In turn, ac-
cording to the analysis of Ref. 15, theése forces produce,
in general, the breaking of all conventional space-time
symmetries and that of the SU(2)-spin symmetry in par-
ticular, resulting In a mutation of the value of the spin of
the nucleons, that is, a departure from the conventional
value 1/2. Additional-arguments suggest thatsuch mu-
tation is of very small character. This situation sug-
gested the experimenta) verification whether Patli’s ,
principle is exactly valid in nuclear physics or very X
small deviation are experimentally detectable.!® To '
avoid possible misrepresentations of the analysis of this
paper, it should be here recalled that local non-self-ad-
joint forces necessarily produce the nonconservation of a
kinematical quantity such ag the energy, but they do not
necessarily produce the nonconservation (and, thus, the
mutation) of intrinsic characteristics such as the spin.
In econclusion, the physical basis for very smali: addi-
tional terms in the nuclear forces of local non-seif-ad- .
joint character is not sufficient to ensure the mutation

of the spin of the nucleons (in 2 measurable amount),
their consequential lack of exact fermionic character
and, thus, the inapplieability of Paull’s principle in an
exact form, Nevertheless, such a physical context is
sufficient to motivate a serious experimental study, ow-
ing to the truly restrictive conditions which must ba im-
posed on the non-self-ndjoint forces to leave unaffected
the SU{2}-spin symmetry.

30
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for details},

In this case, the mutation of the spin  of the
nucleons can be represented with the follgwing :
realization of U(su(2)),,,:
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Mptagngg ey, e=0),

0l fawan,  =(E+6)], (3.10)

[ N 1:1
Ellﬁ_e 3]!'(3“(2”“5

=g ™3| alaeen, ,
8 . . 8
=¢+1cos{(1 +e)§ ~ioysin[(1 +5)§"] .

The net effect is that Pauli’s principle is not ex-
actly valid according to this model because the

- proton and the neutron are not exact fermions
while member of a nuclear structure. See Table
for further comments.

In conclusion, a first experimental tes* of the
theoretical ideas eiaborated in this paper is given
hy.the proposal of Ref, 15 to Lest Pauli’'s principle
under sirong interactions beginning at the nuclear
level. The criteria of the seleclion of the nuclei
for this possibie test are given by the proportion-
ality law between the nuclear volume and the total
number of nucleons. All nuclei whose charge vol-
ume is below the value expected according to this
proportionality rule are good capdidates for the

test of Pauli’s principle, because in this case nu-
cleons are in a state of partial, mutual penetra-
tion,

In closing, it appears recommendable to stregs
the implications of a possible inapplicability of
Pauli’s prineciple in nuelear physies in an exact
form, In essence, such inapplicabitity implies
that of the Galilei and Einstein relativities, be-
cause the mechanism aceording to which it is de<
rived implies the breaking of the central part of
these relativities, the SU(2)-spin part. An occur-
rence of this type would clearly estabiish the need
of construciing generalized relativities for the
strong interactions ai both Lhe nuclear as well as
hadronic levels. In particular, z possible experi-
mental detection of a small mutation of the spin in
nuclear physics might result to be g dynamicat
counterpart of the recently proposed tests for ‘the
validity of established relativities at small dis-
tances.
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