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ABSTRACT

In this note we show that the fractional charges of quarks may well be due to the current
assumption of the simplest conceivable realization of the SU(3) symmetry. In fact, under an iso-
topic lifting of the symmetry, quarks can apparently possess integer charges, although the theory
will require predictable revisions that are considered elsewhere,
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As is well known, current SU(3) theories lead to the fractional charges of quarks
(2/3,-1/3,—-1/3) [1] which, despite numerous investigations for over two decades, have remained
essentially unexplained as of today, theoretically and experimentally. In this note we submit the
possibility that these fractional charges may be due to the selection of the simplest conceivable
realization of the SU(3) symmetry, that in terms of the enveloping associative algebra A(SU(3))
with elements I = Diag. (1,1,1), the familiar basis Ag, k = 1,2,--- 8, [2] and all their possible poly-
nomials, with the simplest possible associative product, that of matrices A;A;. The algebra SU(3)
1s then realized in the familiar form

SU(3) . [A,‘,A,‘]j = A,‘AJ‘ - A,‘Ag = Zt'f,'jkAk, (1)
where the f's are the SU(3) structure constants [2].

In a memoir of 1978 (3], one of us (RMS) introduced the so-called Lie-isotopic lifting of the
(conventional formulation of) Lie’s theory. It is essentially centered in the generalization of the
trivial unit I of current use into the form [ which, besides being non-singular and Hermitean, has
otherwise an arbitrary functional dependence on all local variables and quantities (see below).

The lifting I — [ renders necessary the construction of a corresponding, compatible, general-
ization of the conventional Lie’s theory in its central structures: enveloping associative algebras,
Lie algebras and Lie groups [3].

In fact, for / to remain the unit of the theory, the algebra A must be lifted to the form

e a*b% agb, g = fixed, non — singular a Hermitean, (2a)
' Ixa=axf=a, [=¢71, Va,be 4, (2b)



called isotopic-associative {or isoassociative) because the new product a * b remains associative [3].
Similarly, the antisymmetric algebra A~ attached to A is now characterized by the product

L:la,b];=a*b—b%a=agb— bga, (3)

called Lie-isotopic product because still Lie [3], as the reader is encouraged to verify. To see the
corresponding group structure, introduce the tsotransformations on a manifold M with local chart
2 .

2 =U(w)*2 - U(w)gz, (4)

where w is a parameter. Then, the set of all possible i (w) forms a Lie-isotopic group when it
verifies the rules [3]

01(w) + U(w') = O (w') # U (w) = O+ ), (s0)
U0)=0w)«U(-w)=I=g¢"" (5b)

Moreover the existence of consistent isotopies of the various structure theorems, mcludmg that
of the Poincaré-Birkhoff-Witt theorem [3], allow the isoezponentiation of the algebra I into the
corresponding (connected) group G according to

G: w7 I+ 4 () « (Aw) 2|(‘A"’) cn B B A ] o fefus), (6)

The isotopic theory was subsequently applied for a preliminary study of the lifting of several,
conventional, space-time symmetries, such as: general theory of space-time isosymmetries on man-
ifolds [4]; isorotational symmetries 0(3) [5]; isospinorial symmetries SU 5U(2) [6]; Lorentz-isotopic
symmetries 0(3.1) [7]; Poincaré-isotopic symmetries P(3.1) [8]; isounitary symmetries ST3)[9]; the
isogauge symmetries [10]; the discrete space-time symmetries [11]; the isocreation and isoannihi-
lation algebra [12]; and others. In these studies, it essentially emerged that all possible isotopes
G of a Lie symmetry G are (locally) isomorphic to G under the sole condition that the isounit
I preserves the topological characteristics of the original unit I (positive-definiteness). The Lie-
isotopic theory then permitted the reconstruction of exact space-time symmetries at the covering
isotopic level, when believed to be broken at the conventional level {see the reconstruction of the
exact rotational [5], Lorentz [7] and Poincaré [8] symmetries when believed to be broken, e.g., by
a modification of the underlying metric). The reconstruction of the exact SU(3) and isogauge
symmetries when conventionally broken is under study at this writing. A review written for math-
ematicians can be found in the recent reference {13|, which also presents a list of rather intriguing,
fundamental, open problems.

In this note we shall construct the fundamental isorepresentation of the lsotoplc s U(3) sym-
metries as a simple generalization of the corresponding isorepresentation of 35U (2) [6]; confirm the
(local) isomorphism sU (8) = SU(3) first identified in reference [9]; and identify a few preliminary
implications, particularly for the charges of the quarks. A detailed presentation of the results of this
note is presented elsewhere [14], jointly with additional developments and comments. For operators
realizations of the formalism see references [15-20)].

We shall define the (infinite) family of isotopes ST(3) of SU(3) the Lie symmetries of the
(infinite) family of all possible invariants in complex three-dimensional space



* * .
zj gij2j = 2191121 + Zagaz%2 + 2393323 = inv, (7a)

g= T = g(z, zT +++) = Diag. (911,922, 933), grx > 0, E=1,2,3. (70)

By following the original proposal (3], the 5U (3) symmetries are constructed by a.ssummg as unit
the generalized quantlty I = g~ Isoenvelope (2) is then given by the isounit I the expected
new basis, say, Ak,k =1,2,---8, and all their possible polynomials, where all original associative
products (including powers) are now replaced with the isotopic product a * b = agb, where g is
given by Eq.(7b).

The algebra # is defined over the iso-Hilbert space with inner product [19]

H:< nTn’ >Ecn|x|n' > T=<njgn' > Tl (8)

over the isofield ¢ = {¢]¢ = ¢l,c € C, I € A} [4] with ordinary sum and product &, * & = ¢16; =
c1c2 1. By following the prescriptions of references [3,4], the original manifold underlying the SU(3)
symmetry, the Euclidean space E(2,6,C),6 = Diag (1,1,1), is then lifted into the (infinite) family
of isctopes E(z, g, ) By recalling that the conventional operator algebra A with preduct ab, the
conventional Hilbert space ¥ with inner product < n|n' >, and conventional field C constitute the
structures at the basis of quantum mechanics, the isotopes A, X and € characterize a generalization
of quantum mechanics under the name of “hadronic mechanics” [15] Note that, from condition
I > 0,4 is an associative algebra, H is a Hilbert space, and € is a field. Thus as it occurs
for the underlying algebraic structure [3], “hadronic mechanics” coincides with the conventional
quantum mechanics at the abstract, coordinate free-level [15]. One has the latter when the simplest
conceivable realizations of the structures, A H and € are assumed; when more general realizations
of the same structures are instead preferred, the former mechanics holds [16,17]. The generalization
of conventional operations in Hilbert spaces was studied in reference [18] (see also reference [19])
to which we refer for brevity.

We now look for a realization of SU (8) via isotransformations (4) forming a Lie-isotopic group
(5), under the condition that they are isounitary, i.e., [6]

U0t =0r+0=0=¢7"1, ﬁze?w, (9)

which can hold iff [6]

Tr(eg) =0, k=1,2,---,8. (10)

To stress “ab initio” the local isomorphism between SU(3) and SU(3) [9], we now impose that
the isocommutation rules of SU (3) preserve the original structure constants f;;x of Equation (1)
(the reader should be aware that this is not necessarily the case, because the structure constants
under lifting are generally replaced by structure functions [3,4]). This implies that we shall search
for the realization

S‘Tﬁ(:i) : [5\;,5\5]}7 ERTEPYEDYED Zt.fij}c * ik = 2if€jk'xk' (11)
T

o
To construct the A’s, we introduce the isocreation and isoannihilations operators &;,d;,
v, d, s, with isocommutation rules [12]

{ =



[a,,a,]j_l (@i, ;) 7 = [aj, J]—O 1,7 = u,d,s, (12)

and iso-Casimir invariant N = aI * dy, -+ ai *8y+a “T * @, = &ef N, + N + N,.

Introduce the isobasis in }

|ﬂu:nd:ns >, Ny, NG, Ny = 1,0, < nu;nd:na|nu’:nd’5ns' >= Euu'sdd‘Sss' 1. (13)

We can then assume the existence of the following isoeigenvalue [18] equations

* Inu:nd;ﬂs > = gu]ﬂ-u,ﬂd,ﬂs >:ﬁd * |nu:nd:na >= gd_,lnu;nd,ns >, ( )
14

Ny # |y, nd, e >= gs|ftu, N, 7ts >,

where gy,94 and g, are certain functions of the matrix elements g11, 922 and ¢33 to be determined
later on. It is then easy to prove the following actions of the isocreation and isoannihilation
operators on the isobasis

Gy * |y, ng,ns >= (‘t,)'unu)l/zh'tu —1,n4,ns >, (15a)

Ts |fu, na, ns >= [(gune)™? + 1)|nu + 1,14, 15 >, (15b)
i

with similar expressions for the remaining operators dg, &I, a, and d;.
The matrix elements in the bilinear operators are of the type

(M) =< ny,nqg,n,| * &'I % dy * [Ny, ng, ng >, (16}

and all the non-null ones are given by

< 100]# &} * 3y * [100 >= gy, < 100[#af * &4 *]010 >= g}/*, < 100| * &) * &, % [001 >= g}/?, (17a)
<010|*ad*au 100 >= g%/2, <010|*ad*ad*|010> g4, <010|*ad*as 001 >= g!/%, (17h)

< 001[# &} %y * 100 >= gl/2, < 001|% &) a4 %|100 >= g}/*, < 001]*a] +a, +[001 >=g,. (17¢)

Simple calculations then yield the isorepresentation

A= (&i*&d-l-&d*&u) = 911;/2 o 0|, X= _;(al*ad —alxa,) = igal/z 0 01,

(184)



i kige 0 O . 0 0 g
Ss = (knalvdu—kodivag) = | 0 —kyga O |, de=(@lsairal+a)=| 0 o 0 |,
0 0 0 a? 0 o
(18b)
0 O —ig.el/z 0 0 0
S = —i(alea, —aleay) = S = (ol s, 4a] rag) = 1/2
As = —i(a)xd, —al*dy) = 0 0 0 , de=(ayxd,+al*aa)=| 0 0 g ,
zgyz 0 0 0 gélz 0
(18¢)
0 0 0
A= wt(al * 3, — aj; *3g)=10 O —zgll , (18d)
0 igd* o
N 1 AT . AT R AT . 1 kSQu 0 O
Ag = —(ks G+ by + kady « dg — 2ks8) *8y) = — 0 kygq 0 , (18¢)
V3 V3 _
0 0 2ksg,

where the quantities kj, ky,- - - ks are additional unknown functions of the metric elements g11, g23,
and gas.

To compute the unknown functions of the metric elements, we first consider the eight isetrace
conditions (10) which result in the following two conditions in the unknown quantities

k1gugis = k294922, ksgugiy + kegagaz = 2ksgs9ss. (19)

The remaining conditions are provided by the following isocommutators involving diagonal elements

[\, Ae) ;= 2iks (20a)
(9ug2) %922 = K194, (9u92) %911 = k2ga, (200)
[34, Xs]j = 55&3 + I\/gis H (206‘)
(gugs) /%933 = (k1 + ks)%", (9ugs)*g11 = ksgs, (204)
[:\6, 5\7];? = —i5\3 + t.'\/gig : (206)
d
(9a9s) %933 = (ks + k4)-2£, (ga9:)*g22 = ksgs, : (201)
The desired solution is then given by
ky = ks = g11, k2 = k4 = g22, ks = g33, (21a)
2 2
Gu = ok, 9a =01, 9o = B2, (218)

2
933



The fundamental isorepresentation of 5U (3) is then given by Equations (18) under values (21}
for the unknown quantities. As an example, the diagonal matrices are

gugs, O O , [ous O 0
ds = 0 —gngl 0|, A=-%= 0 g2207s o . (22)
0 o o) VL o S

The verification that the above fundamental isorepresentation verifies all isocommutation rules (11}
is an instructive exercise for the reader not familiar with Lie-isotopic theories. Note that the mefric
clements g11, 922,933 > 0 remain completely unrestricted.

We would like now to close this note with a few comments. As it had been the case for
0(3) [5],50(2) [6],0(3.1) [7] and other symmetries, our analysis indicates that there exists one ab-
stract S (3) symmetry, with infinitely many realizations all isomorphic to SU(3). The conventional
realization SU{3) emerges as the simplest conceivable one according to rules (1). Our infinitely
many isotopes SU(3) emerge when the same abstract symmetry is realized with the less trivial
rules (11), one isotope per each possible metric g. This result immediately raises the question of:
which of these infinitely many different realizations of $U(3) is the one occurring in the physical
reality? Our tentative answer is that all of them may have physical relevance depending on the
degree of approximation desired, as elaborated below {and better in reference [14] where we show
that the approach can be extended consistently to 50 (4) and related charmed quarks.)

Second, the reader should be aware that the isotopes S0 (3) are not trivial on numerous counts.
First, the fundamental isorepresentation cannot be reduced to the conventional one, within the
context of the conventional realization (1), as the reader is encouraged to verify. Second, while the
conventional SU(3) theory is linear, our covering sU (3) theory is, in general, not only nonlinear, but

" also nenlocal in all variables and quantities desired [20]. This can be seen by writing transformations
(4) in their explicit form 2’ = U(w) * 2z = U(w)gz = (:T(w)g(z,zT,-'-)z. Third, the underlying
isotopy § — ¢ results to be a geometrization of the apparent deviations from the Euclidean (as well
as Minkowski) metric indicated by several phenomenological predictions on the behaviour of the
meanlife of unstable hadrons with speed (see ref. [7] and quoted references for brevity).

One of the authors (RMS) has argued since some time [15] that this nonlinear and nonlocal
internal structure of hadrons is expected to be due to the fact that the hadronic constituents,
even though possessing a point-like charge, are expected to have wavepackets of the order of the
dimension of all hadrons (~ 1F). According to this view, hadrons are not ideal empty spheres with
points in them, but hyperdense media (called hadronic media) composed by the wavepackets of the
constituents in condition of total mutual immersion.

This leads to the conjecture that the hadronic medium may be “granulated” inside hadrons,
i.e., that the isotopic metric, in first approximation, has predominant values along certain regions
of space (time), each “granule” representing a quark.

This conjecture apparently permits the achievement of integer quark charges in first approxi-
mation for a constant g. In fact, the isocharge is given by

. 1. 1. 1g 1 . ?"gngl%z 0, 2
O=3s+-Y=-d+—=%=|0 -5 gn 0O , 23
2720 T2 B 0 o 1 e (23)

3 g33



and, for the values

g1 = '\3/6) g22 = ?\/31—5: 433 = %:
one indeed obtains integer values (1, —1,—1) of the quark charges. Needless to say, the transition
from charges (2/3,-1/3,~1/3) to (1,—1,—1) requires a revision of the current interpretation of
the quark structure of hadrons. The study whether this is indeed possible in a consistent way, is
presented in refs.[3,24] ,The purpose of this note is restricted to the submission of the existence of
the infinite isotopes 5T (3) and of the particular one (24) for integral charges.

(24)

It should be indicated that Eq. (24} is nothing but an approximation of a physical reality ex-
pectedly much more complex. In fact, we already know that the full use of the Lie-isotopic theory
in general and, of the Poincaré-isotopic symmetry in particular [8], leads to the necessary alteration
(called mutation [3]) of conventional charges [21]. In this case, the integer charges would be anoma-
lous because gencrally not occurring within the hadronic medium represented by geometrization

g-

These generalized notions, rather than being a drawback, open up rather intriguing possibilities,
such as the apparent possibility of representing quarks with mutated forms of ordinary massive
particles produced freely in the spontaneous decays. For preliminary studies along these lines, see
papers [14,22)].

In the final analysis, the identification of the infinite family of coverings SU (3) of SU(3) will
evidently call, sooner or later, for a reinspection of the entire theory.
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