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Abstract

In this paper we outline the axiom-preserving, nonlinear, nonlocal and
noncanonical isotopies of conventional mathematical structures, including
units, fields, vector spaces, transformation theory, algebras, groups,
geometries, Hilbert spaces, etc., which were pioneered by t_he theoretical
physicist R. M. Santilli while at the Department of Mathematics of Harvard
University in the early 80’s. We then show that these studies imply a true
generalization of conventional functional analysis, here submitted under the
name of functional isoanalysis. The structural foundations of this new
discipline are identified jointly with its classification into ten mathematically
and physically different classes. The significance of functional isoanalysis is
point out by recalling a number of aspects worked out in the physical
literature, but which do not appear to have propagated in the mathematical
literature, such as: the lack of unitary equivalence between conventional and
isotopic formulations despite their abstract identity; the admittance by a
Hermitean operator of infinitely different sets of eigenvalues depending on
the infinitely possible, basic units; the capability of turning conventionally
non-square integrable functions into isotopic square integrable forms, or of
turning divergent series into isotopically convergent forms; and others.
Further relevance of functional isoanalysis is presented in the subsequent
paper on the formulation and application of the isotopies of the Fourier
transforms.
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1: Imtroduction. The founders of analytic mechanics, such as
Lagrange [1], Hamilton [2] and others, classified dynamical systems into:

1} The exterior dymamical probfem , consisting of test particles
which can be effectively approximated as being point-like, thus
permitting the contemporary local-differential topology, while moving in
the homogeneous and isotropic vacuum under action-at-a-distance
interactions, thus resulting in potential-canonical equations of motion;
and

2) The Jnterior dymamical problem , consisting of particles which
cannot be effectively approximated as being point-like, while moving
within generally inhomogeneous and anisotropic physical media, thus
resulting in the most general known, nonlinear, nonlocal-integral and
nonpotential-noncanonical equations of motion.

The above distinction was Kept until the early part of this century,
but abandoned in more recent times (see, e.g., the care provided by
Schwartzschild in separating his well known exterior solution [3] from
the interior one [4] which is virtually unknown nowadays).

This was unfortunate because the lack of the above distinction
prevented the identification of the limitations of available mathematical
and physical theories, thus delaying possible advances.

As an example, the algebraic conceptions of Sophus Lie (see, eg.,
ref. [5]) have acquired a fundamental role in physics because
characterizing the brackets of the time evolution in classical and
quantum formulations, as well as the basic symmetries of physical laws
(see, e.g., ref.s [6] and quoted sources).

Nevertheless, the body of formulations today known as L/es theory
is exactly applicable onz/y to the exterior dynamical problem, as
necessary because of the underlying local-differential topology, and the
potential-canonical character of the equations of motion.

The theoretical physicist Ruggero Maria Santilli, while at the
Department of Mathematics of Harvard University under support from
the U. 8. Department of Energy, brought back to the attention of the
mathematical and physical communities the above crucial distinction
between exterior and interior problems, identified the consequential
limitations of existing mathematical and physical theories, and submitted
the so-called ax/owm-preserving, nonlinear, nonlocal and noncanonical
isotopies of Lies theory |71 under the name of Ljie~isofopic theory
including the isotopies of classical and quantum formulations and basic
symmetries. (It should be noted that the Lie-isotopic theory was
introduced by Santilli as a particular case of the yet more general Lie~
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admissible theory — which is not considered in this paper for brevity -,
and this explains the title of ref. [7].

Typical examples of the applicability of Lie’s methods are given by a
satellite in a stable orbit around Earth or an electron in a quantized
orbit of an atomic structure. Typical examples of applicability of
Santilli's isotopic methods are given instead by the same satellite during
re-entry in Earth’s atmosphere along a monotonically decaying
trajectory, or the electron when moving within the physical medium in
the interior of a collapsing star.

Santilli's proposals were subsequently studied by a number of
authors (see, e.g., ref.s [8-19] and papers quoted therein), they were
recently presented in this Journal in memoirs [20,21], and were finalized
in their classical formulation in the recent volumes [22,23] and in their
operator form in ref.s [2425] (see also the independent reviews [26,27]).

Thanks to contributions also by other physicists, such as A,
Jannussis, A. K. Aringazin, A. O. E. Animalu, M. Nishioka, R. Mignani and
others, these studies have now come to age with a variety of novel
physical applications [28-33] and preliminary, yet clear experimental
verifications [34-41] Mathematical research on Santilli's isotopies is
ongoing in ref.s [42-48], while the status of our mathematical knowledge
in the isotopies of Lie’s theory is presented in the forthcoming
monograph by D. S. Sourlas and G. T. Tsagas [50}.

In this paper we show that these studies imply a mathematically and
physically nontrivial, step-by-step generalization of each structural
aspect of functional analysis, resuiting in a genuine new discipline, here
submitted, apparently for the first time, under the name of runcrional
Isoanalvsis. Additional aspects are treated in the subsequent paper [57]
on the construction and application of the isotopies of the Fourier
transforms.

Our presentation is intended to be mathematical because the
isotopies studied in this paper have a mathematical significance per se,
independent from any physical application. Nevertheless, at times we
shall point out the physical needs that originated the isotopies because
they still are a source of intriguing novel mathematical problems.

For guidance in the quoted literature, it should be noted that the
isotopies of classical Hamiltonian are known under thé names of
Birkhofrian meckhanics for nonlinear and noncanonical, but still local
systems, and of Hamilton-Sanilli mechanics for the most general
possible nonlinear, noniocal and noncanonical systems. The isotopies of
quantum mechanics are known under the names of hadronic mechanics
or [sofopic completion or quantum mechanics or Isolocal realism .
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2: Elements of isotopic methods. Let us briefly review the
aspects of Santilli's isotopic methods which are essential for the
definition and treatment of the isotopies of functional analysis at large,
and those of the Fourier transforms, in particular.

2A4: ISOTOPIES OF THE UN/T: The fundamental isotopies from
which all others can be uniquely derived, is the lifting of the trivial n-
dimensional unit I = diag. (1, 1, 1, ...., 1) of the current formulation of Lie's
theory gsee, e.g., ref. [53) into n-dimensional matrices denoted with the
symbol | and called ssoun/ts, whose elements possess the most general
known, nonlinear, nonlocal and noncanonical dependence on all possible
variables (such as the local coordinates x and wavefunctions ¢} and

their derivatives with respect to independent variables of arbitrary
order [7.21]

I =gdiag. (1, 1,... 1) = T=Hux %% 41,84, 801,..), (21)

A fundamental necessary condition on the isounits to characterize
isotopies is that they are {conventionally) Hermitean,

o= 1t {2.2)

In fact, whenever such a condition is relaxed, the liftings 1= 1,1 = 1",
imply the abandoned of the Lie algebras axioms in favor of the covering
axioms of the Lie-admissible algebras (see ref.s [21,22] for brevity).

In this paper we shall introduce, apparently for the first time, the
classification of Hermitean isounits into the following five classes:

CLASS I: ISOUNITS properly speaking, when the they are sufficiently
smooth, bounded. nowhere singular, Hermitean and positive-definite,
This class characterizes an isotopy of the conventional unit because of
the preservation of the original axioms of I, and it is the class of primary
use in physics for the characterization of ordinary particles in interior
physical conditions [23,25];

CLASS 1I: ISODUAL ISOUNITS, when they are the same as those of
Class | except that they are negative-definite. This class characterizes
the isodual isotapy, according to Santilli's Asodua/ conjuygation 1 = 19=
- 1 [1521], and is used in physics to characterize antiparticles via a

reinterpretation of the negative-energy solutions of Dirac’s equation
[25,28}.
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CLASS 111: SINGUI . - .

divergent, 1 = +oo. This class is used in physics to represent

gravitational collapse into a singularity and other limit conditions [23,29].
CLASS IV: INDE] . .

bounded, nowhere singular and Hermitean, and can smoothly

itive-definite wi tive-definite va . This class

is particularly useful in mathematics, e.g., for the classification and
unification of all possible structures of Classes | and I1. And

CLASS V: GENERAL ISOUNITS, when they are solely Hermitean. This
is the most general possible class which, besides including the preceding
ones, permits a large variety of additional realizations including those in
terms of discrete structures (e.g., a lattice), discontinuous functions,
distributions, etc.

From now on, unless otherwise specified, the term “isotopies” shall
be solely referred to isounits of Class 1.

Comment 2.A.1: The physically and mathematically most significant
realizations of the isounits are those of nonlocal-integral character, i.e.,
defined over a given area or volume of integration. Despite that, units
and their isotopic images coincide at the abstract level by conception.

Comment 2.A.2: Once the original unit I is lifted into the isounit 1, all
mathematical and physical structures must be modified in such a way to
admit 1 as the left and right unit. Nevertheless, the emerging isotopic
formulations coincide with the original formulations at the abstract,
realization-free level.

Comment 2A.3: On physical grounds, Planck’s constant i = 1
characterizes the basic laws of quantum mechanics (e.g., Heisenberg's
uncertainties for particles in vacuum Ar Ap » h). Santilli’s isotopies were
conceived as an axiom-preserving integral isotopies of Planck’s
constant & = 1 [7.8], with corresponding isotopies of conventional
quantum mechanical laws {e.g., the isouncertainties for particles within
physical media Ar Ap = 1 [25,29]). The argument is that, in the transition
from the exterior problem in vacuum to the interior problem within
physical media, exchanges of energy acquire an integral component
depending on the local physical conditions. Recent experimental
evidence on the Bose-Einstein correlation [24,39], on the behaviour of
the meanlives of particles with speed [3536] and other topics, even
though preliminary, appears to confirm quite clearly the predictions of
the isotopic theory, with particular reference to the presence of a
nonlocal internal component in the strong interactions.
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Comment 2.A.4: On mathematical grounds, Planck’s constant & = 1 is
the fundamental unit of quantum mechanics. The isotopies i = 1 then

“w_.imply corresponding, compatible isotopies of all mathematical structures

of quantum mechanics, including fields, Hilbert spaces, transformation
theory, algebras, groups, representation theory, etc. In this paper we
shall study only one aspect of these new methods, the implications of the
isotopies & = 1 for functional analysis, and confirm that they do indeed
imply the lifting of Heisenberg’s uncertainties Ar Ap = 1 of ref. [29].

Comment 2.A.5: One of the most intriguing and unexplored
mathematical aspects of the isotopies is the study of the topology
characterized by integral isounits. It is tentatively called in the physical
literature an Jsolocal topology ., in the sense that it is local-
differential, except at the isounit. The physical needs for such a novel
topology are the following. Classically, the new topology is needed to
characterize a test particle in interior dynamical conditions, such as a
satellite during re-entry in Earth’s atmosphere with consequential
integro~differential equations of motion, in which the conventional local
coordinates describe the trajectory of the center-of-mass of the
satellite, while the isounit describes the integral corrections of the
trajectory caused by its shape. In operator theories, the new topology is
needed for a much similar case, the characterization of a particle in
interior dynamical conditions, such as a proton moving in the core of a
star. In fact, in this latter case too we need local coordinates to
describe the motion of the center-of-mass of the particle, while the
isounit represents the integral corrections caused by the immersion of
the wavepacket of the particle considered within those of the
surrounding particles. When both classical and elementary particles
return to move in vacuum {exterior problem), said integral contributions
are identically null, in which case the isolocal topology must recover
conventional local topologies for 1=1

25 ISOTOPIES OF FIELDS Let F = Fln,+x) represent ordinary fields
with conventional elements n, sum + and multiplication x, hereon
restricted to have characteristics zero, by therefore resulting to be the
fields of real numbers ®, complex numbers C and quaternions Q. The first
consequence of the isotopies 1 = 1 is the necessary lifting of F into the
Isorields [11-13] (see ref. [42] for a detailed treatment)

F={(n+9|neF* =xTx, 1=T1, (2.3)

Ordinary numbers n, when belonging to an isofield F, are called
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Isopumbers . Their sum + is the conventional one, but their product *

must be lifted into the form * called /soproduct
~.

nl* n2 = an o, i = T—l, (24)

where T is called the Jsotgpic element . Lifting (2.4) is a necessary
condition for 1 to be the left and right unit of £

I*n=nx1=n, v nef (2.5)

Whenever needed for clarity, isofield will be indicated with the
symbol Fq identifying the selected isotopic element T. A realization
often used in physics is given by F(n,+*) where 1 = nl.

It is evident that the classification of the isounits of Sect. 2.A implies
the corresponding classification of isofields into:

CLASS I Isofields properly speaking;

CLASS II: Isodual isofields;

CLASS I1I: Singular isofields;

CLASS 1V: Indefinite isofields;

CLASS V: General isofields.

Comment 2.B.1: The above definition of isonumbers holds when 1 is
an element of the original field F. The isounit 1 can also be an element
outside the original field F, in which case the isonumbers must be lifted
into the form n = fi = n 1, because necessary for closure.

Comment 2.B.2: An isofield F is still a field, i.e, F = F, thus confirming
the axiom-preserving character of the lifting.

Comment 2.B.3: There exist infinitely possible isofields F for each
given original field F, and this illustrates the use of the plural.

Comment 2.B.4: Only the multiplication of the original field F has been
lifted x = x = x T x, 1= 1= T while the addition + and related
additive unit 0 remain the conventional ones. Studies on the lifting of
the addition + = ¥ = + K, 0= 0=- K, K=K 1,KeF, are in progress but,
unlike the lifting of the multiplication, it implies the loss of the
distributive laws [46] and, as such, it will not be used in the isotopies of
functional analysis.

Comment 2.B.5: The Jsodual isorie/d’s £n%+39 (Class 11) hold when

19 < 0 [23,28]. They are connected to P(n+3) by an antiautomorphism
called Jsodualiey [15] and characterized by

1 = 9= -1. (2.6)

Comment 2.B.6: The conventional field of real numbers ® with trivial
unit 1 admits the Zsoduval image #9 characterized by the negative unit 19
=~112328] This implies that the absolute value|n |® of an isonumber nS
in 89is negative. We shall then symbolically write

dxq18 19=-1, @2.7)

The ordinary product of a {non-null) number n € % and its isodual image
n € R%is also negative-definite

d =

nn nni% = —pn = -n? = p, (2.8)

Comment 2.B.7: For the case of complex numbers ¢ = ® + i &, the

isodual field is given by [28]

¢4 = f9-1989 » RO-imd~-meim . {2.9)

The above structure emerges from the requirement that the product of

a {non-null) number ¢ = a + i b € C and its isodual image a% - i b% be
negative-definite

@+ in@¥+i%9 =@ + ib)(-a + ib) = -a% - 2. (210)

For the construction of isoquaternions, one can inspect ref. [42].

Comment 2.B.8: The use under isotopies of old notions generally
leads to inconsistencies. For instance, the proverbial statement “two x
two = four” is mathematically incorrect because lacking the additional
necessary statement “under the assumption of the trivial multiplicative
unit 17, In fact, for 1 = 371, “two x two = twelve”. Also,1*n=Tn#n In
fact, isofields have two elements “ones”, the “conventional element one”
1 and the “multiplicative one” 1. They coincide in conventional fields as a
particular case, but they are different and disjoint for the more general
isofields.

Comment 2.B.9: It is evident that all operations depending on the
multiplication are lifted under the isotopy F(n,+x} = F(n+%. To begin,
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one notes that the Zsoirverse of an isonumber , denoted n"lis defined
by
n*nl=1 n=1nt1, .77 (2.11)

Comment 2.B.10: The isotopy of the multiplication demands a
corresponding compatible lifting of the division. Let a / b = ¢ be the
ordinary division of two numbers a, b (¢ 0} € F. The Jsodivision of two
isonumbers a, b € I hereon denoted 7 is the isonumber ¢ € F defined by

a7bsa*b—l =¢ =cl. {2.12)

Comment 2.B.11: The classification of all possible isotopes of the field
of characteristics zero include: 1) the conventional fields ®, € and Q; 2)
their infinitely possible isotopes & = ®, ¢ » C and Q = Q; 3) the isodual
fields ®S c9and Q¢ and 4) their infinitely possible isotopes #¢ = 8¢ €9 =
¢%nd % » QF [21]. For the unification of all these fields, see ref. [42].

20 ISOTOPIES OF METRIC AND PSEUDOMETRIC SPACES The
liftings of the unit 1 = 1 and of the fields Fn+x) = Fin,+* demand, for
evident mathematical consistency, the corresponding lifting of
conventional, N-dimensional, metric or pseudometric spaces S(x.g f) with
{say, real) local coordinates X and metric g over the reals R, into the
Zsospaces {tirst introduced in ref. [12], see also ref.s [14,15)

SkgF): detg#0, g=gt ,x% = xExeR =
s> Sxgf: & =Tg T=T, detT#0, F=FL 1="17% (213)
x2 = xtax = xbElx. %, %, b, t, 00, 31, X € &, {2.13b)

which preserve the dimensionality of the original space, where g="Tgis
called the Jsowelric .

It is again evident that the classification of the basic isounits
implies the corresponding classification of the isospaces into:

CLASS I Isospaces properly speaking;

CLASS II: Isodual isospaces;

CLASS 11L: Singular isospaces;

CLASS IV: Indefinite isospaces; and

CLASS V: General isospaces.
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. Comment 2.C.1: The above definition of isospaces over the reals
evidently extends to vector /sospaces $§(zF) of arbitrary real or
complex coordinates z over an arbitrary isofield F.

Comments 2.C.22 The /isodval isospaces  of Class 1l are given
byl[15,25,28]

§9x 5949 . g9=T%= -5, #%=a19 Y=(9l= -1, @19

Fhey hold for sign 19 = sign 19 < 0, and are interconnected to the
isospaces by isoduality.
Comment 2.C.3: It is easy to prove the following

FPROPOSITION 2.1 [20] : the basis of a vector space remains unchanged
under isotopies.

Comment 2.C.4 Owing to the functional dependence of g, isospaces
are bona-fide nonlinear, nonlocal and noncanonical generalizations of
the original spaces.

Comment 2.C.5: Despite the above differences, the isospaces S(x.8 %)
(the isodual spaces §9x,£9%9 ) are locally isomorphic (anti~isomorphic)
to the original spaces S{x.g.®) whenever sig. g = sign. § (sig. £%= - sign. g).

Comment 2.C.6: An Jsoscalar runction f(x) on StxgF) is a function
with values on the isofield, ie.,

f = fx) efFln+3, 2.15)

where f{x) is an ordinary scalar function.

_ Comment 2.C.7: The local coordinates X & $&x.gF) are also isoscalars,
in the sense that their values are in F. Note that the assumption of the
quantity X = x 1 for local coordinates of an isospace would turn
separation (2.13b), i.e, x* T x, into the form %% = xt x 1, in which the role
of T and 1 are interchanged. The map T — 1 is at times called
.I‘ECIIUI-‘OC‘]'Z_‘,V Lrapsroryr . This point will soon be important for the
isotopies of functional analysis.

Comment 2.C.8: The Zsosguare of x is given by

¥ = x*xx = xTx {2.16)
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with a corresponding definition applying for the #-t# Jsopower

X = xxxx..,xx {ntimes). (2.17)
Comment 2.C.9: The Jsosquare root xt of x is defined by the
1 N s
condition x* * x*= X, and is given by

a1 ]
3

xt= xiT7H (2.18)

Note that in an isospace: the isounit 1 is idempotent, 1 * I = 1; the
isodivision of the isounit by itself is the isounit 1 7 T = 1; and the isoquare

root of the isounit is the isounit, 1= 1, thus confirming the existence of
a full isotopy.

Comment 2.C.10: The physically most important isospaces are given
by the fsoceuclidean spaces characterized by the following isotopies of
the conventional three-dimensional spaces [12,14]

E(SR): 8 = diag. (1,1, 1), et 6§ 70,5 =8t ., r2=rlsrer =

= ErSR): 5 = T, r, 1,F,.)8 det T#0, T=T", {2.192)

r2=rtgr = ol 8 b= r2=prsr = ¢ 8t b F, ) rl (2.19b)
the isominkowski spaces [loc. cit]

MR % = (r, x4 xi= cot , 1 = diag. {1, 1.1, -1), x2 = xH np_‘,x” €eR =

SMEAH A =Tn, =81, 1= T1>0, x2=(xfix)1eh, 220
and the jsoriemannian spaces [21]

RicgR), g=glx), detg=0,g=gt, x=x'g)x e =

= R &R =T x%%.)gh, & =81, 1T=T" (221)

with corresponding isoduals

Edrsdn9, 89=-5 & = &%= 819 19= 4, (2.222)
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Mexa%89: 7%=-4, #%=-a19 19=-1, {2.22b)
Rixgd89 g9=m9q=-5 A9=a19 19 = 3, {2.22¢)
Comment 2.C.11: In the same way as the conventional spaces E{r8.R),

M{x,n.%) and R{x.g) geometrize the homogeneous and isotropic vacuum,
their isotopic coverings E(r.8.%), M{x.(.%) and R{xg#) geometrize
inhomogeneous and anisotropic physical media. In particular, such a
geometrization occurs via the basic isounit. Isospaces are therefore
important for the characterization of interior dynamical systems, and
are at the foundations of Santilli’s isotopies of conventional relativities
for the interior dynamical problem, called /isogafilezn, rsospecial and
isogeneral refativities [23,26,27).

Comment 2.C.12: Because of their assumed characteristics, the
isounits (of Class 1) can be diagonalized, resulting in expressions of the
type

1=diag. (6,2 6,52 659 >0, By=B,t1F.)>0 n=12384 (229

where the b's are called the characreristic gquantities ol the wedium
generally vary from medium to medium, and they can be averaged into
constants b, when total properties are needed {see ref.s [2325] for
details).

Comment 2.C.13: Al metrics g of conventional gravitational models
admit the decomposition g = T(x) v}, where 17 is the Minkowski metric. As
a result, Riemannian spaces are locally isomorphic to the
isominkowskian space with 1} = g [20,23], i.e.,

RxgR) » MEAR), g =TRn=7h.%=81,1=[T6) ] L {2.24)

The above characterization of gravity is at the foundation of Class III
{singular isounits, isofields and isospaces) because at the limit of
gravitational collapse into a singularity at x, the {space component of
the) isotopic element T{(x) is null, and the isounit becomes singular [29].
Comment 2.C.14: All N-dimensional, metric or pseudo-metric spaces
over the reals are unified by one single, abstract isotope Ex.58) of Class
IV of the N-dimensional Euclidean space E{x,88) [12]. This property has
permitted the unification of the Minkowski and Riemannian spaces with
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consequential unified formulation of the special and general relativities
[20]. Their isotopic lifting was then consequential [23].

20D [SOTOPIES OF UNIVERSAL ENFELOFING ASSOCIATIVE
ALGEBRAS - Let E be a universal enveloping associative algebra (see,
e.g., ref. [53]) with generic elements A, B, C... , trivial associative product
AB and unit 1. Their isotopes §, introduced in ref. [7] under the name of
Isoassocizative envelopes , coincide with £ as vector spaces but are
equipped with the isoproduct so as to admit 1 as the correct (right and
left) unit

L A*B = ATB, T=fixed, IA = Axl = A VA E T=T1L (225

Let £ = £(L) be the universal enveloping algebra of an N-dimensional
Lie algebra L with ordered basis { Xy }.k=1,2,.,N, [ €L} ] » L, and let

the' infinite-dimensional basis of £(L) of the Poincaré-Birkhoff-witt
theorem [53] be given by

1, Xg Xi%; =] XXXy =)=k, (2.26)

where one recognizes the familiar standard monomials.

A fundamental result achieved by Santilli in the original proposal [7]
{see also the detailed presentation in ref. [8], p. 154-163 and ref. [20] is the
following

THEOREM 21 (Polncaré-Birkhorf-Santifli-Wite Theorem) The cosels of
7 and the standard, isotopically mapped monomials rorm a basis of the
universal enveloping isoassociative ajgebra &) of a Lie algebra £,

I, Xy XXy i=), XpX Xy izji=K), ... (2.27)

The implications of the theorem are fundamental for this paper. In
fact, the Fourier transforms are centrally dependent on the
conventional notion of exponentiation

e = 1+ lid /1 ¢ (k0 k) /26 = e (229)

This notion is however inapplicable under isotopies and must be
replaced by the notion of Jsoexponentiation [loc. cit]
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egkx\—»ix +{1kx) 7 1+ (k) * (ikx) / 2+ ... = 151X {2.29)
where the last expression in term of the conventional exponential has
been presented merely for illustrative purposes.

The nontrivial implications of the isotopies for the Fourier {(as well
as other) transforms can therefore be seen already in these
introductory words. In fact, it originates from the appearance of the
generally nonlinear and nonlocal isotopic element T in the exponent of
Eq. (2.29).

Whenever needed for clarity, isoenvelopes will be denoted with the
symbol Eq identifying the selected isotopic element T.

As well known {53], universal enveloping associative algebras (L)
are at the true foundations Lie’s theory inasmuch as they characterize

Lie algebras via the attached algebra [£(L)]", Lie groups via
exponentiation in E(L(, the representation theory, etc. The universal
enveloping isoassociative algebras E(L() then are at the foundation of
the Lie-Santilli theory [71.26,27,50] because they also characterize the

Lie-Santilli algebras as the attached algebras [E{L)]", the Lie-Santilli
groups via the isoexponentiation in (L), the isorepresentation theory,
etc.

In the same way as Lie’s theory is defined over a conventional field,
the Lie-Santilli theory is necessarily defined over an isofield. The
classification of the isounits, isofields and isospaces presented earlier
therefore implies the following classification:

CLASS I: Lie-Santilli theory properly speaking;

CLASS II: Isodual Lie-Santilli theory;

CLASS I1L Singular Lie-Santilli theory;

CLASS 1V: Indefinite Lie-Santilli theory;

CLASS V: General Lie-santilli theory.

Comment 2.D.1: The lifting & = & is wecessary under the isotopy of
the unit because, in general, 1A # AT # A

Comment 2.D.2: The preservation of the original basis Xy is
requested by Proposition 2.1, thus explaining the symbol E(L).

Comment 2.D.3: Under the assumed conditions on the isounit, the
isotopies preserve the simplicity or semisimplicity of the original
algebra.

Comment 2.D.4: It is easy to prove that L = [§(L)]” when 1 > 0. In
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general, however, the isotopies of the envelope of a Lie algebra L
i i i L~[8) ) #L
characterize a nonisomorphic algebra L.

Comment 2.D.5: Santilli [7] introduced Theorent 21 to .be ab.le Fo
represent with one single Lie algebra basis Xy, but arbitrary 1so.topxes in
the envelope E(L), nonisomorphic algebras of the same dimension N. In
fact, as well known [53], a conventional envelope £(L) represents only one
algebra L = [ &L} I” up to local isomorphjsms. On the contrary, one
universal enveloping isoassociative algebra L) of Class 1V represents a
family of generally nonisomorphic Lie algebras as the attached algei?r'fls
[ = [EL)]". Theorem 2.1 is therefore at the found?.tif)qs of Sgr}ulh?
isorelativities because it permits the reduction 'of infinite ramllleg o1
linear and nonlinear, local and nonlocal, ceénomcal and noncanonica

. e ; . L.

symmetries to one primitive algebraic notion (. ) .
¢ Comment 2.D.6: An illustration of the unifying power of ‘g'(L? was
provided in the original proposal [7] by showing that, given the basx§ Jg
k = 1, 2, 3 {the familiar angular momentum componen@) of the rotatlofxal
algebra SO(3), the classification of all possible universal enveloping
isoassociative algebras E(SO(@3)) includ.es the envelopes of:

1) SO(@3), trivially given by 1 =1 = diag. (1, 1, 1}

2) so(2.1) for 1 = diag. {1, 1, -1k _ ~

3) An infinite family of nonlinear, nonlocal and nox}canomcal ser}lllﬁ
simple three-dimensional algebras 6(3) locally isomorphic to 0(3) for 1 =

i 2 1,72 - by 2), by >0, and

diag. (b{ % by 5 - bg“)bx >0, and - o

4) An infinite family of isotopes 0(2.1) isomorphic to 02.1) for 1 = diag.

2,2 _p2

(b2 by2 -bg 2), by > 0. N
The classification was completed in the subsequent paper {15] with:
5) The isodual so43) of 80() for 1 = diag. (-1, -1, ~1);
6) The isodual 80%2.1) of SO{2.1) for 1 = diag. -1,-1, 1) . .
7) The infinite family of isotopes o043) = 04 3) for 1 = diag. ( -by %,
by 2, ~bg %), by > 0, and .
8) The infinite family of isotopes s092.1) = so92.1) for 1 = diag. (~by %,

n2 w2 > 0.

> é;gmg);zsz.T: The above results permitted the cox?strt}ction of a
dual, nonlinear, nonlocal and noncanonicalA generalization of the
con\;entionax rotational symmetry [1523]. .S(.)(S) resulted 1o be tze
symmetries of all infinitely possibﬁleﬂ enipsmdxcz?l deformations géntoer:
sphere on isoeuclidean spaces E(r.5.#) for the direct representall
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extended-deformable particles, while their isoduals $693) on £4r.5929
permitted a fundamentally novel description of antiparticles [28].

Comment 2.D.8: The unifying power of §(L) was additionally
illustrated in ref.s [12,21] by showing that the classification of all possible
universal enveloping isoassociative algebras of the four-dimensional
orthogonal algebra SO{4) include the characterization of:

1} all possible, compact and noncompact six-dimensional Lie
algebras SO(4), SO(3.1), and S0(2.2) (and algebras locally isomorphic to
them);

2} all infinitely possible isotopes SO{4) » SO(4), $6(3.1) = SO. 1), SO(2.2)
= 80(2.2); and

3) all possible isoduals 5094), $093.1), 5092.2), s0(d4), $643.1), $6%2.2).

Comment 2.D.9: The infinite family $0(3.1) » S0(3.1) permitted the
construction of an infinite family of nonlinear, nonlocal and
noncanonical generalizations of the Lorentz symmetry for the form
invariance of interval (2.20). The isosymmetries SO(3.1) are at the
foundation of the isospecial relativity for the description of extended-
deformable particles under nonlinear, nonlocal and noncanonical
interactions or of the propagation of electromagnetic waves within
inhomogeneous and anisotropic physical media.

Comment 2.D.10: A fundamental open problem identified in ref. [20] is
the study of the possible unification of all N-dimensional simple Lie
algebras of Cartan classification into one simple abstract N-dimensional
isotope L{N). This conjecture has been proved by Santilli for all
orthogonal algebras, and it is expected to be provable for all Lie
algebras, with technical difficulties emerging for the inclusion of the
exceptional algebras, under a suitably generalized form of isofields.

Comment 2.D.11: Since the isounit has an arbitrary functional
dependence, it permits the incorporation of conventional gravitational
models via the decomposition of the Riemannian metric g{x) = Tfx) w, 1 ¢
M{x,n), and the embedding of the part T{(x) representing gravitation in

the isounit , T = [T{x) I"L. Santilli then proved that the isotopes 0{3.1) of the
Lorentz symmetry O0(3.1) constructed for the above identified
gravitational isounit provide the form-invariance of conventional
gravitational models for the exterior problem in vacuum {e.g., of the
Schwartzschild’s exterior 3] and interior [4] metrics). The liftings T(x) =
T{x, X, X, ..} then permitted a generalization of conventional gravitational
theories via the Jsoriemannian geometry [21], for a more adequate
representation of the nonlinearity (in the velocities), nonlocality and
noncanonical character of interior gravitation [23] (see also the review
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by this author [26]).

Z2E: ISOTOPIES OF TRANSFORMATION THEORY . The last notion
essential for the understanding of the isotopies of functional analysis
and of the Fourier transforms is that of the applicable transformations.

Let S(xF) be a conventional vector space with local coordinates x
over a field F, and let X’ = A(w)X be a linear and local transformation on
Skx.F), w e F.

The lifting S(x.F) = S§(xF) requires a corresponding necessary
isotopy of the transformation theory which is characterized by the so-
called Jsorransformations [1.8]

¥ = Ow)*x = OW Tx Tfixed, xe8&xf), F=FLi=T1L (230)

Comment 2.E.1: The isotransformations verify the condition of
linearity {and locality) in isospaces,

Ax{axx + Bpry) = a»{A*xx) + Bp*(Axy)
VX yeSkF), apef {2.31)

Comment 2.E.2: It is easy to see that the projection of
isotransformations on the original space S(x.F) is generally nonlinear and
nonlocal {as well as noncanonical). In fact, Eq. (2.6} can be explicitly
written in S(LF)

X = XTx = XTER LK, .J)x (2.32)

Comment 2.E.3: Linear transformations are canonical, as well known.
Isolinear transformations are noncanonical, in the sense that they do
not generally leave invariant the conventional (first-orderjcanonical
action, i.e., the contact one-form ¢; = p dr - H dt. Isolinear
transformation are however isocanonical in the sense that they leave
invariant the isotopic action, which is the one form §, = d»dr - Hedt at
the basis of the /Jsospmplectic geometry and related isocontact
extension {see ref. [21] in this Journal for brevity).

Comment 2.E.4 The following property is particularly important for
this paper:

—300—

PROPOSITION 22 [20F  Given a nomnlinear, nonlocal and noncanonical
Lransformation x° = Xi,...) x on a vector space SE,F), then there always

exist an isotapy F = Fr and an isolinear and isolocal aperator A~on

SEoFy/ under which the trausformation can be identically rewritten in
an Isofinear, isolocal and isocanonical 1ori

¥ o= XK, .)Xx = Axx (2.33)

Comment 2.E.5: A primary role of the isotopic techniques is that of
rurning conventionally monlinear, nonfocal and noncanonical theories
nto identical isolinear, isolocal and isocanonical rerms, with evident
simplifications of their treatment. This illustrates the capabilities
indicated in the introduction for isotopies to provide axiom-preserving,
nonlinear, nonlocal and noncanonical generalization of conventional
linear, local and canonical theories.

Comment 2.E.6: The necessity of the isotopy Ax = Axx should be kept
in mind. In fact, the preservation of the conventional transformations Ax
in isospaces $(x,F) implies the loss of linearity, transitivity, etc.

Comment 2.E.7: The “isolocal topology” indicated in Comment 2.A.5 as
characterized by integral isounits is expected to apply at all subsequent
levels of the analysis, including isospaces, isoalgebras and
isosymmetries. 1t is hoped that topologists will study this novel topology
in the needed mathematical details.

For brevity, we refer the reader interested in the isotopies of Lie
algebras and Lie groups to ref.s [20-27]. With the understanding that the
isotopies of Lie’s theory are at their first infancy and so much remains
to be done, the reader should be aware that all structural theorems of
Lie's theory (such as Lie's celebrated First, Second, and Third theorems,
the Baker-Campbell-Hausdorff theorem, etc.) admit consistent and
nontrivial isotopic liftings.

3: Elements of functional isoanalysis. 1t is significative for
this paper to recall that functional analysis (see, e.g., ref.s [54-56]) was
born and developed primarily because of specific physical motivations,
rather than abstract mathematical needs.

In fact, the French mathematician J. B. J. Fourier identified his
celebrated series and transforms during his study on heat conduction;
Freedholm worked on integral equations because of specific problems in
classical electromagnetism; von Neumann conducted most of his studies




- 301 -

on operator algebras because of specific physical needs; not to mention
the fundamental physical role of Hilbert studies in quantum mechanics
(see the historical notes of ref.s [54-56).

It is intriguing to note that, much along the same lines, the new
branch of functional analysis characterized by the isotopies of
conventional formulations, and presented in this section under the name
of runctional isoana/ysis, was also born out specific physical problems,
given this time by Santilli's studies of nonlinear, nonlocal and
noncanonical systems of the interior dynamical problem. In fact, the
conventional functional analysis can be seen as the discipline which is
and will remain fundamental for the exzervor dynamical problem of
particles in vacuum (see Sect. 1), while functional isoanalysis is a
covering discipline specifically conceived for the more general Jnzerior
dynamical problem of extended particies moving within physical media.

Despite its rather vast current dimension, contemporary functional
analysis remains based on conventional notions, such as conventional
fields, conventional vector spaces, conventional operations, etc. It is
then inevitable that the isotopic generalizations of these structural
foundations imply the existence of a consequential, corresponding
generalization of the entire theory.

It is also significant to note that functional isoanalysis was born and
completely developed in physical publications until now, this paper being
the first appearing in the field in a mathematical Journal, to the author’s
best knowledge.

The foundations of functional isoanalysis are those reviewed in the
preceding section, and consist of Santilii’s studies on the isotopies of
fields, vector spaces, transformation theory, algebras, groups,
geometries, etc. [20.21]. In this section we shall review and expand the
studies by Myung and Santilli [11] on the isotopies of Hilbert spaces. In
the adjoining paper [57] we shall add Santilli's [25,51] studies on the
isotopies of Dirac’s delta-function, Fourier series and Fourier
transforms.

As indicated in the Introduction, we are primarily interested in
identifying the essential structural lines of functional isoanalysis.
Technical studies of details in all necessary mathematical rigor must be
deferred, for clarify, to subsequent contributions by the interested
mathematician.

The first fundamental notion of isoanalysis is an isofield Fin,+») with

isonumbers n, conventional sum +, isoproduct * = xTx, and isounit1 =T°L
For simplicity, we shall restrict f to be of characteristic zero and to
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represent the isofields of real isonumbers #f{n,+») and of complex
isonumbers Clc,*+»).

The\§econd fundamental notion is a generic, finite-dimensional
vector isospace $(x,) on the isofield C. The abstract identity of Cle+%)
and Clc,+x) and that of §(€) and S{x,C) should be kept in mind to
anticipate that sunctionsl isoanalysis colncldes with the conventional
Jormulation at the abstract level by construction {although only for the
case of isounits of Class I - see below).

Recall that conventional complex numbers ¢ can be reinterpreted
as being complex isonumbers under the isotopy of the multiplication.
Along similar lines, a conventional function f(x}) on S(xC} can be
reinterpreted as being a function on §x.0). In fact, it is not the value of
the function f(x) which identifies the distinction between ${x,C) and 6.0,
but rather the operations on it.

Finally, the reader should recall that the isotopies automatically
generalize a linear, local and canonical theory into an axiom-
preserving, nonlinear, nonlocal and noncanonical form because of the
arbitrary functional dependence of the isounit 1 = 1(x, %, %, ¥, ¢T, 8y, 8yt,
..}, where x is the local coordinate and § represents elements of the
Hilbert space.

Next, the first isotopic operation among functions on 8 0) is the
isoscalar product lor isgproduct for short) of two functions fyx) and
14x) , which s given by 7

160 * fx) = %) T, ) 1% e 8&0), {3.1)
where the isotopic element T = 171 is fixed.

The Zsosmner product of two functions f;{x) and ffx) on $(x.C) is the
composition with elements in € introduced in'ref. [11]

ot o= [ D ex T o) e Clea), (3.2)

where T denotes ordinary complex conjugation.

The above foundations then imply the lifting of the conventional
quantity | 1{x) | into the Jsoabsolute value ['f{x) [ which is characterized
by

116012 = T8 * 1), 3.3)
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and given, from Eq.s {2.18), by
1] = (FTeR A (3.4)

where 1% is a conventional square root. The sosorm || fx) | of a
function f(x) is then defined by the element of the isoreals

M6l := 600 = [ "oxToorst) e R, @ 5
and given by
M6 T = 62 6)% = (1,6 21 %, (3.6)
It should be indicated from the outset that the above definitions are
not unigue, owing to the degrees of freedom of the isotopies. In fact, one
can consider the maps
f - T=f1e8xf, c—- ¢ =cle tlern, 3.7
in which case we have the map of the isoproduct
fi*f=f 6, T = Tyxty = f1,1, {3.8)

with corresponding definitions for isoabsolute value

N

It = (T£1)°1, (3.9

isoinner product

(1] (8.10)

1]
—
;—5

»n
o
[
=]
=
&z
=
ah
.
=
m
=
B
T
Y%
X

and isonorm
= (1;.1,) H1. (3.11)

The transition from the preceding formulation in terms of ordinary
numbers and functions to the latter one is called a reciprocity
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transformation [51] because based on the replacement

T-1, 1-11L (3.12)

The latter formulation is that primarily used in physics [25] because it
implies that the isotopic eigenvalues are the conventional ones (see
below in this section), although both formulations emerge rather
naturally, e.g., in the lifting of Dirac delta-function {see next paper [57).

Needless to say, maps (3.7) are, by far, nonunique and a number of
additional maps implying nontrivial alterations of the isoproduct are
possible. Nevertheless the above two alternatives are sufficiently to
identify the foundations of isoanalysis.

From these rudimentary notions it is sufficient to see the need for
the following classification:

PRIMARY CLASSIFICATION: based on the characteristics of the
isounit {Sect. 2.A):

CLASS I: Funcrional Zsozna/ysis properly speaking;

CLASS 1I: fsodual runctional isoanalvsis,

CLASS 1l: Stngular runctional isoanalysis

CLASS 1V: fnderinite runctional isosnalysis

CLASS V: Geweral runctional isoanalysis .

SECONDARY CLASSIFICATION: based on the assumed realization of

isofields and isovector spaces
SUBCLASS A: based on isofields F{n;+») whose elements are ordinary
numbers, isospaces 8(x,F) whose local coordinates are the
conventional ones and, therefore, on conventional functions f{x).
SUBCLASS B: based on isofields F{f,+» with elements n = nl,
isospaces 8(k.F) with local coordinates X = x 1 and isofunctions f{x) =
fx) 1.

By no means the above classification is complete. In fact, the
extension of isofields F(n,+# to include an isotopy also of the addition +
[42] will expectedly imply further branches of isoanalysis. Nevertheless,
the above classification is sufficient to identify the new discipline and
initiate its systematic study.

A first purpose of the above classification is to separate the axiom-
preserving liftings from the more general ones. As an example, an
“inner” product remains inner for Classes I, but not necessarily for Class
IV, and this confirms the need to use the term “isotopies” only for Class 1.
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Already from these rudimentary lines, the mathematician can see
the fundamentally novel concepts introduced by Santilli in mathematics,
such as: negative-definite composition (Class II); functional analysis
based on a unit which can become singular (Class IIl); composition of
functions with an indefinite sign {Class 1V); functional analysis based on a
unit which is a lattice, or a step function, or a distribution, etc.

The above classification also permits the identification of the
simplest possible generalized isoanalysis, the Jsodval runctional
analysis , which is the conventional analysis although defined on the

isodual isofields ®Sand C9 It is essentially given by the change of sign of
all quantities defined via the multiplication. As an example, the isodual
inner composition is given by

(f.1)8 : = fab ax Tyx) 1914x) = —_fa ax T 1x) € c4c9+x9.
(3.13)

However, since the basic unit is -1, the internal selfconsistency of the
isodual analysis is evident. This is the branch used for the
characterization of antiparticles in vacuum [28] Its isotopies, leading to
Class 11, then characterize antiparticles within physical media.

The above classification also illustrates the vastity of functional
isoanalysis, with consequential inability to treat it in its entirety in any
single paper. From now on, unless otherwise stated, we shall study in this
section only Class IA, and IB, and their isoduals lIA and 1IB. The
remaining classes must be deferred for brevity to subsequent works.

Let us consider first Class lA. In regard to the problem of
isocontinuity , that is, continuity on an isomanifold, we refer the reader
to the forthcoming papers by Sourlas and Tsagas [49]. The notion
sufficient for our needs is that of Zsocomtnuity of a function k) at 2
point x, which occurs when | [ 1(x) [| — 0 implies [ fix + € - ) [— 0.

Note that all conventionally continuous functions are also
isocontinuous for Class 1A, although the viceversa is not necessarily
true under relaxed properties of the isounits. As a matter of fact,
functions that are conventionally discontinuous can be turned into
isocontinuous forms via suitable selection of the isounit.

The isoschwarts negquality ,introduced in ref. [11], is given by the
simple isotopy of the conventional expression

CTRS 73 1N § 71 I OV (3.14)
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and its validity (again, for Class 1) can be easily proved. .

. A function f{x) on 8(x() is said to be Jfsosquare integrable in the
interval [a,b] when the integral

b 2
[ lax 16012 = [ ° oxToo - 169, (3.15)

exists and is finite. The set of all isosquare integrable functions in [a,b]

will be denoted with & [a bl. One can now begin to see some of the novel
applications of isoanalysis. In fact, a function which is not square
integrable in a given interval, can be turned into an isoquare integrable
form via a suitable selection of the isotopic element {(see below for an
example}, with evident computational advantages.

A sequence fy, fy , .... is said to be swromgly isoconvergent to 5
when

Lim ool f -1l = 0 {3.16)

with a similar definition holding for series. Again, for Class IA, strong
convergence implies the strong isoconvergence, which is a trivial
occurrence.

A nontrivial property is that the opposite is not necessarily true,
namely, & seguence [or, more geverally, a series) which is strongly
Isoconvergent /s not necessariy comventionally convergent . Thfs
property has fundamental physical relevance that motivated Santilli
[2531,51] and others physicists (see Mignani and Jannussis [30]) to pursue
most of the studies on isotopies.

In fact, as well known, electromagnetic interactions do have a
convergent perturbative theory due to the low value of the coupling
constant, which permits several numerical calculations suitable for
experimental test. On the contrary, strong interactions do not have such
a convergent perturbative theory in their current formulation within the
context of ordinary functional; analysis, with evident consequential
limitations of the theory.

The fundamental physical point here at hand is that the axiom-
preserving reformulation of strong interactions [31] within the context of
the covering functional iscanalysis offers real possibilities for the
c.onstruction of a convergenr isoperturbation rheory ror Strong
mteractions as illustrated below in this section.

The Jsocauchy condition is the isotopic property verified by every
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strong iSOCOnVergence
”rm g i H <8 {3.17)

with 8 > 0 real arbitrary and for all m and n greater than a suitably
chosen N(8).

It is easy to see that, again for Class IA, when the isoinner product
is isocontinuous, the isonorm is isocontinuous. The extension of the
preceding results to Class IB is evident and will be tacitly implied
hereon.

We can now present the following notion introduced in ref. [11] (see
also [8,13]).

DEFINITION 31 - An “isohilbert space™ (at umes also called Hiltbert-
Santill isospace”) Wig  of (lass LB Is an isospace over the Isofield
/e +%) characterized by the rollowing axioms:

AL Ry Js an Isolinear space, that Is, the laws ol linearity hold fn their
Isotopic form, Le, for given é’/flﬂé’l]l.fliii . lﬁz of .’}CIB, complex nuvmbers
&y,8p€C and operatorQ acting on X\, we have

Ux(&gxdy + Spxlg) = SyxUxdy + Epx s (3.18)

A2 g is equipped with an Isoluner product derined ror every palr of
elements §q ,boe K ov

(§17 93) = —@2»‘151) e Cerm {3.19a)
©xdys dg)= Tl dp), (g, Exdp) = (§yidp) v, (319D)

(B + Go.§) = (7 9) + (8, 8) {3.19¢)

by = ¥l €Myp, € = c1 ellerr

A3 The isonorm|| 1) || is atwaps positive delinite, or null for F = 4
and verifies the isoschwartz nequality (3 149
A4 Rig fs countable, ie, there exists a covnlable set or element &, e

s o By approximating every element§ = Zy=1 n ox* € € Kg with
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arbilirary accuracy, e,

N - 2k=1,..,n cxegf] < 8 (3.20)

Jor arbizrary 8 > 0 and surticiently farge n

Thfe reason for the formulation of isohilbert spaces for Class IB is
now evident. In fact, for Class 1A, we have in general T = T{x, %, ¥, §, ..), as
a result of which, in general, A

(exgq g # Sx (g W), (Yyg,c * ) # (Py,4p) * . (3.21)
As a result, Jsoki/bert spaces of Class [B are Hilbert, bur those of (l2ss

/4 are not

) However, in most physical applications, the isotopic element T is an
integral over X and §, and can be assumed to be independent of x and §
In this latter case isohilbert spaces of Class 1A do verify all axioms of
Definition 3.1, including the axioms

(e 9d = T=(q.45), {($g.c =) = (b dp)xc.  (3.22)
by therefore being Hilbert.

DEFINITION 3.2 Two elements §, and f, of an isobhilbert space g
over the jsorjeld O are said to be “Isoorthogonal “when

(§1,92) = 0; (3.23)

an efement § is sajd 1o be Fsonormalized” when

($79) =1, (3.24)
and a basis & f 1 s é,] is sald to be “Tsoorthonormal < when it verities the
rules

(ei N e‘]) = sij =1 Sij {3.25)

The correspondlng expression ror spaces of €lass [4 are given by

il

($1.82 = 0, (B78) =1, (ele) = 5. (3.26)
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DEFINITION 33 : An Isopanach space Bip of class [Bs an Isospace
over an isofield Clé+ characterized by the rollowing axioms :

AL: By s an Isolinear space ;

A2 For every elementt € Big there is an isonorm | [ €| with values in
KO+ ¥ verirwing the properties

Ne=tll = [&l=lItll, Igs Bl = rll + [7d] G20

\Ft T\ 25 positive-derinite, or nulf fort =0, and
A3: By Js fconventionally) complete as for the isohilbert space.

Again, one can see that #x /Sopanaclh space of Class /B IS
Bapach, but one of Cjass /A is not necessarily so, vnfess the isounit is
independent from the local coordinates .

The classification given above for functional iscanalysis evidently
applies also to square integrable, Hilbert, Banach and other spaces,
resulting in isospaces of Class 14, IB, lIA, 1IB, HIIA, 1I1B, etc.

The extension of the above analysis to Classes IIA and 1IB is
straighforward and simply obtained via Santilli's isodual conjugation

ToTé= -7, 1-19=-1. {3.28)

In particular, the isoduality implies the identification of the Jsodua/
isosquare integrable £2%abl, isoduval isohilbert RC and isodual

isobanach B spaces.

One can then see that az iseduz/ isolifbert (isobanach) space Is
Isodval Hithert (isodual Banachy when of Class /1B, but not necessariy
so ror other classes without suitable restrictions on the isounit..

The fundamental character of the isotopy of the unit 1 =1 is evident
from the preceding structures. Note that the integral realizations of 1
mentioned above characterizes a particular type of integral topology. In
this sense, functional isoanalysis constitutes an integral generalization
of the conventional analysis.

An example of integral isounit used in the isotopies of quantum
mechanics is given by Awmalus isounit 34]

. eth"dxds_i(x)wz(x)

1 =4 N €& {3.29)
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which essentially represents the overlapping of the wavepackets 1 and
2 as a necessary condition to have an interior dynamical system . Note
that when such overlapping is null, isounit (3.29) recovers the
conventional Planck constant fi identically, the interior problem returns
to be the exterior one, and functional isoanalysis recovers the
conventional formulation identically.

Whenever needed for clarity, isospaces will be denoted with

symbols of the type £, arla, bl a1 . By - etc. identifying the class
as well as the selected isotopic element T.

All conventional operations and properties of linear and local
operators on Hilbert and other spaces (such as determinant, trace,
Hermiticity, unitarity, etc) admit a consistent isotopic generalization into
those for Jsolinear and isolocal gperators. For brevity, we refer the
interested reader to ref.s [24,25]. We here mention that the operation of
Hermitean conjugate H! remains unchanged under the lifting 3 = g
Thus, conventionally observable quantities remain observable under
isotopies of Class 1A and IB. The condition of unitarity of an operator U
acting on }g, on the contrary, is lifted into the isotopic form {8]

0lx0 = 00" = 1. (3.30)
Similarly, the conventional eigenvalue equations H ¢ = E° § on ¥ are

lifted on X} into the Ssoegenvalves equations [8,11,13]
Hx§ = Ex§ = Ed , E=Ele i+, E erl+3. (3.31)

This illustrates the reasons indicated earlier for the preference in
physical caiculations of what we have called in this paper Class IB. In
fact, the identity £ * § = E § implies that the "numbers” of the theory are
the conventional values E, rather than the isovalue E = EL.

The understanding is than an equivalent formulation for Class 1A
can be constructed via the reciprocity transformations T — 1.

Mathematicians can now see the nontriviality of the isotopies of
Hilbert spaces. To begin, zre /rting X — # ;g lmplies the alteration of
the eigenvalues of an operator , as clearly illustrated by Eq.s (3.31).
Moreover, Abert and isoflbert spaces are nol unitarily equivalent,
that is, there exist no (conventionally) unitary transformation mapping 3}
into 3;p . However, 3 and ¥ g are indeed interconnected by a
conventionally nopunitary transformation. In fact, the map
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b= b = Ul B = ¢ = 50, UUL#UtU#1, k=1,2, (3.32)

implies the map of the conventional product of functions into the
isotopic form [8]

Bybs = UbgdaUt = W T¥p, T = (WUt =1, (333

The physical inequivalence of the Hilbert and isohilbert formulations is
then established. Note that the isotopic element T emerging from
mapping (3.33) is Hermitean, as it should be for Class IA or IB.

The remarkable properties of the isotopies is that, despite these
physical and structural differences, Ai/bert and Isohilbert spaces
colncide at the absiract leve/.

Functional isoanalysis also disproves certain unfounded beliefs of
conventional functional analysis. As an example it is rather universally
believed that “the spectrum of a Hermitean operator is unique”. This
belief is erroneous because

PROPOSITION 3.1 [2551F Every Hermitean operator H aduils an inimte
number of dirferent spectra Ez evidently depending on the assumed
Isounit, or iscropic element 7.

In fact, Eq.s (3.31) can be rewritten

Hx$ = HT§ =Ex§ = E$ = Ep §. (3.34)

Different values of T evidently imply different eigenvalues E. For this
reason, sunctional isoanalysis can also be miterpreled as providing an
gperator realization of the theory of hidden variables [5132).

The belief that a Hermitean operator has a unique spectrum is then
equivalent to the belief indicated in Sect. 2B that “two multiplied by two
= four”, because both beliefs ignore the freedom in the selection of the
basic multiplicative unit.

Another illustration of the fundamental character of isoanalysis is
the possibility indicated earlier of achieving for the first time a
convergent perturbation theory of the strong interactions. In fact, we
have the following

THEOREM 31 [2531,51f Given a perturbalive series which Is
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conventionally divergent, there always exist an Isolopic efement T
under which the series becomes isoconvergent ‘
—
A simple illustration is the following. Consider a divergent canonical
expansion of an operator A(k), k € &, on I in terms of a Hermitean
Hamiltonian H = H!

Alk) = A + k[A HI/70U + K2[A HLH]2 % ... >0, k >1 (3.34)

where [ A, H] = AH - HA is the Lie product. Theorem 3.1 then establishes

that there a/ways exists an isotopy of the unit I =1 =T with isotopic
element T , and a reinterpretation of A(k) and H on 3 under which the
series becomes isoconvergent

A) = Al + K[AJH /1t + K2[AJHLH]2+ . .. =K< o, k >1
(3.35)

where[A JH] = ATH - HTA is the Lie-Santilli product. In fact, a solution
is even given by a constant isotopic element T when sufficiently smaller

as compared to K, i.e,T = k1, with n a sufficiently large positive integer.

Yet another important application of functional isoanalysis in
physics occurs when the conventional Hilbert space ¢ and its isotopic
image 3p are ircoherenss in the sense that the transition probability
among states belong to X and g are identically null. In fact, this
mathematically simple property implies the possibility of resolving one
of the most vexing problems of contemporarty particle physics, the lack
of exact confinement of current quark theory. In fact, quarks become
indeed exactly confined in the interior of hadrons when belonging to
¥#p , with an identically null probability of escaping to the exterior
world represented by the coventional space 3 [31] Intriguingly, we can
say that the lack of exact confinement is essentially due to the
insistence of current quark theories of using conventional, rather than
isotopic, functional analysis.

For further illustrations of the far reaching physical and
mathematical implications of i$oanalysis in physics, we refer the
interested mathematician to the quoted literature, particularly
monographs [23,25] and their independent reviews [26,27]. A seemingly
fundamental implication of the isotopies of the Fourier transform is
pointed out in the adjoining paper [57].
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Comment 3.1: An example of functions which are not square
integrable but are isosquare integrable is given by

flx) =17x%, 3.37)

which is known not to be square integrable in the interval [0,1]. In fact,
function (3.37) becomes isoquare integrable in the same interval for T{x)

=x /8 A significance of the isospaces is therefore given by the fact

that if a functional space does not constitute a conventional 2(2), Hilbert
or Banach space, there may exist an isotopic element T such that the

same sets does indeed form an £@ , isohilbert or isobanach space. In
any case, functional isoanalysis establishes that statements such as “a
given function f(x} is or is not square integrable” need, for the necessary
mathematical consistency, the joint identification of the unit of the
underlying space.

 Comment 3.2: A simple example of a set of functions iscorthonormal
on 3y, 7 is given by

60 = ent2e ™ = 041,22, (3.38)

for ¥ € [-m/T, +n/T] and T independent of x (but dependent on X and
other variables). In fact, we can write

. -inTx imTx
(. fm ) =(1/2ﬂ)fdxe Te =
-inz  +imz
= (1/211)_[ dx e e dz= 8pp . {3.39)
Comment 3.3: In this section we have assumed for simplicity that the

isotopic element T of the enveloping algebra Er and of the isofield Fr
coincides with that of the functional isospace ¥ . This assumption is

motivated by the preservation, in this case, of the conventional
Hermiticity {observability) H! = Hf. However, the isotopic element, say G,
of the isospace X can be different than the element T of the

isoenvelope &y and isofield Frp, provided that it verifies all the

conditions needed for isospaces of Class I, i.e., for the composition to be
inner. In this case the isoproduct is given by

(fis ;) = Jox ) G0 €O, {3.40)
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while the notien of Hermiticity is generalized
Hf = Tlgui TG (3.41)

{see ref.s [24,25] for details). The above occurrence is established by the
fact that isoalgebras fp can act on an ar&/zrazy Hilbert space which,
as such, can be conventional or isotopic with G = 1, or G # 1,G # T. The
further broadening of functional isoanalysis by this aspect alone is
evident.

Comment 3.4 An illustration of the singular isoanalysis of Class III is
given by the isotopic element characterizing the space component in
spherical coordinates {r, 8, §} of Schwartzschild’s metric for the exterior
gravitational problem [29]

T = diag {r / (r - 2M), r? r¥sin 8) . (3.42)

The singular character of the isoanalysis at the limit when the
astrophysical bodies collapses into a singularity with T = 0 is evident.
Comment 3.5: The appearance of the isotopic element T in
composition (3.2) has considerable connections with the known weght
Junction of the conventional functional analysis [54-56]. As a matter of
fact, the techniques known for the latter are extendable to the former.
Comment 3.6: The extension of Hilbert spaces JC to the form ¥ with

a weight function T and composition on ordinary fields C

(1:12) = [, ox 0 ™09 140 < C, (3.41)

is known since the first part of this century in both mathematical and
physical literature (see the historical comments in ref. [25]). The novelty
of Santilli's isotopies is the introduction of the isotopic function T
Joinz{ywith the lifting of the underlying fields in which it is defined. The
nontriviality of the latter as compared to the former is easily illustrated
by the fact that the basic unit remains unchanged for the former
although it is generalized for the latter, or by the fact that the latter has
a generally nonlocal-integral topology as compared to the local-
differential topology of the former, or by the fact that the isohilbert
spaces Mg coincide with the conventional ones I at the abstract
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level, which is not generally the case for structures (3.41). In turn this is
an additional illustration of the remarkable implications of the isotopies
of the unit.

It is hoped that mathematicians in functional analysis will
contributed to the study of some of the aspects of the functional
isoanalysis which are much needed for physical advances.
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