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In this note we recall the open problems of quantum gravity and propose a
new quantization of gravity via the generalization of the unit of relativistic
quantum mechanics,show its axiomatic consistency, introduce its universal
isopoincaré symmetry, prove its isomorphism to the conventional
symmetry and point out a number of intriguing implications.

The historical open problem of quantum gravity (QG) is the need,
on one side, for relativistic quantum mechanics (RQM) to have a
meaningful Hamiltonian while, on the other side, Einstein’s gravitation
in vacuum has a null Hamiltonian™. A second open problem is the
achievement of a QG which is axiomatically consistent as the
conventional RQM, i.e., invariant under its own time evolution with
physical quantities which are Hermitean-observable at all times, etc. A
third open problem has emerged from recent studies in interior
gravitational problems of quasars[lcl, that QG should be a nonunitary
image of conventional quantum theories, as needed, e.g., for a
representation of irreversibility.

In this note we propose a new QG based on the generalization of
the unit of RQM which, as such, requires no Hamiltonian at all, thus
resolving the first historical problem. The axiomatic consistency of the
proposed QG is guaranteed by the preservation of the abstract axioms
of the RQM only realized in a more general way, including
form-invariance, Hermiticity of observables at all times, etc. thus
resolving the second problem. Finally, the proposed QG is a rather
natural nonunitary image ~of conventional RQM, thus verifying the
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third condition.

Our model is based on the isotopic methods introduced b3y thlS
author back in 1978, developed in the recent mono%raphs
independently studied by various authors® (see papers ~ for recent :
reviews). The main elements to render this note self-sufficient are
reviewed below. Further developments and details are presented in the
more detailed presentationm

The main idea of the isotopic methods is to lift the conventional
associative produci among opeiraiors AB inio ihe formm A * B&FATB,
where T is a fixed positive-definite operator called isotopic element,
while jointly lifting the original unit I into the form 1=77" which is
the correct unit of the new theory Tra=Ax1= A, called isounit. Such
dual lifting is isotopic in the sense of preserving the original axioms®,
i.e., the isotopic images of fields, vector spaces, algebras, geometries,

etc., remain isomorphic to the original structures by construction.

Isotopic liftings are mathematically nontrivial because they require
the isotopies of the entire structure of the original theory into a simple
yet unique and nontrivial form admitting of 1 as the new unit. This
includes suitable isotopes of the number theory, functional analysis, -
algebras, geometries, etc.®”? The isotopies are also physically
non-trivial because I possesses an unrestricted functional dependence
on local space-time coordinates, wavefunctions and their derivartives,

=10, x, %, W, 0y, doV, ...). Such a dependence implies the mapping
of linear-local-Lagrangian theories into nonlinear-nonlocal forms
which are however such to reconstruct the linear, local and Lagrangian
characters in 1sospace[3 A

The most direct way to reach an isotopic structure is by submitting
RQM to a nonunitary transformation UU f=f#1ona conventional
Hilbert space # H under which we have, e.g., U i, pyl U T= U pvU

—Upvx“U X" Tp, - P T =i, vt = i8I P= Ux”Uf"

= Upy Ul T= (uu )_l =7 However, it is easy to see that such
an lSOtOplC theory is not form-invariant under an additional unitary
transform. It has also been proved by Lopez[ *l that such a theory does -
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not preserve Hermiticity-observability at all times. In fact, the
enveloping operator algebra £ with elements A, B, and associative
product AB is mapped under nonunitary transforms into the enveloping
isoassociative_operator algebra'€ with elements A, B, ... and isotopic
product A T B. Starting from the original condition of Hermiticity on
H{<IH® H>=<I{HI>},H "= H that under nonunitary transforms
still defmed on a conventional Hllbert space 4 becomes
{<ITH }I> <I{HTI>1}, ie., H =T ' HT which, as such, is
generally  violated. This general loss of form-invariance,
Hermiticity-observability, etc. also holds for g-deformations, quantum
groups and all theories of quantum gravity possessing nonunitary time
evolutions yet defined on a conventional Hilbert space (58

The resolutions of the latter problems requires the necessary
isotopies of the entire structure of RQM into a form called relativistic
hadronic mechanics (RHM)™", including: A) the lifting of the field
F (a, +, x) of real numbers R or complex numbers C with conventlonal
sum a+b and product a xb +a,b into the Jsofields F ( a +, *) with
isonumbers a = al with sum a + b= (a + b) I, product a* b a Th) 1,
and all generalized operators (see!” for details); B) the lifting of the

conventional Minkowski space M (x,m,R) in the chart x= {x*}
={r,x* }, x* = cot, where co is the speed of light in vacuum, 1 = diag,
1, 1, 1, =1), with ,@nvarlan,g % =xMx on R (n, +, x) into the isomin-
kowski space™ M (x, n, R with isometric T] T (x,x, X, ¥, OV,
99V, ...) 1, and isoseparation on R (Q +, ¥) among two points x, y (see
ref.”* for topological aspects)

A= =y ) T () 0 =y )+ 0P =9) T (6, ) (P =)
w{*x‘“ ‘:&é‘} R
+O =Y )T (x, ..) (F =y ) Toa (5 ) o =ynr M

K—~+C) the lifting of the original Hilbert space # with states | > and
inner product <1>¢ C(c,+,x) info the isohilbert space H with
isoinner product < S=<ITI>TeC (2, +, ¥); D) the lifting of eigen-
value equations H I>=Eyll> into the isotopic form H *1>=HTI|>
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A A ’
=E*|1>=EIT|>=E|>, E#E, indicating that the final numbers of
the theory are the conventional ones; E) the lifting of the opgrator
four-momentum p, I >=—1id, > into the isoform p, *1>=—d,1>,

where dx = Tdx is the isodifferential and a —79/a is the isoderi-
vative, F) the hftmg of expectation values <A >=<lAl>/<I|> into
the form <A 5=< | TATI> /& | T>; and the compatible liftings of the

remaining aspects of RQM. Since 7= UU" is Hermitean we can hereon
assume it to be positive definite and diagonal.

The most important properties emerging from the above liftings
are the following. First, RHM is a fully axiomatic theory because

nonunitary transforms can always be written U U T % and therefore

turned into the isounitary transform U * UT Ulr * U ? under which
RHM is, form-invariant. In fact, the isounit of the theory is invariant
U * I * UT 7 and so are the fundamental isocommutation rules =
U*(x”*pv —py*x )UT—Jc"*pV -pyxx =id", U*?x UT-—ISP ’I\{
Also all operators which are initially Herrpitean rgmain so at all tlmes“‘!
In fact, the condition of Hermiticity on # over C (¢, +, *) now reads
{<ITH Vi>=<I{HTI|>} and, as such, it coincides with the
Hermiticity on # over C (c, +, X), H'=H"=H. All observables of
RQM therefore remain observables for RHM. Moreover, RHM and
RQM coincigde at ,the abgtract level (for,I>0) where R (n +, *)
=R (n, +, x), E=E, M(x n,R) M (x,m, R), 5{ {#H, etc. Also, RHM
can approximate RQM as close as desjred for I I and admit the latter
identically as a particular case for I=1I. Finally, RHM admits all
infinitely possible signature-preserving deformations n Tn of the

Minkowski metric (universality) directly in the frame of the observer
(direct university).

"We now apply RHM to the isoquantization of gravity hereon
called quantum isogravity (QIG). A first condition is the represen-
tation of gravity via the isominkowskian, rather than the Riemannian
space. Let 4 (x, g, R) be a conventional (3+1)-Riemannian space with
symmetric, nonsingular and real valued metric g (x) and separation

P=x gx € R (n, +, X). It is easy to see that g (x) is identically admitted
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as a particular case of the isominkowski metr;g n (x, x, X ...) resulting
in the local isomorphism 4 (x, g, R) = = (x, n, R),gx)=n (x)

The main idea of QIG is to embed gravitation in the unit of
conventional ROM. This is permitted by the isotopic methods via the
factorization of any given Riemannian metric in the form g (x)=
Ty, (x) M, where Ty, (x) is always positive-definite from the locally
Minkowskian character of 4, and the joint lifting of the unit I = diag.
(1, Al, 1, D /?f RQM into the gravitational isounit ?grz [Ty x)]_1
=L Wy )= (1, V) resulting in RHM. Since the isometric of RHM in
this case is the Riemannian metric, this results in a novel quantization
of gravity which resolves the three basic problems indicated earlier. In
fact, the quantization is via the unit, rather th¢n the Hamiltonian; it is
invariant under its own time evolution; and it is indeed a nonunitary
image of the RQM. Moreover, the preservation of the basic axioms of
RQM at the abstract level ensures the mathematical consistency of the

theory, the understanding being that its physical consistency requires
specific studies.

In short, the main conjecture submitted in this note is that a
consistent operator form of gravity already exists. It did creep in
un-noticed until now because it is embedded in the unlt of conventional

ROM. In fact, the axioms of RHM imply that <I > <IT, T—] T, |
>/ <1 Ty 1>=1, thus confirming the "hidden" character of gravztatzon

in conventional RQM. As an illustration, the embedding of gravity in
Dirac’s equation can be written

G % put i) *15>= [ () Ty ) oy @ p" = im [1 Ty () 1>=0,

(2a)

[{?’l } Q‘ rY +$ngr§ngr?lzzﬁvu52guv’?l Tllﬁllyu gr»
(2b)

where ' are the conventional gammas and Q’ are called isogamma
matrices. The important point is that at the abstract level the
conventional and isogravitational Dirac equations coincide from the
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top/(glogical equivalence of I and I, (W puytim)l> = (Q’L * Py
+im) * | >. Note that the anticommutator of the isogamma matrices
yields (twice) the Riemannian metric g (x), thus confirming the full
embedding of gravitation. As an example, the Dirac-Schwartzschild
equatzon (there presented for the f1rst time) is glven by equation (2)
with Y= (1-2M/r """y, Ig, and Y;=(1-2M/ 1" y41,. Similarly
one can construct the Dirac Krasner equation and others or similar
realizations for the Klein-Gordon, Weyl and any other relativistic field

evinsane

In order to initiate the appraisal of the possible physical relevance
of QIG, we here identify the following primary implications:

- Qonsequence 1: QIG permits the introduction, apparently for the
first time, of a universgl Symmetry for all possible gravitations called
isopoincaré symmetry P (3.1 ) , which results to be locally isomorphic
to the conventional symmetry P (3.1). The 1sos*ymmetry can be readily
constructed via the Lie-isotopic theoryp‘a’%’w’3 4 and consists in the
reconstructlon of P (3.1 foAr " the generalized  unit

Ig,— [ Te (x)]"IR g (x) =Ty, (x)y. Since I, >0, one can see, from the
inception that P (3.1) = P (3.1). Under the lifting P (3.1) = P (3.1) the

- original  generators X = {X;} = {My, pa}, My=x,pv—x Py

k=1,2,...10,u,v=1,2,3,4, remain uncharged while the original
Il)\aramgter§ w= {we}={(,v),a} € R are lifted into the form
w=wl € R (n, +,*). The copnected component Py (3.1) can be written

via the exponentiation in & characterized by the isotopic Poincaré-
Birkhoff-Witt Theorem™

Py (3.1): A (W) = IT g q1 &™ i, 0 ®

while the preservation of the original dimension is ensured by the
isotopic Baker-Campbell-Hausdorff Theorem™. 1t is easy to see that
structure (3) forx,ps a connected Lig-isotopig transfoymation groyp with
lsogroup laws A(w) *A(w ) A(w )*A(w) A(w+w ), A(w)*
A (—w) A 0)= [Tg, ‘x)] Note that P (3.1) acts isotransitively
in M (x, n, ), 1e X -A(w) * x, because the preservation of the
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original transform x” = Ax would now violate linearity in isospace. The
1sotopy of the discrete transforms is elementary, and redumbl/e to the

forms T * x = mx= (—rx )s Téx=Tx= (r, - ), where = nI't TI
where T, T are the conventional inversion operators.

To identify the isoalgebra &0 (3.1) of ﬁ‘o (3.1), we here introduce
the isodifferential calculus on M characterlzed by the isodifferentials
dx*=T",dx’ and zsoderlvatzvesa +a/ ax“ 1,79y, d,=0/0x" with
isotopic forms of the varigus axioms of convent10nal d1fferent1al
calculus, e.g., 9, (f* g)=(df) *g—l-f*(ag)a _a *a =1,'3,%
etc. By recallmg that the coordinates in the covarlant form in M are
given by Xy, = nu\,x we have the property axu/ ax --Iﬁ'r]\,p 0xy, / 0xg

(Tu) T, T]sp =M, (where the last term is the conventional
Mmkowsklan metric). The funda/r\nental isocommutation rules of RHM
can therefore be written [x,, p,]*|>=in, 1>, namely, the Lie
product is structurally generalized via nonunitary transforms, but the

eigenvalues are the conventional ones. The isocommutation rules of
Po (3.1) are then given by

[ pnv > MuB ] =1 (nva up — npa v~ nvﬁ ot nuﬁ Mav ) ’ (43)

[Muv :\pa 1=i (n;ux Pv — Nva Pu ) [Po j\pﬁ 1=0, (4b)

where [A, IP] =AT, (x) B BT, (x)A is the Lie-isotopic product

(originally proposed i in®) which does indeed verify the Lie axioms as
one can verify. The isocasimir invariants are then lifted into the forms

5

_ A
CO=1,=1T, W, cV=p’=p,*p* =" p, *p,, C?

~ A ~
=W, W, W= € oy M 5 0. 5)

The local isomorphism 30 (3.1)=py(3.1) is transparently
expressed by the fact that the Poincaré algebra and its isotopic image
possess the same structure constants. This is sufficient, per se, to
guarantee the axiomatic character of QIG. Note also that the
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momentum operators become commutative in their isominkowskian
representation (while they are notoriously noncommutative in their
Riemannian representation). This confirms the achievement of a
representation of gravitation in an isoflat space, i.e., a space posse-
ssing zero curvature in the isospace M, but not in its projection in our
space-time.

Under sufficient boundedness, regularity gnd smoothness of the
isotopic element, the space components SO (3), called isorota-
8b,8b] . . - L
can be easily computed from isoexpenentiations (3) yielding
the explicit form in the (x, y)- plane :

fions

X =xcos (T TpYs0;) —y Ti Tossin (T T 63),  (6)

Y =xTi T sin (T T3 65 ) +ycos (T T558;),  (6b)

(see[3fl for general isorotations in all three Euler angles). Isotransforms
(6) leave invariant all ellipsoidical deformations xTyx+ yTay+
zI33z+r of the sphere xx+yy+zz=r in the Euclidean space
E(r,5,R), r={x,y,2), 5A= (}iag. (1, 1, 1). Such ellipsc/)\ids Ileec/:\om/c—e
perfect spheres r" =(F 8 r) I, 1/{1 isoeuclidean spaces E (r,8,R), d
=T,0,T, = Diag. ( Ty, Toa, Ts3 ), I, = T3, called iso-spheres,” because
of the deformation of the semiaxes [, — Ty, while the related units are
deformed of the inverse amounts I, o T;,l. This isosphericity is the
geometric origin of the isomorphism O (3) = O (3).

The connected space-time isosymmetry 53 (3.1) is characterized

by the isorotations and the isolorentz boosts"*® which can be written -
in the (3,~4)-plane

x> =xsinh (T4 T v) — x* T55* T4 cosh (T4 T v)
A A
=y -T THBXY), (7a)

XV =2 T4 ¢3! To sinh ( T T2 v) +x* cosh (T T 12 v)
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=y -TA T Bx), (7b)
A %) 1A A Az _15 ;
B=wTi/cTy Y=11-p1T" (7c)

Note that the above isotransforms are nonlinear in x, as expected for a
correct symmetry of gravitation, and are formally similar to the
Lorentz transforms, as expected from their isotopic character
Isotransforms (7) characterize the gravitational isolight cone. BbI 5
.. A2 . = .

the perfect cone in isospace f (x,n, R). In fact, in a way similar to the
isosphere, we have the deformation of the original light cone [, = T},
while the corresponding units are deformed of the inverse amount

I, — T;L thus preserving the original geometry as a necessary

condition for an isotopy. The abstract identity of the light and isolight
cones is the geometric origin of the isomorphisms O (3.1) = O (3.1).

In particular, the isolight cone possesses all properties of the
conventional light cone, including the characteristic angle. The maxi-
mal causal speed in isospace therefore remains the speed of light in
vacuum c¢,. This is an evident important property for the physically
correct characterization of quantum gravity (although it is per se insu-
fficient on physical grounds).

The isotranslations can be written x'= (e P % x =x + ad (%),
= (e""‘) p=p, where A, T;ﬁl +a% fu Pl /1! + . with "gravi-
tatxonal isoplanewave" y = e ={exp& Tsr—k; T, co t)} 1. The isoin-

versions have been indicated earlier. The above results imply the
following:

THEOREM : The isopoincaré symmetry is the universal invariance
of all infinitely possible separations (1), thus providing the universal
symmetry of gravitational as a particular case.

Note that there is nothing to compute in the sense that for any
arbitrarily given (diagonal) Riemannian metric g (x) (such as Schwart-
zschild, Krasner, etc, 2l one merely plots the Ty, terms in the decom-
position g,, =T, My, (no sum) in the above isotransforms. The
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invariance of the separation x’ gx is then ensured by the construction of
the isosymmetry, as one can easily verify. At any rate Lie symmetries
are known to leave invariance their own unit. Note also that the (2 +
2)-de Sitter or other cases can be derived from the theorem via mere
changes of signature or dimension of the isounit. Note finally that the
above theorem includes invariances for theories much broader than the
Rlemanman metric, such as the invariance for the isoriemannian
metrics g =T (x, %, %, a\y, aa\g )g (x¥) currently under study for
interior gravitational problems"

CONSEQUENCE 2: QIG implies the geometric unification of the
special and general relativity. This is evidently due to the fact that all
distinctions between the special relativity in Minkowski space and the
general relativity ip 1sommkowsk1 space gre now lost owing to the
abstract identities R (n +,*¥)=R (n,+,R), M (x, n,ﬁ’) =M (x,n,R), H
=4, 2 (3.1) =P (3.1), etc. An important implication is the elimination
of the historical difference between the special and general relativities
whereby the former admits the universal Poincaré symmetry, while the
latter does not™™, Isogravitation emerges from QIG as possessing a
universal symmetry which turns out to be locally isomorphic to the
conventional Poincaré symmetry. The gravitational field on M (x, n, R)
must now be isocovariant under P (3.1) in essentially the same way as
the electromagnetic field on M (x,m, R) must be covariant under
P (3.1). Note the necessity of the isoflat representation of gravity for
the very formulation of its universal isopoincaré symmetry. In fact, no
isosymmetry can be constructed in the Riemannian space.

CONSEQUENCE 3: QIG permits a novel approach to the unification
of weak, electromagnetic and gravitational interactions via the
embedding of gravity in the unit of conventional unified guage theories
here called "iso-grand-unification", which is planned for study
elsewhere. The conjecture here submitted is therefore that gravitation
is already contained in the existing unified gauge theories. It did
escape identification until now because it is embedded in the unit of
the theory (for the isotopies of the electromagnetrc 1nteract10ns see
Ref.™ for the isotopies if gauge theories see ref. 19 and review!* ™).
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CONSEQUENCE 4 : QIG permits a novel approach to gravitational
horizons as the zeros of (the space component of) the isounit, and of
gravitational singularities as the zeros (the space component of ) the
isotopic elemen;\. In fact, at the Schwartzschild’s horizon r =2M the

space isgunit I, =(1-2M/r)xdiag.(1,1,1) of the isosphere rﬁ
=(F8r) 1 is null, while at r=0 the space isotopic element T;=

(1-2M/ r)"l X diag. (1, 1, 1) is null. Recall in this respect that the
restriction of the isounits/isotopic elements to a sole x-dependence is
grossiy un-necessary for isotopic theories as iilusirated by ihe above
theorem. The extension of the above exterior quantum isogravity to the
corresponding interior quantum isogravity is merely given by
admitting a nonlinearity in the velocities and in the derivatives of the
wavefunction, ?g, (x, x, X, W, 0y, 00V, ...). A more adequate formula-
tion of gravitational horizons and singularities is then given by the
zeros of the (space component of) the latter isounits and isotopic
elements. This extension evidently permits a second generation' of
studies on gravitational collapse, black holes and all that, because it
permits a quantitative treatment of internal effects, such as interior
nonlocal and non-(first)- order-Lagrangian effects expected in very
high densities, etc. which are outside any realistic treatment via the
Riemannian geometrym.

Also, recall that the "universal constancy of the speed of light" is a
philosophical abstraction because in interior conditions (such as in our
atmosphere) light has a locally varying speed. The isopoincaré
symmetry can directly represent the actual speed og\ light in interior
conditions via the more general isotopic elements Ty, =Ty, / nﬁ (no
sum), where T,, the gravitational term. Isoinvariant (1), when
projected in our space-time, then yields the local speed of light
¢ =co/ ny where ny is the familiar local index of refraction with the
understanding that in isospace the maximal casual speed remains cq as
indicated earlier. The space components n,; are evidently requested by
isolorentz covariance which essentially provides a space-time symme-
trization of the index of refraction. The latter symmetrization is
important for a direct geometrization of the inhomogenous and aniso-
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tropic of physical media (such as our atmosphere), e.g., via a
dependence of the n’s from the local density, the differentiation of the
value of their space and time components, the factorization of a
preferred direction in the medium (the underlying empty space
remaining perfectly homogeneous and isotropic under isotopies), etc.
(see 1ef.”™ for specific applications and available experimental
verifications)

These features are not merely formal because the immediate
exterior of gravifational horizons is not emptv, but composed of
hyperdense chromospheres in which the speed of light is not constant,
thus implying the inapplicability of the conventional light cone. Our
QIG resolves these problems too via the direct representation of the
local variation of the light speed and the reconstruction in isospace of
the perfect light cones.thus permitting quantitative studies.

CONSEQUENCE 5 : Space and time in QIG have a local character
in the sense that their isounits have an explicit dependence on the local
gravitational field itself. In fact, the isotopic reformulation of grav1ty
1mphes the redefinition under the conventional unit x' gx=x' n x

=x'nx, g=Ty,n,x=x T2 ¢ Riemannian coordinates are equivalent
to space-time coordinates in our Minkowski space with space isounits
sz TV2 and time isounit ? = T4_4% As an example, the space- time -
1soumts for an observer in the exterior Schwartzschild field are given
by Ikm (1- 2M/r) I, and f =(1-2M/ r)"/" (M >r). Note that the
isogravitational theory recovegs the relativistic Einstein space-time for
M =0 or r - o, for which I, =I,=1. However, for a non-null gra-
vitational field the isounits are different than the conventional units.
QIG therefore predicts the capability of alterings space and time via

the alteration of their units, evidently in addition to the Einstein varia-
tion with speed.

The above results pose the intriguing experimental question
whether time here on Earth’s atmosphere and say, time on Jupiter’s
atmosphere are different due to the difference of their gravitational

fields as predicted by the isounit I (1-2M/ r) r>2M (m addition
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to conventional gravitational corrections).

With the understanding that the mathematical consistency of QIG
is established by its Poincaré covariance, the resolution of the physical
consistency of QIG requires experiments measures as to whether

> we live in space-time as conventionally understood, in which
case the Riemannian description of gravitation is the physically correct
one and the equivalent isominkowskian formulation has a mere
mathematical character, or

> we live in isospace and isotime, in which case the
isominkowskian description is the physically correct one and the
Riemannian description has a mathematical value.

The above issue can be resolved with current technology by
sending a probe to Jupiter’s atmosphere capable of conducting
comparative measures of time with respect to Earth.

We finally note that the Lie-isotopies were proposed as
closed-reversible particular cases of the more general Lie-admissible
genotopies for open-irreversible conditions®™). The Lie-admissible
quantum gravity, or quantum genogravity (QGG) can be constructed
from the formalism of this note by merely relaxing the condition that
the isotopic element T is symmetric. QGG, rather than QIG, is more
appropriate for the geometrization of interior irreversible gravitational
processes and, as such it is the geometrization more appropriate of the
novel Lie-admissible black hole dynamics recently introduced in ref.
[11] (see also ref.[3.f,12] for additional Lie-admissible studies of
gravita- tional). The content of this note was first presented at the
Seventh Marcel Grossmann Meeting on General Relativity, Stanford
University, July 24-29, 1994 (see the proceedings[lcl).
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