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Abstract

We propose a new quantization of gravity, called quantum-iso-gravity, via
the unification of gravitation and relativistic quantum mechanics which is
permitted by the isotopic (i.e., axiom-preserving) generalization of the unit.
We show that its axiomatic consistency is ensured by the conventional ax-
ioms of relativistic quantum mechanics, merely realized in a more general
way. We then introduce the universal symmetry for all possible interior and
exterior gravitations, called isopoincaré symmetry, and prove its isomorphism
to the conventional symmetry. We finally point out a number of intriguing
implications.

1 Statement of the problem

The historical open problem of quantum gravity (QG) is the need, on one side, for
relativistic quantum mechanics (RQM) to have a meaningful Hamiltonian while,
on the other side, Einstein’s gravitation in vacuum has a null Hamiltonian [1]. A
second open problem is the achievement of a QG which is axiomatically consistent
as the conventional RQM, i.e., invariant under its own time evolution with physical
quantities which are Hermitean-observable at all times, etc. A third open problem
has emerged from recent studies in interior gravitational problems of quasars [lc],
that QG should be a nonunitary image of conventional quantum theories, as needed,
e.g., for a representation of irreversibility.

In this note we propose a new QG based on the generalization of the unit of
RQM which, as such, requires no Hamiltonian at all, thus resolving the first histor-
ical problem. The axiomatic consistency of the proposed QG is guaranteed by the
preservation of the abstract axioms of the RQM only realized in a more general way,
including form-invariance, Hermiticity of observables at all times, etec., thus resolv-
ing the second problem. Finally, the proposed QG is a rather natural nonunitary
image of conventional RQM, thus verifying the third condition.

Our model is based on the isotopic methods introduced by this author back
in 1978 [2], developed in the recent monographs (3] and independently studied by

369



370

various authors [4] (see papers [5] for recent reviews). The main elements to render
this note self-sufficient are reviewed below. The model submitted in this note was
first presented at the Seventh M. Grossmann Meeting on General Relativity held
at Stanford University in July 1994, see the contribution in the proceedings [1]
and then at other meetings. A comprehensive presentation will be available in the
forthcoming monograph [6].

2 Elements of isotopies

The main idea of the isotopic methods is to lift the conventional 4-dimensional unit
of relativistic quantum mechanics, I = diag.(1,1,1,1) into a 4 x 4-matrix which is
well behaved and positive-definite, but otherwise possesses the most general possible
dependence on local space-time coordinates £ = {z#} = {r, 2}, 2% = cot, where ¢ is
the speed of light in vacuum, wavefunctions 1(z) and their derivatives of arbitrary
order, as well as any needed additional quantity, such as the density p. of the
medium considered, its temperature, T, etc.

I =diag.(1,1,1,1) = l(z, &,4,%, 0%, 009, , 7, ... 1)

Relativistic quantum mechanics is then reconstructed to admit I , rather than I, as
the left and right unit. This requires first the lifting of the conventional enveloping
associative algebra £ of RQM with unit J ', generic elements A, B,..., and trivial
associative product AB into an envelope £ with the same elements A, B,..., but
now equipped with a new product

AB+— AxB=ATB, T = fixed, (2)
which is such that I =T~ is the left and right unit of £,
T+A=AxT=A, VA€ (3)

in which case T is called the isounit and T is called the isotopic element.

The lifting then requires for consistence corresponding isotopies of the remaining
mathematical methods of RQM. These lifting are isotopic in the sense that they
preserve all original axioms by construction (for positive-definite isounits) [3e,3f],
i.e., the isotopic images of fields, vector spaces, algebras, geometries, etc., remain
isomorphic to the original structures by construction.

Despite their simplicity, isotopic liftings are nontrivial because they imply the
mapping of linear-local-Lagrangian theories into some of the most general known
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nonlinear-nonlocal-nonlagrangian forms which are however such to reconstruct the
linear, local and Lagrangian characters in isospace [3d,3f].

The most direct way to reach an isotopic structure is by submitting RQM to a
nonunitary transforms. Let H be a conventional Hilbert space over a conventional
field of complex numbers C = C(c, +, x). Then a nonunitary transform on H over
C of the fundamental relativistic canonical commutation rules yields precisely the
rules of the corresponding rules of the isotopic theory,

UUt=T#1, T=@UH'=T", z=UzU', 3, =Upl', (4

Ule*,pJUt = Uz*p, Ut - Up,aUt = 2Tp, — p,Tz" = i6LUIU' = istI,  (5)
nr=1234.

However, it is easy to see that such an isotopic theory is not form-invariant under
an additional nonunitary transform. It is easy to se that the generalized unit Iis
not invariant under additional nonunitary transforms,]’ = WIW! I, WW! # I,
thus preventing the applicability of measurements. Also, the above theory does not
preserve Hermiticity at all times. In fact, starting from the original condition of
Hermiticity on H,

{<|HY [>=<|{H >}, H'=H,

the condition of Hermiticity under nonunitary transforms still defined on a conven-
tional Hilbert space H becomes

(<| TH'} |><| {(HT |5}, H =TT, (6)

which, as such, is generally violated, thus preventing thre observability at all times.
It then follows that the theory does not admit invariant special functions and phys-
ical laws. This general loss of for-invariance, Hermiticity-observability, etc. also
holds for g- and k-deformations, quantum groups and all theories of quantum grav-
ity possessing nonunitary time evolutions, yet defined on a conventional Hilbert
space [5a].

The resolutions of the latter problems requires the necessary isotopies of the
entire structure of RQM into a form called relativistic hadronic mechanics (RHM)
[3f], admitting of Ts the correct left and right unit. Thisincludes: A) the lifting of the
field F'(a,+, x) of real numbers R or complex numbers C with conventional sum a+b
and product a X b = ab into the isofields 1’5‘@, +, %) with isonumbers @ = a x [ with
sum @ +b = {a+b)I, isoproduct @+ b = a@Th = (ab)I; and all generalized operations
(see [7] for details); B) the lifting of the conventional Minkowski space M(z,n, R)
with metric 7 = diag.(1,1,1, 1) and invariant 2% = z'nz on R(n, +, x) into the
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isominkowski space (8] M(z,7, R) with isometric 1 = T(z,&,%,,0¢,009,...)n,
and isoseparation on R(, +, *) among two points z,y (see ref. [5¢] for topological
aspects)

2% = (2! - gz, .. )(=' = o) + (@~ P Tl .. )(a® — 1) +

(@~ ") Tna(z, .. )= = ¥°) ~ (2* = 4" Tulz, .. ) (2" - WL ()
where the assumed diagonal form of the isotopic element T is always possible from
its positive- definiteness; C) the lifting of the original Hilbert space H with states |>
and inner product <|>€& C(c, +x) into the isohilbert space ‘H with isoinner product
and related isonormalization

<I>=<|T|>TeC@+=*), <|T |>=1; (8)
D) the lifting of eigenvalue equations H |>= Eo |> into the isotopic form
Hx |>=HT |>=Ex |>=EIT |>= E|>, E#B, (9)

indicating that the final numbers of the theory are the conventional ones; E) the

lifting of the operator four-momentum Pu |>= —i8, |> into the for characterized
by the isodifferential calculus

(10)

where 5,, |>= -—iT,fB,, the isoderivative and dxr = Tdz is the isodifferential and
isotopic forms of the various axioms of conventional differential calculus, e.g.,

Put [>= =i8, |>= —iT?3, |>,

5u(f*9) = (5#.[) *g+ [+ (5113); 6/\2: = 5/: * 5;4 = j;l:av2»
etc.; F) the lifting of expectation values < A >=<| A [> / <|> into the form

RAS =<|TAT|>/ <|T|>, (11)
for which 2TS =I; and the compatible liftings of the remaining aspects of RQM.
Since I = UU' is Hermitean we can hereon assume it to be positive definite and
diagonal.

The most important properties emerging from the above liftings are the following.
First, RHM is a fully axiomatic theory in exactly the same sense as RQM because
nonunitary transforms can always be turned into the isounitary transform on ¥,

WWt=T#1, W=Wr", WW' =W+« W= WTW =t « W =T, (12)
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under which RHM is form-invariant. In fact, the isounit of the theory is invariant
W*(z:"*p,,—p,,*z")*W*=f“*'ﬁ,* gt =P, xT" = i6W + T« W1 = 64T,

all operators which are initially Hermitian remain so at all times. In fact, the
condition of Hermiticity on # over C@E, +, *) now reads

{<| TH'} [>=<| {HT |>}m (13)
and, as such, it coincides with the Hermiticity on H over C(c, +, x), Ht = Ht = H.
All observables of RQM therefore remain observables for RHM. Moreover, RHM
and RQM coincide at the abstract level (for I > 0) where R(#, +, x) = R(n, +, x),
E=e, M (z,nR)=M (z,n,R), H =M, etc. also, RHM can approximate RQM as
close as desired for I ~ I and admit the latter identically as a particular case for
I=1I Finally, RHM admits all infinitely possible signature-preserving deformations
7] = T of the Minkowski metric (universality) directly in the frame of the observer
(direct universality).

3 Quantum-iso-gravity

We now apply RHM for the isotopic unification of gravitation and RQM. This
is achieved via the isoquantization of gravity hereon called quantum isogravity
(QIG). The first condition for its realization is the representation of gravity via
the isominkowskian, rather than the Riemannian space. Let R(x, g,R) be a conven-
tional (3+1)-Riemannian space with symmetric, nonsingular and real-valued metric
9(z) and separation z? = z'gz € R(n,+, x). It is easy {o see that g(z) is identically
admitted as a particular case of the isominkowskian metric #j(z, &, Z, ...) resulting in
the local isomorphism R(z,g, R) ~ M(z,7,R), g(z) = f(z).

The main idea of QIG is to embed gravitation in the unit of conventional RQM.
This is permitted by the isotopic methods via the factorization of any given Rie-
mannian metric in the Minkowskian metric and the assumption of the factor as the
gravitational isounit of the theory
(14)

9(z) = Tgr ()7, igr(x) = [Tgr(xn?lr

where T, (z) is always positive-definite from the locally Minkowskian character of R
(evidently outside gravitational horizons). The desired unification of gravitation and
RQM mechanics is then achieved via the reconstruction of the later for the isounit
fg,. Since the isometric of RHM in this case is the Riemannian metric, this results
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in a novel quantization of gravity which resolves the three basic problems indicated
earlier. In fact, the quantization is via the unit, rather then the Hamiltonian; it is
invariant under its own time evolution; and it is indeed a nonunitary image of the
RQM. Moreover, the preservation of the basic axioms of RQM at the abstract level
ensures the mathematical consistency of the theory, the understanding being that
its physical consistency requires specific studies.

In'short, the main conjecture submitted in this note is that a consistent operator
form of gravity already exists. It did creep in un-noticed until now because it is
embedded in the unit of conventional RQM. In fact, the axioms of RHM imply that

2S5 =<| T T3 Tyr |> / <| Ty |>=1, (15)

thus confirming the "hidden” character of gravitation in conventional RQM. As an
illustration, the embedding of gravity in Dirac’s equation can be written

(* * py + im)* [>= [FH*(2) Tyr (@) (@)p* — imI) Ty (z) [>= 0, (16)

(3*,7) = #Tpd” + ¥ T =20 = 20", A =T, +"L,.,  (17)

where * are the conventional gammas and 5* are called isogamma matrices. The
important point is that at the abstract level the conventional and isogravitational
Dirac equations coincide from the topological equivalence of I and I,

(Ypu +im) |>= F* = pu +im)* |> .

Note that the anticommutator of the isogamma matrices yields (twice) the Rieman-
nian metric g(z), thus confirming the full embedding of gravitation. As an example,
the Dirac-Schwartzschild equation (here presented for the first time) is given by Eq.s
(2) with R

B = (L= 2M/r)" Py L, Fa= (L= 2M/7) Pyl (18)

Similarly one can construct the Dirac-Krasner equation and others or similar real-
izations of for the Klein-Gordon, Weyl and any other relativistic field equation.

In order to initiate the appraisal of the possible physical relevance of QIG, we
here identify the following primary implications:

Consequence 1: QIG permits the introduction, apparently for the first time,
of a universal symmetry for all possible exterior and interior gravitations called
isopoincaré symmetry P(3.1) = L(3.1) x 7(3.1) [8]. It, where L(3.1) is the isolorentz
symmetry and 7(3.1) is the symmetry under isotranslations (i.e., Lorentz trans-
formations and translations in isospace, respectively), which results to be locally
isomorphic to the conventional symmetry P(3.1) = L(3.1) x 7(3.1)
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The isosymmetry can be readily constructed via the Lie-isotopic theory [2a,3b,3f,4,5b]
and consists in the reconstruction of P(3.1) = L(3.1) x 7(3.1) for the generalized
unit Ig, = [T (z)]7}, 9(z) = T,r(2)n. Since Ig,. > 0, one can see from the inception
that P(3.1) &~ P(3.1). This implies in particular that the P(3.1) and P(3.1) have
the same connectivity properties (for positive-definite isounits, but not so otehrwise
(3£,6)).

Under the lifting P(3.1) — P(3.1) the original generators X = {Xi} = (M., pa},
My = zupp — zopy, k = 1,2,..,10, p,v = 1,2,3,4, remain unchanged while
the original parameters w = {wk} = {(6, v),a} € R are lifted into the form
@ = wl € R@®, +,*). The connected component B5(3.1) can be written via the
exponentiation in E characterized by the isotopic Poincaré — Birkhoff - Witt Theo-
rem [2a]

P31 Aw) = H“X“” = HeiX‘T“’f, (19)
k

while the preservation of the original dimension is ensured by the isotopic Baker ~
Campbell- Hausdorff Theorem [2a]. It is easy to see that structure (19) forms a
connected Lie-isotopic transformation group with isogroup laws
A@)xA@@) = A+ A(@) = A(@+@), A@)*A(-@) = AQ0) = Iy = [Tyr(2)]™*
(20)
Note that P(3.1) acts isotransitively in M(z,#,R), i.e., 2 = A(®) * z, because
the preservation of the original transform z’ = Az would now violate linearity in
isospace. The isotopy of the discrete transforms is elementary, and reducible to the
forms # *x = nx = (—r,z%), T+*x = 72 = (r, —1%), where # = w1, 7 = 71, where 7,
T are the conventional inversion operators.

To identify the isoalgebra $5(3.1) of FPy(3.1), we use the isodifferential calculus
on M indicated earlier. By recalling that the coordinates in the covariant form in
M are given by Z, = fj,z”, we have the property 0,/0z" = fj,,. The fundamental
isocommutation rules of RHM can therefore be written

[Tpopu]* [>= i |> . (21)

The isocommutation rules of p(3.1) are then given by

[MWTMaﬁ] = i(ﬁuuMnﬁ - ﬁuaMVﬁ = g Mya + ﬁ#ﬂMaV): (22)
[M,,,,’,‘pa] = i(ﬁpapu - ﬁuapu)» {[panﬁ] =0, (23)

where [A}B] = ATy, (2)B — BT, (z)A is the Lie-isotopic product (originally pro-
posed in [2a] which does indeed verify the Lie axioms as one can verify. The local
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isomorphism $io(3.1) & po(3.1) is then ensured by the positive-definiteness of Tor ().
The realization in which the generators are given by

M#E, = z¥p, — 2°p,

implies the preservation by $(3.1) of the same structure constants of po(3.1).
The isocasimir invariants are then lifted into the forms

CO = :Jr = [Tgr(x)]-ln e = = Pu* P =T"pux pv,
CO =W, «Wt, W, = €uapoM™ 1. (24)

The local isomorphism 75(3.1) & pe(3.1) is sufficient, per se, to guarantee the
axiomatic consistency of QIG. Note also that the momentum operators become
commutative in their isominkowskian representation (while they are notoriously
noncommutative in their Riemannian representation). This confirms the achieve-
ment of a representation of gravitation in an isoflat space, i.e., & space possessing
zero curvature in the isospace M, but not in its projection into R(z,g,R).

Under sufficient boundedness, regularity and smoothness of the the isotopic el-
ement, the space components 50(3), called isorotations [8,8b] can be easily com-
puted from isoexponentiations (19) yielding the explicit form in the (z,y)-plane

.'II, =T COS(TH 1/2T22 1/203) - yT“_l/szzl/z Sin(Tn 1/2T221/203). (25)
'yl = ZT) 1 1/2T22—1/2 Sin(Tlll/2T221/203) + y COS(T111/2T22‘/203), (26)

(see [3f] for general isorotations in all three Euler angles). Isotransforms (8) leave
invariant all ellipsoidical deformations

2Tz + yTooy + 2Tz =1

of the sphere zz + yy + zz = r in the Euclidean space £(r,6,R), r = {z,y,2}, 6 =
diag.(1,1,1). Such ellipsoids become perfect spheres 12 = (r', &r)1, in isoeuclidean
spaces E(r,8,R), § = T8, T, = diag.(Th1, To2, Taa), I, = T;!, called isospheres
[92], because the deformation of the semiaxes 1 — Twe is compensated by the
deformation of the related units of the inverse amounts 1 — Ti~'. This perfect
isosphericity is the geometric origin of the isomorphism 0(3) ~ 0(3), i.e., of the
exact character of the rotational symmetry for deformed spheres when treated at
the isotopic level.

The connected space-time isosymmetry S0(3.1) is characterized by the isorota-
tions and the isojorentz boosts [8a,8d] which can be written in the (3,4)-plane

2% = 2®sinh(T"/?Tey'2v) ~ 2*Ta3™"/* Ty cosh(Tss > Tua*v)
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= §(z® — Tas™/?T4s'/*B?), (27)
ot = 2875325 1 Tua ™ V2 sinh (s Tus?v) + 2* cosh(Ts3'/*Tus/?v)
= F(z* — Tha'/*Tua™?B®), (28)
B = veTwe'/? [coTas?, F=Q1-/)" (29)

Note that the above isotransforms are nonlinear in z, as expected for a correct sym-
metry of gravitation, and are formally similar to the Lorentz transforms, as expected
from their isotopic character. Isotransforms (27-28) characterize the gravitational
isolight cone [9b], i.e., the perfect cone in isospace M(z,#,R). In fact, in a way
similar to the isosphere, we have the deformation of the original light cone 1, — T,
while the corresponding units are deformed of the inverse amount 1, — T,.} thus
preserving the original cone as a necessary condition for an isotopy. The abstract
identity of the light and isolight cones is the geometric origin of the isomorphisms
0O(3.1) = 0(3.1), that is, the exact character of the Lorentz symmetry for locally
varying speeds of light c(z, &, 7, ...) = coTua(z, 4, 7, ...) when treated at the isotopic
level.

In particular, the isolight cone possesses all properties of the conventional light
cone, including the characteristic angle. The maximal causal speed in isospace
therefore remains the speed of light in vacuum cg. This is an evident important
property for the physical consistency of quantum gravity.

The isotranslations can be written

=@ +z=z+aeAx), P =@E")*p=p, (30)
Ay =T\ + a®[T}, %pal /11 + .. (31)

with " gravitational isoplanewave” ¢ = & = {exp(kT,r— k4T ta@}f . The extension
of the above derivation to the isospinorial covering P(3.1) = SL(2,C) x 7(3.1) has
been studied in detail in [3f,6]. The above results imply the following:

Theorem: The isopoincaré symmetry P(3.1) is the universal invariance of all
infinitely passible separations (6) thus providing, as a particular case, the universal
invariance for all possible exterior and interior gravitations.

Note that there is nothing to compute in the sense that for any arbitrarily given
(diagonal) Riemannian metric g(z) (such as Schwartzschild, Krasner, etc, [la] ) one
merely plots the T}, terms in the decomposition Gup = TuuMuu (no sum) in the
above given isotransforms. The invariance of the separation z'gz is then ensured
by the construction of the isosymmetry, as one can casily verify. At any rate,
Lie symmetries are known to leave invariance their own unit. Note also that the
(2+2)-de Sitter or other cases can be derived from the theorem via mere changes of
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signature or dimension of the isounit. Note finally that the above theorem includes
invariances for theories much brosder than the Riemannian metric, such as the
invariance for the isoriemannian metrics § = T(x, %, %,70%, 80, ...)g(z) currently
under study for interior gravitational problems [3f,3d].

Consequence 2: QIG implies the geometric unificarion of the special and gen-
eral relativity.

This is evidently due to the fact that all distinctions between the special relativ-
ity in Minkowski space and the general relativity in isominkowski space are now lost
owing to the abstract identities R(%, +,*) = R(n, +,R), M(z,7, R) = M(z,7,R),
H = H, P(3.1) = P(3.1), etc. An important implication is the elimination of the
historical difference between the special and general relativities whereby the former
admits the universal Poincaré symmetry, while the latter does not a Isogravitation
emerges from QIG as possessing a universal symmetry which turns out to be lo-
cally isomorphic to the conventional Poincare symmetry. The gravitational field
on M(z,#, R) must now be isocovariant under P(3.1) in essentially the same way
as the electromagnetic field on M(z,7n,R) must be covariant under P(3.1). Note
the necessity of the isoflat representation of gravity for the very formulation of its
universal isopoincaré symmetry. In fact, no isosymmetry can be constructed in the
Riemannian space.

Consequence 3: QIG permits a novel approach to the unification of weak,
electromagnetic and gravitational interactions via the embedding of gravity in the
unit of conventional unified gauge theories here called "iso-grand-unification” ,which
is planned for study elsewhere.

The conjecture here submitted is therefore that gravitation is already contained
in the existing unified gauge theories. It did escape identification until now because
it is embedded in the unit of the theory ( for the isotopies of the electromagnetic
interactions see ref. [2b] for the isotopies of gauge theories see ref. [10] and review
{4d)).

Consequence 4: QIG permits a novel approach to gravitational horizons as
the zeros of (the space component of) the isounit, and of gravitational singularities
as the zeros of (the spaece component of) the isotopic element.

In fact, at the Schwartzschild’s hoﬁzon r = 2M the space isounit [, = (1-
2M/r) x diag.(1,1,1) of the isosphere r? = (r*8r)], is null, while at r = 0 the space
isotopic element T, = (1 — 2M/r) x diag.(1,1,1) is null. Recall in this respect that
the restriction of the isounits/isotopic elements to a sole z-dependence is grossly
un-necessary for isotopic theories as illustrated by the above theorem. The exten-
sion of the above exterior quantum isogravity to the corresponding interior quantum
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isogravity is merely given by admitting a nonJinearity in the velocities and in the
derivatives of the wavefunction, I (z, %, 3,70, 889, ...). A more adequate formula-
tion of gravitational horizons and singularities is then given by the zeros of the (space
component of) the latter isounits and isotopic elements. This extension evidently
permits a second generation of studies on gravitational collapse, black holes and all
that, because it permits a quantitative treatment of internal effects, such as interior
nonlocal and non-(first)-order- Lagrangian effects expected in very high densities,
etc., which are outside any realistic treatment via the Riemannian geometry [3f].

Also, recall that the "universal constancy of the speed of light” is a philosoph-
ical abstraction because in interior conditions (such as in our atmosphere) light
has a locally varying speed. The isopoincaré symmetry can directly represent the
actual speed of light in interior conditions via the more general isotopic elements
Ty = Typ/n% (no sum), where T, the conventional gravitational term. Isoinvariant
(7), when projected in our space-time, then yields the local speed of light ¢ = ¢, /ng
where n4 is the familiar local index of refraction, with the understanding that in
isospace the maximal causal speed remains ¢, as indicated earlier. The space compo-
nents 7y are evidently requested by isolorentz covariance which essentially provides
a space-time symmetrization of the index of refraction. The latter symmetrization
is important for a direct geometrization of the inhomogeneity and anisotropy of
physical media (such as our atmosphere), e.g., via a dependence of the n’s from the
local density, the differentiation of the value of their space and time components, the
factorization of a preferred direction in the medium (the underlying empty space re-
maining perfectly homogeneous and isotropic under isotopies), etc. (see ref.s [3b,3¢]
for specific applications and available experimental verifications).

These features are not merely formal because the immediate exterior of gravita-
tional horizons is not empty, but composed of hyperdense chromospheres in which
the speed of light is not ¢, thus implying the inapplicability of the conventional
light cone. Our QIG resolves these problems too via the direct representation of the
local variation of the light speed and the reconstruction in isospace of the perfect
light cone, thus permitting quantitative studies.

Consequence 5: Space and time in QIG have a local character in the sense
that their isounits have an explicit dependence on the local gravitational field itself.

In fact, the generalization of the unit in isoinvariant "(7) directly implies the
lifting
I = diag.(I,, I) — diag.(T,, I)), (32)

I, = diag'(+1:+1)+l)) Li=+4+1-— fa = diag'(TlthxT&'l)’ ft = Tas. (33)
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As an example, the space-time isounits for an observer in the exterior Schwartzschild
field are given by I, = (1 — 2M/r)diag. (1,1,1) and I, = (1 = 2M/r)"Y(M > r).
One may also assume the redefinition z'g9z = z'fjz = TT, g = T,m, T = :r:T‘/2
Riemannian coordinates are therefore equivalent to space-time coordmates in our
Minkowski space with space isounits Iy = Tkk/ and time isounit I = Tig 44 . Note
that the isogravitational theory recovers the relativistic Einsteinian spa,ce-txme for
M =0 or r — o0, for which I = I, = I. However, for a non-null gravitational field
the isounits are different than the conventional units. QIG therefore predicts the
capability of altering space and time via the alteration of their units, evidently in
addition to the Einsteinian variation with speed.

The above results pose the intriguing experimental question whether time here
on Earth and, say, time on Jupiter are different due to the difference of their gravi-
tational fields as predicted by the isounit I = (1 — 2M/r)~'(r > 2M) (in addition
to conventional gravitational corrections).

With the understanding that the mathematical consistency of QIG is established
by its Poincare covariance, the resolution of the physical consistency of QIG requires
experiments measures as to whether

- we live in space-time as conventionally understood, in which case the Rie-
mannian description of gravitation is the physically correct one and the equivalent
isominkowskian formulation has a mere mathematical character, or

* we live in isospace and isotime, in which case the isominkowskian description
is the physically correct one and the Riemannian description has a mathematical
value.

The above issue can be resolved with current technology by sending a probe
to Jupiter’s atmosphere capable of conducting comparative measures of time with
respect to Earth.

We should also mention for completeness that quantum-iso-gravity provides a
novel characterization of antiparticles via negative-definite isounits. In fact, the
operator formulation of the antiautomorphic map T>0—T"=-T <0, called
isoduality [8b], has been proved to be equivalent to charge conjugation [3f,6]. Note
that isoduality also applies for conventional units 7 > 0 — I¢ = —J < 0 The isodual
representation of antiparticles then requires the reconstruction of all conventional
and isotopic methods with respect, this time, to a negative-definite unit, including

numbers, fields, spaces, symmetries, etc.
The universal symmetry of antiparticles results to be the isodual isopoincaré

symmetry | Pi31) = Ld/@ 1) x 74(3.1) over the isodual isominkowskian spaces
Md(z, 74, RY), #¢ = -7, R? ~ —R, which is the isosymmetry P4(3.1) of this note
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when referred to the isounit
I* = diag.(~Tn ™", ~Ta ™!, =Tis ™!, ~Tws ™),
as well as its isodual isospinorial covering
P43.1) = SI42.6%) x #4(3.1).

Note that conventional or isotopic space-time separations are iso-self-dual, i.e.,
invariant under isoduality,

o = (25%) % = (&57)] = 22,

and this may explain the reason why isoduality has remain undetected until recently
[8]. Note also the independence of isoduality from space-time reflections. In fact,
the former map one space into another while the latter occur within the same space,
the former reverse the sign of the units while the latter preserve it, etc.

In particular, isodual numbers (those with unit /¢ = —I) and isodual isonumbers
(those with isounit /* = —I) have a negative-definite nonn. This implies that
all physical characteristics of antiparticles in isodual representation are negative-
definite, including energy, time, angular momentum, etc. These negative-dcfinite
quantities are however referred to negative-definite units, by resulting in this way to
be equivalent to positive-definite quantities referred to positive-definite units. This
resolves the historical problematic aspects of negative-energy solutions of Dirac’s
equation when referred to positive-definite units.

Also, the negative-definite units have emerged as originating from the very
structure of the conventional Dirac equation and, more specifically, from 7, =
diag.(1, —1), where I = diag.(1,1). The Dirac equation then results to be invariant
under the total spinorial symmetry P(3.1) x P4(3.1) [3f,6] which is iso-self-dual,
because (I x [9)4 = 19 x |~ I x 4.

The above isodual representation of antiparticles has stimulated a "new physics
of antimatter” because it permits quantitative studies suitable for experimental ver-
ifications with contemporary technology of antigravity, the space-time machine and
other topics beyond the capabilities of conventional theories (see [3f,6] for brevity).

We should also mention that the iso-self-dual symmetry of Dirac equations
P(3.1) x P4(3.1) has stimulated studies on a new cosmology called isocosmology
[3f,6] which, in the limit case of equal distributions of matter and antimatter, im-
plies a Universe with null total physical characteristics, i.e., null total energy, null
total time, null total angular momentum, etc. It should be noted that the isodual
Riemannian geometry [3f,6] on spaces R¥(z, g%, R%), ¢¢ = —g, R% ~ —R, permits a
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classical treatment of stars, galaxies and quasars as made up of antimatter. Such
a classical treatment then admits a unique and unambiguous operator formulation
for antiparticles via the iso-quantum- gravity of this note.

We finally note that the l.ie-isotopies were proposed as closed-reversible partic-
ular cases of the more general Lie-admissible genotopies for open-irreversible condi-
tions [2a,3]. The Lie- admissible quantum gravity, or quantum genogravity (QGG)
can be constructed from the formalism of this note by merely relaxing the condition
that the isotopic element 7T is symmetric. QGG, rather than QIG, is more appro-
priate for the geometrization of interior irreversible gravitational processes and, as
such it is the geometrization more appropriate of the novel Lie- admissible black
hole dynamics recently introduced in ref [11] (see also ref.s [3f,12] for additional
Lie-admissible studies of gravitation).
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