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ISOTOPIC QUANTIZATION OF GRAVITY AND
ITS UNIVERSAL ISOPOINCARE’ SYMMETRY

RUGGERO MARTA SANTILLI
The Institute for Basic Research, P. O. Box 1577, Palm Harbor, FL 34682, USA

ABSTRACT

We propose for the first time a novel isotopic quantization of gravity without
Hamiltonian; we identify its universal Symmetry as being isomorphic the Poincare”
symmetry; and we point out a number of intriguing implications.

We here outline a novel quantization of gravity without Hamiltonian first presented at the
MG7 which is based on the so—called isotopic methods introduced by this author back in
19781, worked out in detail in rnonographs2 and independently studied in ref.s3.

The main idea is to lift the conventional associative product AB among generic
quantities A, B, into the form A*B = ATB, where T is a fixed positive—definite quantity
called isotopic element, while jointly lifting the original unit [ of an amount equal but
inverse of the deformation of the product, in which case 1 = T"! is the correct left and
right new unit, 1=A = Asl = A, called isounit. Such dual lifting is isotopic in the sense of
preserving the original axioms!3, e.g, the isotopic images of fields, vector spaces, algebras,
geometries, etc, remain isomorphic to the original structures.

Isotopic liftings are physically non-trivial because the functional dependence of the
isounit T remains unrestricted. As a result, the isotopic image of a linear-local-Lagrangian
theory is given by a theory which is: a) arbitrarily nonlinear in the space-time coordinates
x, wavefunctions {{x), their derivatives of arbitrary order, %, &, 3y, 33y, ..., interior local
density p, temperature T, etc; b) arbitrarily nonlocal-integral; and ¢) non—{first-order}-
Lagrangian (see ref.2® for the local-dif ferential Birkhoff ian/second-order-Lagrangian
mechanic and ref.?d for the more general, nonlocal~integral isobirkhoffian mechanics) .
The lifting is also mathematically nontrivial because it requires the consequential
isotopies of the totality of the mathematical structure of the original theory into a
simple yet unique and nontrivial form admitting 1 as the new unit. This includes the
lifting of: numbers; angles; fields; vector, metric and Hilbert spaces; trigonometry;
functional analysis; Lie algebras, groups and symmetries; Euclidean, Minkowskian and
Riemannian geometries; classical and quantum mechanics; etc.2

The above methods permit a new quantization of gravity hereon called quantum
isogravity. Its carrier space is the isominkowski spaceintroduced by this author back in
19833, Let M(x,n,R) be a conventional Minkowski space in the chart x = (x4} = {rx4), x4 =
Cot, where ¢, is the speed of light in vacuum, 7= diag. (1, 1, 1, -1), with invariant x2 = xtnx
on the field R(n,+) of real numbers n with conventional sum n+m and multiplication
n*m = nm. The lifting v = 7| = T(x, &, &, &, 8, 33y, 1L, T, ..Jn, where T is a 4%4 positive-
definite matrix, while jointly lifting the unit [ =1 =T"L evidently preserves the original
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axioms of M, including flatness, resulting in the isospace M(x7,R) over the isofield R(n,+»)
of isonumbers f = nl with sum f+rh = (n+m)l and isomultiplication fisri =AiTr = (nml.
The lifting Mx,R) = M(x,},R) is geometrically nontrivial because the separation has the
most general possible nonlinear integral form, eg., of the diagonal type

x2 =[xl T x % ) xb + X2 Toplx, %, ) %2 + X3 Tk, %, .. %3 = x4 Toqlx %, ) x4 11 e ﬁ()ﬁ,t*)

The primary application of the isominkowskian geometry is for the so-called
interior problem (motion of extended relativistic particles or electromagnetic waves
within inhomogeneous and anisotropic physical media such as planetary atmospheres or
astrophysical chromospheres) studied in detail in ref 29 with a considerable number of
exact-numerical representations of astrophysical data on quasars cosmological redshifts,
internal redshifts and blueshifts, etc.

In this note we use for the first time the isominkowskian geometry for the
gravitational characterization of the exterior problem (motion of point-like test bodies
or electromagnetic waves within the homogeneous and isotropic vacuum). Its most
fundamental implication is that curvature is not necessary for the characterization of
gravity because Riemannian metrics and equations are identically admitted by the
isominkowskian geometry. Let f(xgR) be a conventional (3+1)-Riemannian space with
symmetric and real-valued metric g(x) and separation x2 = xgx over the reals R. It is easy
to see that g(x) is identically admitted as a particular case of the isominkowskian metric
filx, %, & ..) resulting in the local isomorphism fxgR) ~ MxHR), g(x) = {fx).

" The main idea of quantum isogravity is to embed gravitation in the unit of a
conventional relativistic quantum field theory (RQFT). This is permitted by the isotopic
methods via the factorization of any given Riemannian metric in the form g(x) = T(xn,
where T(x) is always positive-definite from the locally Minkowskian character of ®, and
the lifting of the unit I = diag. (1, 1, 1, 1) of any given RQFT into the gravitational isounit
1 = [T(I"! which evidently contains all the essential elements of the original curvature.
Note that T can always be diagonalized from its positive—definiteness, the metric for
raising and lowering the indices in M is fi{x) = gix), and 1 = Q¥,) = M =0,)=0".

A consistent isoquantization of gravity then requires the lifting of the totality of the
mathematical structure of RQFT into that of the iso-RQFT, also known as relativistic
hadronic mechanics.2d We here recall: the liftings R(n+x) = R(i,+2) and M(x,nR) -
M(x,7,R) outlined above; the lifting of the enveloping operator algebra £ over the f ield of
complex numbers Clc,+X) with generic product AB into the isotope T with isoproduct A*B
= ATB over O¢+2); the lifting of the original Hilbert space 3C with inner product < I>ecC
into the isohilbert space with isoinner product <[> =<|T | 51 € € under which
originally Hermitean-observable quantities remain Hermitean—observable; the lifting of
eigenvalue equations H| > = E | > into the isotopic form H = |>=HT>=E+|>=EIT{>=
E|> E#E, (necessary for isolinearity) indicating that the final numbers of the theory are
the conventional ones; the lifting of the operator four-momentum pu] >=-i q_J > into the
isoform p,* |>=-id,| > where d, = 18/ is the isoderivative, and the compatible
liftings of the remaining aspects of RQFT (see ref 24 for brevity).

Most important are the following properties: 1) the isotopic image of the original
RQFT is invariant under its own time evolution; 2) the iso-RQFT admits the conventional
theory as a particular case f or 1 = I; and 3) iso-RQFT and RQFT coincide at the abstract
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level in which (from T > 0} R(fi,+#) = Rin+%), M(x,R) = M(xnR), & = £ 3¢ = 3¢, etc. In turn,
these abstract identities assure the mathematical and physical consistency of iso-RQFT.
In conclusion, the main con jecture submitted in this note is that a consistent
operator form of gravity already exists. It did creep in un-noticed until now because it
Is embedded in the unit of conventional RQFT. As an illustration, the embedding of
gravity in Dirac’s equation for a diagonal isounit (which is assumed hereon) can be written

(Pep, + im)e]>= [POTORP - im1ITW|>=0, (22
(PHI) = FTH + PTH = 2ifaggw =T, 2911, ()

where yH are the conventional gammas and Y are called isogamma matrices. The
important point is that at the abstract level the conventional and isogravitational Dirac’s
equations coincide, (y“pu +im)|>= (?“*'p'L + i} >. Note that the anticommutator of the
Isogamma matrices yields (twice) the Riemannian metric g{x), thus confirming the full
embedding of gravitation. A similar isotopic realization of gravity can be formulated for
any other RQFT. As an example, the Dirac-Schwartzschild equation (here presented for
the first time)'is given by Eq.s (2) with % =(1 - 2m/r)"V/ 2y, 1 and ¥e=0-2m/m)V L3
Similarly one can construct the Dirac-Krasner eéquation and others.

By no means the above quantum gravity is a mere curiosity because it carries rather
deep geometrical, theoretical and experimental implications, such as:

Consequence 1: Quantum gravity permits the introduction for the first time of a
universal symmetry for gravitation called isopoincare” symmetry (3.1),which results to
be locally isomorphic to the conventional symmetry P (3.1). The isosymmetry can be
readily constructed via the Lie~isotopic theory 6 and consists in the reconstruction of
P(3.1) for the gravitational isounits 1 = [T(JIL, g(d = T(x}n. Since 1 > 0, one can see from
the inception that P(3.1} ~ P(3.1). Under the the lifting P(3.1) - B(3.1) the original generators
X=0J={M", py), I\/('-‘,ﬁx“;;:‘,-x"pu k=12 .,10,p,v=1,2 3 4 remain unchanged
while the original parameters w = {w;} = {8 v}, 2} € R become isonumbers, w = wl € R.
The connected component P (3.1) of the isopoincare symmetry P(3.1) can then be written

Po(3.1): AW) = T & X*W < ([ eiXTw)q, (3)

where €A = (eAT)l = NeTA) is the isoexponentiation as characterized by the isotopic
Poincaré-Birkhoff-Witt Theorem originally derived in ref.!3, while the preservation of
the original dimension is ensured by the the isotopic Baker-Campbell-Hausdorff
Theorem also originally derived in ref.!3 (see the ref.s330.3¢ for aigebraic, geometric
and historical aspects, respectively). It is easy to see that structure (3) forms a connected
Lie-isotopic transformation group with isogroup laws A(W)=A(W) = AW)PAW) = A(w+w),
AwlA(-w) = A(0) =1 = [T L. Note that H(3.1) acts isotransitively in M(x,fR), ie, ¥ =
Awlex, because the preservation of the original action Ax would now violate isolinearity.

To identify the isoalgebra Pol3.1) of B,(3.1), we note that the canonical isocom-
mulation rules are b7ple|>=(dsp,-pe)e|>= Bt o|> = i1, 8%, ¢ | > The
isotopic lifting of the conventional transition from a Lie group to a Lie algebra (see the
recent study”) then yields the isocommutation rules of P31
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[Muy :M“B]=i(Iy“Mug—'l‘-‘aM*’s-T”BM‘Q+'§“5M%), (4a)
[Mpv:pq_]=i(]uapv“‘lvnpu)' [m:%]=0, (4v)

where [ABl = AT(JB - BT(x)A is the Lie-isotopic product originally proposed in ref.!3
which does indeed verify the Lie axioms as one can see. Since the elements 1M, are
positive-definite and ¥, = 0 for p = v, rules (4) confirm the local isomorphism $,3.1)
Po(3-1). Note that momentum operators become commutative in their isominkowskian
representation (while they are notoriously noncommutative in their Riemannian
representation). This confirms the achievement of a representation of gravitation in a
flat space. The isocasimir invariants are

cO=1=frar!, cW=p2=pept=p, «i¥p,, =W, s W, W, =€ 0, M“B(s') 2

Under sufficient boundedness and continuity properties of the T,,, elements, the
original convergence of P(3.1) into finite transforms ensures the convergence of their
isotopic images which can then be readily computed from Eqs (3). The space components
SO(3), called isorotations, were first computed in ref 62 and can be written for a rotation
in the (x, y)-plane

X'=XCOS(T1%T22*93) - YTll_*Tzz*Sin(T“*Tzzi%), (6a) -
)":XTH&TQ-%SiD(TuéTQ*eg) + YCOS(TH*TQ%%), (6b)

(see ref.2d for general isorotations in the three Euler angles). Isotransforms (6) leave
invariant all ellipsoidical deformations of the sphere in the Euclidean space E(r,8R), r = {x,
y. 2, 8 = diag. (1, 1, 1). Such ellipsoids become perfect spheres r2 = (r'8r)l in isoeuclidean
spaces E(r3R), 8 = T, Tg = diag. (T}, Ty T39, 1 = T\, called isospheres, because of
the joint lifting of the semiaxes 1, = Ty, and of the related units 1, = Ty, "L This perfect
isosphericity is the geometric origin of the isomorphism O(3) ~ 0(3)

The space-time isosymmetry SO{3.1) is characterized by the above isorotations and
the isolorentz boosts originally derived in ref43 which can be written say, in the (z, t)-
plane, in terms of the conventional parameter v

2’ =z sinh (Tag? Tet v) -t Ty TegTet cosn (Tt T Ev)=5(:3-8x4), (72
'= 2 Tagico VT4 tsinh ( Tgg? Tyt v) + toosh (Tag? Tyt v)= (x4-B3) /¢, (10)
B=v/co, B=viTul/coTyl, 7 =11-82|712 (e

Note that the above isotransforms are nonlinear, as expected for a correct symmetry
of gravitation, and are formally similar to the Lorentz transforms, as expected from
their isotopic character. For T, = l/n“2 one can introduce the "isogravitational speed
of light” ¢ = ¢/n,. Isotransforms (7) then characterize the gravitational isolight cone,
i.e, the perfect cone in isospace M(x,),R), including the conventional characteristic
angle (the derivation of the latter property requires the is,otrigononrxetry2b and it is
omitted for brevity), which is the geometric origin of the isomorphisms §(3.1) = 0(3.1).
The isotranslations can be written x’ = €iP2)sx = x + 2°A(x), p' = €1P2}sp = p, where
A= T, Y2+ 24T, V2'p Vit + . with “gravitational isoplanewave” i = &KX = {explkTgr -
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kTictl. The full $(3.1) isosymmetry is then given by adding the isoinversions® fix =
-5, 1), Tx =(r, -t), ¥ =l and T = 11 with wand T conventional inversion operators (see
ref. 40 for a recent detailed study of the classical isopoincaré symmetry).

As one can see, the isopoincare transforms provide the universal isosymmetry of
all infinitely possible invariants (1).. In particular, there is absolutely nothing to
compute in the sense that for any arbitrarily given (diagonal) Riemannian metric g(x)
(such as Schwartzschild, Krasner, etc.”) one merely plots the Ty terms in the
decomposition Bup = TppMuy (no sum) in the isotransforms. The invariance of the
separation x'gx is then ensured by the above derivation.

One of the primary results of this note is the elimination of the historical
difference between the special and general relativities whereby the former admits the
universal P(3.1) symmetry, while the latter does not. In fact, in this note we have
established the universal character of the isopoincaré symmetry $(3.1) for all possible
(3+1)-dimensional gravitations (the (2+2-de Sitter or other cases being given by a mere
changes of signature or dimension). The gravitational field on M(x,HR) must now be
isocovariant under P(3.1) in essentially the same way as. the electromagnetic field on
M(x,nR) must be covariant under P(3.1). Note the necessity of the flat representation
of gravity for the very formulation of its universal isopoincaré symmetry.

Consequence 2: The isofopic formulation of quantum gravity implies the
geometric unification of the special and general relativity. This is evidently due to the
fact that all related topological distinctions are now lost owing to the abstract
identities R(fi,*,) = Rin+R), M(xAR) = Mx,R), R =3¢, 2= £ P(3.1) = P(3.1), etc.

Consequence 3: Quantum isogravity permits a novel approach to the unification
of weak, electromagnetic and gravitational interactions vig the embedding of gravity
in the unit of conventional unified 8auge theories. We can therefore submit the
conjecture that gravitation is already contained in the existing unified gauge theories.
It did escape identification until now because it is embedded in the unit of the theory
(see also ref.!0 for the isotopies of electromagnetic interactions). This iso—grand-
unification will be studied elsewhere.

Consequence 4: Quantum isogravity permits a Jundamentally novel approach to
gravitational horizons as the zeros of (the space component of) the isounit and of
gravitational singularities as the zeros of (the space component of) the isotopic
element. In fact, at the Schwartzschild's horizon r = 2M the space isounit Tg = (1 -
2M/r)xdiag. (1, 1, 1) of the isosphere 2 = (r8r) 1 is null, while at r = 0 the space isotopic
element Ts = (1 - 2M/r)"Ixdiag. (1, 1, 1) is null. Recall in this respect that the restriction
of the isounits/isotopic elements to a sole x-dependence is grossly un-necessary for
isotopic theories. The extension of the above exterior quantum isogravity to the
corresponding interior quantum isogravity is merely given by assuming an
unrestricted functional dependence of the isounit, 1 =1(x, %, &, {, 3w, 334, BT, .) A
more adequate formulation of gravitational horizons and singularities is then given by
the zeros of the (space component of) the latter isounits and isotopic elements. This
extension appear to permit a second generation of studies on gravitational collapse,
black holes and all that, which is essentially expected to produce contributions to the
existing knowledge in the field’ due to the local interior variation of the speed of light,
the internal nonlinear-nonlocal-nonlagrangian effects due to deep particle
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overlappings, and other topics. These aspects too will be studied elsewhere for brevity.
Consequence 5: Space and time in quontum gravity acquire a local character in

the sense that their isounits have an explicit dependence on the local gravitational

field itself. In essence, the isotopic reformulation of gravity implies the redefinition

: x'gx =x'nX, g = Tn, X = xT*, thus resulting in the space isounits 1, = Ty, ~/2and time

i isounit 1; = T4~ V2 (those of the isolight cone are instead Ty, ! and T,,~)). As an

example, the space-time isounits for an observers in the exterior Schwartzschild field
are given by 1y = (1 - 2M/r)1*21, and 1, = (1 - 2M/)™V/2. Note that the isogravitational

! theory recovers the relativistic Einsteinian space-time for M = 0 or r = o, for which

‘ 1y =1y = 1. However, for a non-null gravitational field the isounits are different then

the conventional units thus resulting in novel notions of space and time which are

' different for observers throughout the Universe with the same speed relative to an

inertial frame but different gravitational fields. This poses the intriguing

experimental question whether time here on Earth’s atmosphere and, say, time on

Jupiter’s atmosphere are different due to the difference of their gravitational fields

predicted by the isounit 1, = (1-2M/1)" 12, r>2M. Stated diff erently, the issue requiring

experimental resolution is whether we live in conventional space-time, in which case
the Riemannian description of gravitation is the physical one and the equivalent
isominkowskian formulation has a mere mathematical character, or we live in

2 isospace and isotime, in which case the isominkowskian description is the physical one

5 and the Riemannian description has a mathematical value. An experimental proposal to

| resolve this issue by sending a probe to Jupiter will be studied in detail elsewhere.

As a final comment we note that the Lie-isotopies were proposed 12 a5 closed-

% reversible particular cases of the more general Lie-admissible genotopies for open-—

irreversible conditions, the latter ones emerging when T is no longer Hermitean.26-2d
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