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Abstract

In this paper we submit the hypothesis that the Bose-Einstein correlation
originates from a nonlocal component of the strong interactions in the interior
of the fireball caused by the deep overlapping of the charge distributions—
wavepackets of the p-p collision at high energy, along the historical legacy
of Bogoliubov, Fermi and others. Owing to their contact nature, the notion of
potential energy has no meaning for the nonlocal internal interactions here
considered which, as such, are structurally outside the representational
capabilities of quantum mechanics on analytic, topological, operator and
other grounds. We therefore study the Bose-Einstein correlation viathe
covering hadronic mechanics, which consists of axiom-preserving isotopies of
quantum mechanics derived from the fundamental isotopy, the generalization
of Planck’s constant fi = 1 into an integrodifferential unit 1 = 1{t, r, p, p, . ¢, 3¢,
8yt,..), det. T# 0,1 =1, 1 > 0. Because of to the disparate character of the
existing literature, we first review for the reader’s convenience the elements
of: the classical foundations of the isotopies; the isotopic quantization, the
elements of nonrelativistic and relativistic hadronic mechanics; the underlying
generalized notions of isoparticie and isocomposite system; the isotopic
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symmetries and relativities that are applicable to the fireball with internal
noniocal and nonhamiltonian interactions; and other aspects. We then study
the interior problem of the Bose-Einstein correlation via isorelativistic
hadronic mechanics, and shows that it is indeed directly derivable from first
principles via the joint use of conventional Hamiltonians H = H(r, p) and
generalized units T = 1(t, r, p, p. . ¢1, 8¢, 8%1, ..). More specifically, we show
that the Bose-Einstein correlation is outside the structural axioms of quantum
mechanics, e.g., that of the conventional expectation values < § | § >, while it
is directly derivable from the corresponding generalizedaxioms, e.g., that of

the isoexpectation values <[ $ >=<¢|T|$>1,1=T L we then study the
exterior problem of the Bose-Einstein correlation via a direct representation of
the prolate spheroidal ellipsoidical shape of the fireball, achieved by means of

the factorization of the isounit 1 = { diag. (b 12, b22, b32, - b32, b 42) } 10} where

the b’s are certain "characteristics quantities of the fireball” and 1(0) is a
certain nonlocal and nondiagonal operator. In the final section we identify our
properly normalized, two-particle isocorrelation function in a form ready for
plots with experimental data, as well as preliminary estimates of the value of
its four characteristics parameters h.

In summary, our analysis shows that, on rigorous grounds, the Bose-
Einstein correlation is outside the structure of quantum mechanics, while its
representation via the covering hadronic mechanics can: '

1) identify the origin of the Bose-Einstein correlation in the nonlocal
internal effects due to deep wave-overlapping of the p—p collision at high
energy;

2) provide a quantitative representation of thecorrelation from basic
principles under the sole conventional approximation that the q, and g

components of the momentum transfer are very small;

3) directly represent the actual shape of the fireball,a prolate spheroidal
ellipsoid oriented along the original p-p direction, as well as its rapid
expansion in time, , all this prior to any second quantization;

4) identify the maximal value 1.67 for the two-points correlation function
on exact grounds from basic axioms without approximations; and

5) provide a satisfactory representation of available experimental data
on the Bose-Einstein correlation.

But, in the opinion of the author, the most important result of this
analysis is that the current experimental data on Bose-Einstein correlation
can result to be a direct experimental evidence on the validity of the
historical legacy of Bogoliubov, Fermi and others on the ultimate nonlocal
structure of strong interactions, with consequential far reaching implications,
such as the need for a2 new generation of covering relativities.
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1. INTRODUCTION

The physical event generally known as the Bose-finstein correlation
(see, e.g., réf. [1] and quoted papers) constitutes an intriguing but vastly
unexplained phenomenon, whereby two or more uncorrelated particles
{such as the proton-antiproton annihilation in UA1 experiments at CERN)
first interact, then coalesce into what is generally called a firebal. [2],
and finally decay in a variety of unstable particles whose final
detectable product is a set of correlated bosons.

In this paper we submit the hypothesis that the correlation
originates in nonlocal interactions expected in the p-p annihilation, as
well as in the interior of strong interactions at large, according {o the
historical legacy of Bogoliubov, Fermi and others. Stated differently, our
hypothesis implies that the correlation is a phenomenon strictly due to
the extended character of the charge distribution of hadrons and of
their wavepackets, and that, whenever the interacting particles are at
sufficiently large distances to permit their effective point-like
approximation, no correlation is possible.

The above hypothesis also explains the inability to reach a final
understanding of the phenomenon with ordinary quantum mechanics. In
fact, quantum mechanics is strictly local-differential in topological
structure. This implies the quantum mechanical inability to provide a
quantitative treatment of nonlocal interactions via first principles, as
well known.

Moreover, quantum mechanics is structurally of potential-
Hamiltonian type, namely, it can only represent action-at-distance
interactions described by a potential. On the contrary, nonlocal effects
due to deep mutual penetration of wavepackets are well known at the
classical level to be of contact type , namely, interactions for which the
notion of potential energy has no physical meaning [3]. As such, contact,
nonlocal interactions are conceptually, topologically and analytically
outside the representational capabilities of quantum mechanics.

In an attempt to overcome these limitations, we submitted back in
1978! the proposal to construct the so-called axiom-preserving
Isotapies of the conventional Lie’s theory, under the name of Lie-
isotopic theory [3] and of quantum mechanics under the name of
hadronic mechanics 4], while providing certain technical means to
study nonhamiltonian forces, called cownditions of variationz/
nonselfadjointness [5).

1 When at Harvard university under support from the U.S.Department of Energy,
confract numbers ER-78-8-02-4742, AS02-78ER-4742, and DE-Ac02-8-ER10651.
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These proposals were subsequently studied by numerous authors
(see, e.g., the recent Proceedings [6] and quoted literature). In particular,
the pmpoéal to build hadronic mechanics reached sufficient maturity of
formulation in papers [7,8] and in the more recent memoirs [9].

The c¢lassical foundations of the theory were first identified in the
Birkholfian generalization of conventional Hamiltonian mechanics [10],
as a first step in the study of the so-called ierior dynamical problem
i.e., extended and deformable particles moving within inhomogeneous
and anisotropy physical media. in particular, Birkhoffian mechanics
resulted to be “directly universal”? for all nonlinear and nonhamil-
tonian vector-fields in local-differential approximation verifying
certain topological conditions.

The extension of these results to the most general possible
(classical) nonlinear, nonlocal-integral and nonhamiltonian systems was
first done in memoirs [11] These latter studies reached mathematical
maturity in memoirs [12,13] via the identification of axioms-preserving
isotopies of the conventional symplectic, affine and Riemannian
geometries, under the corresponding names of Zsospupleciic, Isoalffine
and Jsoriemannian £eomerries.

Sufficient physical maturity in the nonrelativistic, relativistic and
gravitational treatment of the most general known, nonlinear, nonlocal
and nonhamiltonian system of the interior problem was then reached in
monographs [14,15] via the submission of certain isotopies of
conventional relativities under the names of Jisqgaliean, Isospecial and
Isogeneral relztivities . Independent reviews can be found in ref.s [16-
18}

Additional studies have shown the existence of a unique and
unambiguous Jsofopic guantizzstion wmapping the classical isotopic
formulations {14,15] into the corresponding operator forms [7-9], today
knows under the name of #adromization [9,19,20] This indicates the
existence of a unity of thought between the classical and operator
formulations, which is mathematically expressed in both cases by the
notion of isotopy, and physically represented, also in both cases, by the
treatment of nonlocal and nonhamiltonian interactions.

The operator formulation of the isotopic theories follows very
closely the classical ones. A central conceptual idea is the admission
that there exist physical conditions in the universe simply outside the
representational capabilities of a Lagrangian or Hamiltonian operator.
This is the case for: the deformation of shape of extended charge

2 Throughout this analysis, by “direct universality” we shall mean the capability of
representing all systems of the class admitted {“universality”), directly in the
frame of the experimenter ("direct universality”).
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distributions; the inhomogenuity and anisotropy of physical media in the
interior of stars, nuclei and hadrons; the nonlinear, nonlocal and
nonpotential interactions originating from mutual overlappings of the
wavepackets of particles, as expected in the structure of strong
interactions.

For any given mathematical or physical structure, its Zisozopic
/mages can be essentially conceived as the most general possible,
nonlinear, nonlocal and noncanonical realizations of the original axioms.

The fundamental isotopy characterizing hadronic mechanics, from
which all other aspects of the theory can be derived, is the
generalization of Placks unit & = 1 of quantum mechanics into the most
general possible unit 1, called Jsoumir , which verifies the original
axioms of & (nonsingularity, Hermiticity and positive-definiteness), but
possesses an unrestricted, integro-differential dependence on all local
variables, wavefunctions and their derivatives, as well as any needed
additional quantity,

=1 > 1=1enppd.ea88',.), (Lia)
det. 170, I1=1, 1>0 = det1=0, 1=1t, 1>0 {1.1b)

In 2 way much similar to the classical case [14,15], all action-at-a-
distance interactions are represented with the Hamiltonian operator H =
T + V, while all nonlocal and nonpotential interactions are embedded in
the isounit 1. Conventional operator formulations must then be
generalized in such a way to admit 1 as the correct, right and left
operator unit.

The latter aspect essentially requires a suitable generalization of
the entire structure of quantum mechanics, such as: the enveloping
operator algebra, the attached Lie algebra, the underlying Hilbert space,
the Heisenberg’s and Schrddinger’s representations, the unitary
transformation theory, etc.

However, since the new mechanics is an isotopy of quantum
mechanics, the generalization is axiom-preserving. In fact, the emerging
covering mechanics coincides, by construction, with the conventional
quantum mechanics at the abstract, realization-free level, thus
establishing its mathematical consistency.

As a result of these efforts we can say today that hadronic
mechanics has reached sufficient mathematical maturity as a covering
of quantum mechanics for the quantitative representation of extended-
deformable particles with linear and nonlinear, local and nonlocal,
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deformable particles with linear and nonlinear, local and nonlocal,
Hamiltonian as well as nonhamiltonian interactions in a form suitable for
experimental verification.

The Bose-Einstein correlation appears to be an ideal setiing to
test the physical effectiveness of the new mechanics, particularly when
studied under our basic hypothesis of its nonlocal and nonhamiltonian
origin.

This paper has been written to be as self-sufficient as possible,
owing to the disparate nature of the existing literature, and to provide
the interested phenomenologist in Bose-Einstein correlation with the
necessary theoretical methods for experimental plois. In particular, a
primary objective is to submit, apparently for the first time, an isotopic
model of Bose-Einstein-correlation from basic principles in a form
suitable for direct plotting with experimental data. The agreement of the
model with available measures is rather impressive, with the
understanding that it needs additional, independent experimental plots.

The paper is organized as follows. In Sect. 2 we identify the most
important limitations of quantum mechanics, in general, and for the
Bose-Einstein correlation, in particular. In Sect. 3 we outline the
classical isotopic formulations, while in Sect. 4 we review the elements of
their mapping into operators forms. In Sect. 5 we provide the elements of
hadronic mechanics, with an outline of the apparent resolution of the
. limitations identified in Sect. 2. Sect. 6 is devoted to the identification of
the generalized notion of composite hadronic systems characterizing
the fireball. In Sect. 7 we outline the isotopic space-time symmetries and
relativities applicable to a fireball with internal nonlocal and
nonhamiltonian effects.

We then pass in Sect. 8 to the specific study of the Bose-Einstein
correlation via ##e isolopic description of the interior problem of the
Hireball with a noniocal origin of correlztion ; then in Sect. 9 we
introduce the Jsofopic rormulation of the exterior experimental
detection of correlated bosons ;, and in Sect. 10 we present e
comparison of our Isotopic model with experimental datz . The primary
results are summarized in Sect. 11.

As we shall see, the results of this paper illustrate rather clearly
the physical effectiveness, as well as the horizon of truly novel
possibilities offered by a quantitative treatment of the historical legacy
on the ultimate nonlocal structure of matter.
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2. BASIC LIMITATIONS OF QUANTUM MECHANICS

As well known, guantum mechanics (see, e.g., ref. [21] and quoted
literature)} was conceived for the atomic structure, as well as, more
generally, for the electromagnetic interactions at large, for which it
subsequently resulted to be exact according to an overwhelming amount
of experimental evidence.

The central notion of quantum mechanics is Planck’s quantum of
energy h, which is the basic algebraic unit of the theory. The primary
mathematical structures of the theory are given by:

A) The universal enveloping, associative, operator afgebra £ with
elements A, B, ... (say, matrices or local-differential operators) and
product given by the trivial associative product AB, under which
Planck's constant assumes the meaning of the /Jefr and right unit of the
theory

h=1, (2.1a)

AB = assoc., 1A =Al=A VA c§ {2.1b)

B) The /7e/d F of real numbers % or of complex numbers C.
C) The Hilbert space 3 with states |§ >, | ¢ >...., and inner product

k. <yglo> = Jarperekr) ec 2.2)

All familiar formulations of guantum mechanics can be derived
from the above primitive mathematical structures either in a direct or
an an indirect way. As an example, Schrodinger’s equation for a given
(Hermitean) Hamiltonian H

\ |
i-é—t—-{a;s>=ﬂl¢>=i‘ilb>, 23)

is a consequence of the original associativity of the envelope { which
results in the action of the operator H on the state ] ¢ > being right,
modular and associative, i.e., such that

ABC|y > = ABC|¢ >) = (AB)C|¢ > ={ABC)| ¢ >. (2.9)

Similarly, Heisenberg’s celebrated equations for the time evolution
of a physical quantity Q,
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iQ = [Q.Hlg = QH - HQ, {25)

are characterized by a Lie algebra L with brackets {AB] which is
homomorphic to the antisymmetric algebra £ attached to the envelope
£ L~§.

Finally, we recall that the exponentiation of Eq.s (2.5) into a finite
Lie group is a power series expansion in the envelope {, namely, it is
technically permitted by the infinite-dimensional basis in ¢ originating
from the Poincaré-Birkhoff-Witt theorem, with familiar expansion

e =1+ ieX/U + (@ieX) /2 + .., @ €F, X =X ¢£ (26)

under which the infinitesimal form (2.5) can be exponentiated to the
finite group form

itH
£

ti

QW = eI Q(0) elg—H : @7

All other aspects of quantum mechanics, such as linear operations
on J}, Heisenberg's uncertainty principle, Pauli exclusion principle,
representation theory, etc., can be derived via a judicious use of
formulations derivable from or compatible with the above fundamental
structures &, ® {or €) and 3C.

It is important for our analysis to identify the primary limitations of
quantum mechanics for the Bose-Einstein correlation.

LIMITATION 1: LACK OF REPRESENTATION OF EXTEN-
LED CHARGE DISTRIBUT/ONS As well known, the topological,
geometrical and algebraic structures underlying quantum mechanics
are strictly foca/-dirferentiz! . As a rvesult, guantum mechanics can
only represent extended charge distributions In a frst point-iike
approximation . Such a limitation is evidently not a problem for the
electrons of an atomic structure, owing to their point-like charge
structure, but it is a clear limitation for all hadrons in general {because
they have a finite charge radius of about 1 Fermi), and, in particular, for
the p-p inelastic scatterings of the Bose-Einstein correlation.

Stated differently, a primary limitation of the quantum mechanics,
which is particularly relevant for the problem of boson correlation, is
that of its original conception, namely, for sufficiently large mutual
distances of particles under which their actual size is ignorable. Despite
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the large volume of experimental verifications recalled earlier, the
limitation considered persists to this day because inherent in the very
structure of the theory.

In order to reach a description of the extenmded character of the
hadrons, one has to pass to the so-called second quantization. Even at
that level, the theory cannot represent the gcrual/ shape of the charge
distribution considered.

As an example, there are indications that the shape of the charge
distribution of a nucleon is not perfectly spherical, but is instead an
oblate spheroidal ellipsoid along, say, the z-axis with values for the
semiaxes for the proton [22]

= - 2 -
b2y = b2 =1, bZ, = 060, (2.3)

which provide one (not necessarily unique) explanation of the anomalous
magnetic moments of the nucleons.

It is evident that quantum mechanics cszrol represent non-
spherical shape (2.8), whether directly or indirectly. In fact, even passing
to second quantization, the form factors only provide a remnant of the
actual shape, and not a representation of the actual shape itself. At any
rate, the rotational invariance of the theory would eliminate all
nonspherical shapes of type (2.8).

In regard to the boson correlation, the above limitation implies that
gquantum mechanics can only represent perfectly spherical fireballs |
with evident limitations in the quantitative description of the
phenomenon considered. In fact, there is clear theoretical and
experimental evidence indicating that the fireball of boson correlation
is not perfectly spherical, but a prolate spheroidal ellipsoid oriented
along the direction of the original p—p collision (see Fig. 1).

LORMATIONS OF EXTENDED CHARGE DISTRIBUTIONS . Once
the lack of representation of the actual shape of a charge distribution is
understood, one can see that guantum mechanics Is mnurinsically unable
to represent the possible variations and/or deformations or given
charge distributions , e.g., because prohibited by the underlying
rotational symmetry.

But the fireball is expanding immediately upon its formation. The
above limitation therefore implies ke /nability or quantum mechanics to
represent the evelution of the rireball or Bose-Filnstein correlation
(see Fig. 1).
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In addition to the above evo/ution , we also have a possible
detormation of the fireball caused by external, sufficiently intense
external fields. It is important in this respect to recall that rigid bodies
do not exist In the physical reality. Thus, shape (2.8) of a proton or of a
neutron cannot be assumed to be perfectly rigid. Evidently the zmount
of the deformation for given external forces and/or collisions is
unknown at this writing, and only tentatively indicated by neutron
interferometric experiments (see ref. [23] and quoted papers for the
experimental profile, and ref. [15], Chap. VII for a preliminary treatment).
However, the basic concept which is relevant for this paper is that the
ex’/stence of the deformations of shape (2.8) under sufficiently intense
external forces or collisions is simply beyond scientific doubts.

When considered in the context of boson correlations, this second
limitation implies that gquawrium mechanics can only represent fireballs
which, besides being perfectly spherical , are also perfectly rigid The
ensuing limitations of the theory are also evident. In fact, the basic
rotational symmetry is known to characterize a theory of rig/d bodies.

7, - -/ -
CAL  NONPOTENTIAL INTERACTIONS. Above all, the most
important limitation for Bose-Einstein correlation is ##e rinkeremt
nability or quantum mechanics te represent the nonlocal interactions
expected in the hyperdense medivm in the Interior of the fireball.

As well known, in the atomic structure we have constituents at
large mutual distances with no appreciable overlapping of their
wavepackets. Under these conditions, we have the lack of appreciable
nonlocal effect {as well as the lack of effect nonlinear in the
wavefunction [24]), with consequential exzcs validity of quantum
mechanics.

In the interior of a fireball we have instead physical conditions
fundamentally different then those of the original conception of
quantum mechanics, inasmuch as we have comsituents Iin conditions of
total mutval penetration, overlapping anrd compression of their
wavepackers one inside the others . 1t is evident that the latter
conditions result in the most general physical conditions and
interactions that are conceivable by contemporary mathematical
knowledge.

These interactions are composed by conventional local-potential-
Hamiltonian (e.g., external electromagnetic) interactions, plus the
interactions caused by the mutual penetration, overlapping and
compression of the wavepackets. The latter ones generally are:
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a) maplinear in all variables, i.e., nonlinear in the local coordinates
r and wavefunctions ¢ and ¢! as well as in their derivasives i {p), ¥ (),
oy, apt,..;

b) #zonfoca/ in all variables, in the sense of having an integral
dependence on the coordinates and wavefunctions, as well as in their
derivatives:; and, last but not least;

c) nmonpotentiz/-nonhamiftonian, namely, such to violate the
integrability conditions for the existence of a Hamiltonian repre-
sentation, the so-called cowditions of variztionsal selradjointness [35]
as typical for all contact interactions of our physical reality, whether in
classical or particle physics®.

When seen within the context of boson correlation, the above
features imply 2khe Znherent impossibility of guantum mechanics 1o
arovide an erfective description of the expected physical origin of the
correfasion . In fact, the particles originating the fireball begin their
interaction at large mutual distances and are generally uncorrelated.
The correlation evidently originates in the expected nonlocal
interactions inside the fireball. At any rate, what is significant here is
the inability of conventional, action-at-a-distance interactions to
provide a satisfactory interpretation of the correlation (see also Fig. 1}.

LIMITATION o LACK OF REPRESENTATION OF THE
BOSE-LINSTEIN CORRELATION FROM BASIC AXIOMS . Expec—
tedly, fhe very notion of correlation Is oulsioe the represeniationi!
capabilities ol the basic axioms of guantum mechznics . Consider a
system of n particles represented with the symbol k = 1, 2, ..., n, each one
possessing correlated and uncorrelated components represented with

3 The reader should be warned against not uncommon models based on the
simplistic addition of an “integral potential” to the Hamiltonian for the evident
attempt of preserving old knowledge, because they can be proved to be inconsistent
on numerous counts. In fact, mathematically, these additions are not allowed by the
underlying local-differential topology, and, physically, they imply granting a poteatial
energy to contact interactions which cannot have any, thus resulting in wnphysical
trajectories (this latter point is clearly illustrated at the Newtonianlevel by the
familiar drag forces which, if treated via a potential emergy, imply majorphysical
inconsistencies) . As we shall see later, this is the ultimate physical motivation for
our representation of contact nonlocal effects in the interior of the fireball via the
generalized unit of the theory, that is, w#l & guaniily positively other than the
Hampieonian .
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the symbol a and b, respectively. Let the states be given by | ka > x|

kb> k =1, 2, .., n. According to quantum mechanics, the correlation
probability is evidently given by

1a>
e I 1,b>
Cp = <ta|<ip|....<nal<np| =
{nb>
= Dk (<ka|ka>+ <kb|kb>), (2.9)

namely, the above expression lacks exactly the cross terms <k, a |k, b >
representing the correlation.

In fact, the Bose-Einstein correlation is currently represented via
empirical phenomenological models [1]. A theoretical inspection of these
models reveals that, strictly speaking, they are outside structure (2.9)
and, therefore, outside the axiomatic structure of quantum mechanics.

LIMITATION 5: LOSS OF THE BASIC SPACE-TIME
SYMMETEIES ANV £ELA T UNDLER NONLOCAL
NONHAMIL TONIAN FORCES  The historical open legacy of
Bogoliubov, Fermi and others on the ultimate nonlocality of the interior
of the strong interactions has profound epistemological, theoretical and
mathematical implications, because it implies the inapplicability of all
conventional space-time symmetries and relativities for a number of
independent reasons studied in details in volumes [10,14,15].

We can here quote only the inapplicability due to:

5-a) the homogeneous and isotropic character of the basic medium
of conventional relativities, empty space, as compared to the generally
inhomogeneous and anisotropic character of all physical media, whether
of classical or operator type;

5-b) the Lie-Hamiltonian character of the conventional relativities,
as compared to the nonhamiltonian structure of the interactions
considered;

5-c) the local-differential character of the underlying topology
{e.g., the Zeeman topology of the special relativity), as compared to the
nonlocal-integral nature of the events considered; etc.

In conclusion, the viewpoint submitted in this paper is that

I) Quantum mechanics does indeed provide an exact description of
the Bose-Einstein correlation during the approaching phase of the
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QUANTUM MECHANICAL DESCRIPTION OF CORRELATION

(1.1)

\1/e~

= NS NN

N

A MORE REALISTIC DESCRIPTION OF CORRELATION

- (1.2)

(1.3)

(1.4)

(1.5)

~0 O

FIGURE {; a schematic view of the quantum mechanical
representation of the Bose-Einstein correlation (Diagram 1.1), and a
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more realistic one suggested by available experimental information
(Diagrams 1.2-1.5). In the quantum mechanical case the original proton
and antiproton are represented as points. The correlation and
production of the emitted bosons B is then reducible to virtual, action-
at-a-distance exchanges, resulting in Limitations 1-5 pointed out in
the text. In the physical reality, the proton and antiproton are extended
charge distributions of radius i{Fermi {Diagram 1.2). Under very high
energy, they annihilate in conditions of total mutual penetration and
compression of their wavepackets (Diagram 1.3). This creates the
fireball which is a prolate spheroidal ellipscid oriented toward the
original p-p direction (Diagram 1.4). This fireball rapidly expands and
decomposes itself into the final correlated bosons B (Diagram 1.5} A
satisfactory representation of the Bose-Einstein correlation must
therefore be in a position to represent phases 1.2-1.5, as well as
resolve Limitations 1-5 of the text from basic principles.

original p—p particles;
1) Quantum mechanics provides a description of boson corre-
lations
after the creation of the p-p fireball, which can only be valid in
first approximationt, and
11I) A more accurate description of the phenomenon requires a
suitable generalization of quantum mechanics itself.

3: CLASSICAL ISOTOPIC FORMULATIONS

No serious resolution of Limitations 1-5 of quantum mechanics of Sect. 2
can occur without first identifying the foundations at the purely
classical level. This is the reason for the comprehensive classical
studies of ref.s [11-15]. The identification of the operator formulation and
of their compatibility with the classical profile is only consequential.

The starting point of the studies is the historical teaching by
Lagrange and Hamilton according to which phpsical reality cannot be

4 Under no circumstance the reader should think of quantum mechanics as being
“wrong” under the broader conditions considered in this paper, because it remains
“fully valid in first approximation”. In fact, as we shall see better later on, quantum
mechanics does indeed provide a first {although excessively crude) approximation of
the Bose-Einstein correlation. Similarly, quantum mechanics should not be considered
as being “violated’ by nonlocal and nonhamiltonian interactions, but merely
“inapplicable”, in exactly the same way according to which Galilei's relativity is not
“violated” but merely “inapplicable” under relativistic conditions. In the final analysis,
gquantum mechanics was conceived for physical conditions fundamentally different
than those in the interior of the p-p fireball.
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entirely represented via only one function , wday called a Lagrangiazn
or a Hawmiltonrzr , because of the existence of forces (such as the
contact forces of extended particles within physical media) and effects
(such as the deformation of shape), which are physically and
mathematically outside the notion of potential

In fact, Lagrange and Hamilton formulated their historical
equations with external terms, which were subsequently removed for
reasons not yet analyzed by historians in the necessary details. For
instance, the equations originally proposed by Hamilton are not those of
the contemporary literature, but instead the expressions

aH(r, p) dH(r p)
Pjg = ——— P =-———+Fj.i=xy2 a=12._..,n @1
Pia drjy
The functions H = T + V then represent all action-at-a-distance,
potential forces, while the contact forces due to motion within physical
media are represented with the external terms Fp, (see ref. [14], Chap. 1

for historical details).

The need for isotopic formulations originates from the property
that e brackets of Hamiltons equations with external terms, not only
violate the Lie alpebra axioms, but actually violate the necessary
conditions to characterize any afgebra (the scalar and distributive
laws)S. The isotopies of conventional Hamiltonian mechanics (that
without external terms) have been constructed for the objectives of
preserving the Lie algebra structure, while possessing additional
degrees of freedom equivalent to Hamilton’s external terms.

These objectives were achieved via zx/om-preserving isotopies
of contemporary mathemaltical structures , such as fields, vector
spaces, transformation theory, algebras, geometries, etc. [11, 12, 13].

The central idea of the classical formulations is the generalization
of the trivial unit of conventional Lie’s theory, I = diag. (1, 1, .., 1), into a
matrix T of the same dimension, called {classical) Jsoumir, with the most
general possible nonlinear and nonlocal dependence on all quantities,
such as time t, coordinates r, momenta p, accelerations® p/m, as well
as local density p of the medium, its local temperature T, its possible
index of refraction n, etc, subject to the condition of preserving the
original axioms of I, ie., 1 is nowhere degenerate, Hermitean and
positive-definite

5 See for details Appendix ILA. of Vol. I, ref. [14]

6 Contact nonlocal and nonhamiltonian forces imply the appearance of acceleration
dependent forces which, for this reason, are at times called mow-Newromian [15)
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i=diag.{1,1,..1) = 1t r,p,p w70 (3.2a)
, detI=0, I=T1, I>0 = deti=0, 1=11, i>0. {(38.2v)

As shown in details in ref.s [14,15], the above isotopy then implies
corresponding compatible isotopies of all mathematical structures used
in mechanics, such as:

1) Isotopy of fields F=> F ={a|A=nlneF, 1=T1) called
isorields , with conventional sums and Zsoproducts

ﬁl*flz = ﬁlT ﬁz = {nlnz)‘i (3.3)

where T is called the Zsoropic element , under which 1 is the correct
right and leftunitof F,I*n =i =n,vine F;

2) the isotopy of metric and pseudometric spaces M(rgF} with local
coordinates r and metric g over a field F

M@rgF) = M@EgF), g=Tg, F=F1, 1=T71; 3.49)

3) the isotopy of Lie’s theory consisting of the isotopies of:
universal enveloping associative algebras, Lie algebra, Lie groups,
transformation theory, representation theory, etc.

4) the isotopy of the conventional symplectic, affine and
Riemannian geometries into corresponding JZsospmplectic, isoaffine and
Isarremannian geometries

5) the isotopy of classical (conventional) Hamiltonian mechanics
into a generalized mechanics tentatively called Hamil/ton-isotopic
mechanics .

A rudimentary outline of the above results is important for the
Bose-Einstein correlation because it shows that the capability of
isotopic theories to represent extended and deformable particles under
nonlocal and nonhamiltonian interactions originates at the purely
classical level, and then simply persists under mapping to the
corresponding operator formulations.

The basic carrier spaces of the classical nonrelativistic isotopies
are the so-called rsoeuclidean spaces E(r$.$) which are characterized
by the following isotopies of the conventional Euclidean space E(r,8%)
over the reals |

ErS®) = ErsH), {3.52)
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8 =diag. (1,1, 1) = § =T § = diag. {b42, by?, b3, (3.5b)
2 = Tia Sij Yja = r2 = Tjg Sij Tja, (3.5¢)
;> @=8l 1=T1 =571 (3.50)

by = bylt, r, b, £,..) >0,k=1,2,3. (3.5¢)

where the diagonalization of the isotopic element is always possible
owing to its positive-definiteness.

Despite the lifting of the separation into the most general possible
nonlinear and nonlocal form (3.5¢), e isceuclidean spaces En8.8) are
locally Isomorphic to the conventionzl Euclidean space Firs.8/) under
the conditions 8 =TE B =8l 7=771>0.

Note also that, while the Euclidean space E(r8.8) is unique, there
exist an infinite number of geometrically equivalent, but physically
inequivalent isotopes E(r.84), evidently due to the infinitely possible
isometrics 8. This is requested to represent the infinitely possible
interior physical conditions.

The “phase space” of the theory induced by E(r84) is the so-called
Iso-phase-space (isocotangent bundle) in 6n coordinates which can be
expressed via the unified notation 7

TECSR): a =@M =1{, p) = Pighn = 1.2, ..., 6n, (3.6a)

f=41,1 = diag. $71,871, {3.6b)

A central objective of the formulations is to achieve a geometric,
analytic and algebraic characterization on T*E(r,3#l) of the most general
known nonlinear, nonlocal and nonhamiltonian vector-fields verifying
certain topological conditions (analyticity and regularity in all variables)

: Pia / g
a= Tt a4 = @7)
FoA) + FNA @t r,p) + Jo00 9%, ¢ r,p, )

7 For simplicity of notation, we shall use lower indices omly in isceuclidean spaces
(3.5), and preserve the distinction between upper and lower indices in iso-phase-space
{3.6).
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where: SA '(NSA) stands for the verification (violation) of the conditions
of variational selfadjointness for the existence of a potential [5], ¢ is the
surface of -the body considered, FSA(r) represents conventional local-

potential forces, FNSA represents forces still local-differential, but not

derivable from a potential or a Hamiltonian®, and ¥NSA represents the
correction of the trajectory of the center-of-mass caused by the actual
shape o of the body considered.

The primary aspects of the Hamilton-isotopic mechanics can be
outlined as follows:

ISOSYMPLECTIC STRUCTURE (ref. [14], Sect. 11.9). The
conventional, linear and local transformations v = A r are no longer
applicable to isospaces E(r8#) (e.g., because they would violate
transitivity and linearity), and must be generalized into the
Isolransformalions

¥ = Axr = ATr= AT BE.)r (3.8

which are linear and local at the abstract level (in which all distinctions
between A r and A * r cease to exist), but are nonlinear and nonlocal
when projected in the original space E(r,5.®). For these reasons
transformations (3.8} are called Jsolimear and isolocal.

A consequence is that the conventional differential calculus with
familiar expression dr’ = A dr is inapplicable to the isocotangent bundle
T*E(r,3,#), and must be lifted into the so-called JsodifTerential calculus
for which

dr=A=dr,=ATdr = AT, iF,.)dr, 3.9)

where the d's are called isodifferentizals’®.
Isospaces (3.6) can be first equipped with the cawonical one-

8 One may think at the drag forces experienced nowadays by missiles in atmosphere
which are proportional to the tenth power of the velocity and more. These systems are
manifestly nonhamiltonian, but they always admit a Birkhoffian representation (see
below) [10]

9 All conventional operations on a continwous manifold are then generalized in a
compatible way. We shall encounter in this paper only the fvexpomentistion and a
few other generalized operations. For the remaining ones (particularly for the crucial
isotopy of the Dirac's delta function) we have to refer the reader to the quoted
literature, e g., ref.s [9].



-1 -

Isororns

&1 = R+ da R°u1~1“v(t, a,4,.)dal = R, by, %dak =

Pka b2t . p. . ) Orga, ®°=(p,0), (3.10)

in which case they are denoted with the symbol T*E;(r84).
Note that isoforms (3.10) coincide with the conventional one-form
&y = ®° da = p dr at the abstract, realization-free level, by construction.

This implies that all nonlinear, nonlocal and nonhamiltonian terms are
embedded in the isotopic element Ty, as now familiar.

The Jsoexterior derivative of iso-one form (3.10) is given by

o _ L= =I 2 2
&, = dé° z[muiuzbulbu2+

aby 2 ab,, 2
+ (R ;b‘b—b 2_ Ry M By 31 3aM A dal'2 (3.11)
2 aaly M 1 gakty M2

and it always admits the factorization

by = =da, 'rz"uz(t, X%, .) 8aM A dat2  (3.12)

where wyq is the familiar canonical symplectic tensor

9R°y AR 03nx3n ~ I3nx3n
(mua) = -—) = (3.13)
sal  daV I3nx3n O3nx3n
and
db,2 ab, 2
T2 = phiZ ph2 o 1% PP R - bo? Rl —- by?)
9a% aaP
= diag. (g, g). (3.14)

In different words, the conventional, canonical symplectic
structure w can always be factorized, thus leaving all nonlinear and
nonlocal terms embedded in the isotopic element T, In turn, this

implies the possibility of preserving the conventional, local-
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differential topology of the symplectic geometry under our isotopic
representation of nonlocal-integral systems, because all geometries
are insensitive to the structure of their own unit, once positive—
definitelf. .

An /Jsosymplectic manifold is then given by isospaces (3.6)
equipped with a two-isoform, and will be indicated with the symbol

PN

TErgR), =Ty & = &1y, 1, =Ty l=diag 1,571 (3.15)

The isasvmplectic geomerry in isocanonical realization is then given
by the isospace T*E,(r.g.) equipped with the canonical two-isoform
{3.12). The reader should keep in mind the change of isometric and,
consequently, of isounit in the transition from one- to two-isoforms
{(which is absent in the conventional case).

A fundamental property of the isosymplectic geometry is that it

possess a consistent isopoincaré lemmz , i.e.,
ddy = d{ddy) =0, (3.16)

which confirms the consistency of the isosymplectic geometry as an
“isotopy” of the conventional symplectic geometry.

This is not a mere formal property, inasmuch as property (3716/
provides the Integrability conditions for the contravariznt version
PV of the isosymplectic tensor @y, =y, TH, to verily the Lie
algebras axioms (see below in this section).

Systems (3.7) are then called AHzmifton-admissible vector-fields
when there exists a function H = T + V on T*E,{r£,8) such that (see
below for explicit realizations)

wfy | =~-48H (3.17)

The isotopic lifting of all remaining properties of the conventional
symplectic geometry then followsil,

10 These mathematical results are nontrivial from the viewpoint of the physical
effectiveness of the theory because conventional integral topologies are rather
complex indeed and of difficult practical use.

11 In ref. [14), Sect. I1.9 we developed the most general possible isosymplectic
geometry in local coordinates, that with a factorization of the Birkhoffian, rather than
the canonical tensor, in which case the associated mechanics is called ZBirdhorr-
fsotopic rather than Hamilton-isotopic. This broader geometry is excessively
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It is evident that ¢he isosymplectic geometry is a bona-fide
Integrodifferential generalization of the conventional Symplectic
geometry, It admits the /alter as a pardcular case for Ty= digg. (1, 1, 1)
and It coificides with the latter at the abstract level by construction .

LSOANALYTIC STRUCTURE (see ref. [14], Sect. 1L.7). It is based
on the representation of systems (3.7) via the Jsocamonical principle

) t t
SA =8ft1 2dt(p*f—H)=8It1 2gt{p Tyt,r,p,. ) E -H] =

t ° - . ° '3 i
= 3!1:1 24t (R p Tty a¥ -H), & = (p,0), Ty = diag. (T,Ty) (3.18)

where one recognizes in the integrand the one-isoform (3.10).

The corresponding analytic equations, called covarizn: Hamiltorn-
Isotopic eguations, can be written

aH{a)

a .y _
0 Ty, aY = R (3.19)

where Wy g is the canonical-symplectic tensor and T (* T¢) is given by
Eq.s (3.14).
The caniravariant Hamilton-isotopic equations are then given by

dH
tia = I2iaja ; (3.20a)
) av oH ap]’a
daV oH
Pia = ~ liaja g (3.20b)
rja
where
1, = diag. (Ip, Ip) = diag. (Ty 7L, To7Y) = diag. g71,87Y)  (3.21)
and

general for our needs in this paper and will be ignored hereon. Nevertheless, this

broader geometry is important to establish the "direct universality” (see footnote?) of
our isosymplectic geometry for all nonlinear, nonlocal and nonhamiltonian systems
(3.7) verifying the needed continuity restrictions.



(L* 0™y = 1,1, (3.22)

The Zsoiopic Hamilton-/acobri equations are then given by

aA dA aA
—= + H = 0, = T . Pi. - _— = 0, (323)
at ary, kaia "12 Pk

where one should note for the isotopic quantization of the next section
that 8A / ap = 012,

An Jsoznalytic representation of a given system I' = (Fu(t, a, 4, ..)
of Eg.s (3.7) in terms of covariant Eq.s (3.19) is achieved via the
techniques of the Zwverse problem of Newtonizn mechanics [5,10], and
holds when one constructs a Hamiltonian H = T + V and an isotopic
elements Ty in T*Eo(r,g,f) from the given vector-field, such that the
following equalities hold identically

o aHia)
. v . _ e
wua Ty v(t, a,a,.) TVt a,4a,..) . (3.249)

12 This property can be understood despite the arbitrary dependence of the integrand,
by nothing that, from a geometric viewpoint, there is no distinction between the

conventional one-form R° da = RQP» 8V da,, = R°p‘ da, and its isotope R® = da = R°“§p‘”

da, = R°}'L da. This implies different meanings and expressions for the same
covariant or contravariant quantity, evidently depending on the explicit form of the
metric. On rigorous grounds, Eqs (3.19) should be derived from the ZBirdhoffian
Hamilton-Jacobi equations (ref. [10], p. 205 ff), for which isoaction (3.14) becomes

o L . '
A= j‘tlzdt (R, & - ), R = (pTy, 0) (a)
and Hamilton-Jacobi equations (3.23) take the unified form

~ Py

A A
+ H =0, = R}*”' {b)

at sakt
The reader should be aware that, in their general form in which the Birkhoffian
functions R}‘L are arbitrary, R # (pT, 0), the above equations imply in general that 94 /
dpy # 0, with consequential problems in the construction of an operator image (see
next section). In reality, the achievement of a structure with 34/9p = 0 is the
fundamental reason for the restrictiom of the general formulation of Birkhoffian
mechanics of ref. [10] to the isotopic form with R = (pTy, 0) considered in this paper.
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which provides the realization in local coordinates of the abstract
geometric notion (3.17).

Thus, the isoanalytic representation holds when all local-potential
forces are represented via the Hamiltonian H = T + V, and all nonlocal-

integral and nonpotential-nonhamiltonian forces F -~ and ¥NA are
represented via the isotopic element T, exactly as desired (see below
for examples).

The isotopic liftings of all remaining aspects of conventional
Hamiltonian mechanics then follow. Note that #e Hawmilton-isotopic
mechanics Is 8 covering of the conventional one; it adumits the fatter as
a particular case for Ty = Tp = [ = digg. (1, 1, I} and It cotnclides with the
latter at the abstract leve/ .

[SOLIE STRUCTURE (ref. [14], Sect. 11.6). The brackets
underlying the contravariant Hamilton-isotopic equations can be
written

JA aB
[AB] = Sl =
gak 2 ¢ aaV
SA i ( ) oB aB i ( ) dA ( )
= = 1 iaiall, 1, P, - %igigih, I Ph ) ——, (3.2
iaja iaja
al'ia 2 apja ria ap]a

p,v=1,2..,.6n 1j=123, a=12,..6n
whose verification of the Lie algebra axioms is ensured by the validity
of the isopoincaré lemma, Eq.s (3.16). The emerging algebras are then
called Lie-isotopic algebras [3l

The transformation groups as per isotopic rule (3.8} generated by
algebras (3.25) has the structure

tw) = [Tgexplwi ), 0™ @ Xg /02" (/029111 (3.28)
verify the generalized laws
iw) «iw) = Tw) xtw) = Tlw + w), (3.27a)
W «t-w) = 1o, (3.27b)

t0) = 1y - (3210)
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and are called L/e-isotopic groups (3]

The isotopies of the various aspects of the conventional
formulation of Lie’s theory then follow.

Note the explicit appearance of the isounit in the structure of the
brackets of the algebras, Eq.s (3.25), and of the groups, exponentiations
(3.26). Note also that conventional local-differential topologies can be
preserved owing, again, to the insensitivity of Lie’s theory to the
structure of its unit, when positive-definite. Finally, note the embedding
of all nonlocal and nonhamiltonian interactions in the isounits of the
theory.

It is evident that zhe above classical rformufation of the Lie-
Isotopic theory Is 2 covering of the conventionzal canonical rormulation;
it admits the lalter as a particular case for I = I and it colncides with
the latter by construction at the abstract /fevel .

The physical applications of the classical nonrelativistic isotopies
are numerous and intriguing, such as:

a) the direct representation of the shape of the particle

considered (say, ellipsoid (2.8)) via the isounit 1, = diag. (b12, b22, b32) at

the purely classical level;

b) the direct representation of the deformation of said shape via
the isotopy of the isotopy "12 = 1’2 = diag. (b’lz, b’22, b’32), where the bt’s
are now function of an external quantity, such as pressure or intensity
of an external field, etc.;

c) the direct representation of the inhomogenuity of the medium in
which motion occurs, e.g., via a dependence of the b’s from the local
density, and of the anisotropy of the medium via the factorization in the
isometric of the direction of intrinsic angular momentum of the medium
considered;

d) the direct representation of nonlocal-nonhamiltonian forces via
the isounits 1;

e} the reconstruction of the exact, conventional, rotational
symmetry for all possible ellipsoidical deformations of the sphere; the
reconstruction of the exact Galilean symmetry under nonlinear, nonlocal
and nonhamiltonian interactions; and others.

As a simple example, consider an extended-deformable particle
moving within a physical medium under no potential force, but
experiencing a quadratic resistive force with nonlocal corrections due
to its shape. This system admits the nonlinear, nonlocal and
nonhamiltonian equation of motion )
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p/m

8
]
™1
I

(3.28)
-y i2 fﬁ do ¥(o,.)

\

and can be represented in isospace T*E,(rg.#) via the isometric
g =Ts = Sexp{yrf do¥o,..)}>0, § =diag. (bs2 by? b3?), (3.29)
and the Hamiltonian

H=p2 /2m = pgp/2m (3.30)
P p

Note: the abstract identity of Hamiltonian (3.30) with the
conventional one; the representation of the resistive forces with the
isounit and »zof with the Hamiltonian; the embedding of the nonlocal
terms in the isometric; the direct representation of the actual shape of
the particle, say a prolate ellipsoid in the direction of motion as well as
all its possible deformations, via the factor § in the isometric; and, finally,
the restoration of the exact rotational O(3) and Galilean G(3.1) symmetry
for the system considered, of course, at our isotopic level, because of
the positive-definiteness of the isometric (3.29).

A virtually endless number of examples can then be constructed
via any desired combination of local-Hamiltonian and nonlocal-
nonhamiltonian forces (see ref.s [14.15)) via an arbitrary positive-definite
isounit and the Hamiltonian on T*Ey(r.g4f)

1 = diag. (g7, 871), (3.312)
H= g (p2/2my + Vitay) = ija( Pia £ij Pja / 2ma + V(Eap), (331b)
Fap = | (i = rip) & (rja -1y | * (3.31c)

which is manifestly invariant under the isogalilean symmetry GE(s'l)

constructed with respect to the isounit T, [15].
Finally, note the preservation of the original teaching by Lagrange
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and Hamilton. In fact, the representation of a particle in the original
equations (3.1) requires the knowledge of four functions, the Hamiltonian
H =T + V, and the three componenis Fy of the external force. The
representation of the same particle with the Hamilton-isotopic
equations (3.20) also requires four quantities, the same Hamiltonian H and

the three diagonal elements by2 of the isounit &.

4: ISOTOPIC QUANTIZATION

The conventional naive quantization of classical Hamiltonian mechanics
can be performed via the mapping of the conventional canonical action
A into the expression -iflog| ¥ >,

A=It1t2 dt[Ry, & - H] = -inlog|y >, @

under which the conventional Hamilton-Jacobi equations, say, for one
particle in Euclidean space E(r,5%)

3A 3A A
+ H =0, — =p, — =0, (4.2)

at ar; apy

are mapped into Schrédinger’s equations
9
tn—ly> = Hly>, pl>=-uv 6> (a3

More rigorous methods are those of symplectic quantization (see, eg.,
ref. [26].

Naive quantization (4.1} is no longer applicable to the isotopic
actions (3.18), evidently because of their generalized structure. The
isotopy of the above quantization submitted in ref.s [9,19] is based on the
generalization of the trivial unit [ of quantum mechanics into a
generalized operator unit 1 of ref. [4] which is nonsingular, Hermitean
and positive-definite, but possesses otherwise the most general known,
nonlinear and nonlocal dependence in all possible or otherwise needed
quantities, such as: time t, coordinates r, their derivatives t (or p), ¥ (or
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p) , the wavefunctions § and their conjugate dst, their derivatives a¢ and
aqﬁ, as well as the local density p, temperature T, etc.,

B> 1 =1rp b g og o, T, (4.4a)
deti=0, 1=1 1>0, (4.4b)

Mapping (4.1) is then lifted into the #za/ve isotopic quantization
also called AZadronization,

A=j't 2 dt[R°uT1llvé" -Hl = -ilhbg|§>, @9
1
under which the isotopic Hamilton-Jacobi equations (3.23), ie.,

9A , ~ 0A . 8A

+ H= 0 Igi— = Pk Igj —— = 0, (4.6)
at ary apj

are mapped into the forms

3
i—[§> = HIOT[§ > = Heff < | § > (4.72)

at
il Vi 16> = et TIE> = P x[y>, (4.7b)

where
Heff = H- i[(81/ 8t log|§>11, (4.8a)
eff L0 4 A o

P = P +i[ T (95 Dlog [§ >) 1. (4.8b)

One can therefore see in this way the appearance of an operator
formulation with an essential isotopic structure, as necessary to
constitute a true operator image of the classical formulations. A more
rigorous mapping is provided via the isotopy of the symplectic quanti-
zation [20].

For 1 = © one evidently recovers quantum mechanics. In fact,
conventional equations (4.3) can also be written in the isotopic form
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8

——l¥> = Hx[y> = HEY][y >, (4.92)
t

~ivgl§> = p o <[g> = p @y > (4.9)

This essentially indicates that quantum mechanics itself can be
formulated in a way admitting an isotopic structure with the isotopic
element T = &1,

We should finally note the crucial role of isotopic action (3.18) and
related isotopic Hamilton-Jacobi equations (3.23) for the construction of

the desired operator image. In fact, the assumption of the most general
possible first-order action

A= tltzdt{Ru(a) ak - H, Ry # (pTy,0), (4.10)

would lead to the general Birkhoffian form of Hamilton-Jacobi equations

{ref. [10], p. 205 ff) for which A / 3p # 0 (see also footnotel?). In turn, the
operator image of such a general theory would require the
generalization of the conventional wave functions (t;r) into forms of the
type |¢lt, r, p) which are mostly unknown at this writing.

We reach in this way the conclusion that, besides the capability of
representing extended and deformable objects under nonlocal and
nonhamiltonian interactions, f#e Isolopies of classical Hamiltonian
mechanics fhave the additiona! rundamental role of selecting the most
general possible runctional dependence B° = (pTit, r, p, ... @) whose
aoperator image rmplies waverunctions g, r/ ifndependent from the
momenta .

The above comments also illustrate the reasons why the
Birkhoffian, step-by-step generalization of Hamiltonian mechanics of
monograph [5,10] resulted to be basically insufficient for the
achievement of a consistent isotopic quantization, by therefore calling
for the the additional laborious task of constructing a further step-by-
step generalization of the Birkhoffian-isotopic type [14,15].

5: ELEMENTS OF HADRONIC MECHANICS

A generalization of quantum mechanics under the name of #zdronic
mechzanics , was suggested by the author [4], subsequently studied by
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several researchers [6], and finally reached sufficient maturity for
applications in ref.s [7,8,9]

Proposal [4] is essentially that of buiding hadronic mechanics 25
an isotopy of quantum mechanics , in such a way to possess the Lie-
isotopic structure identified in the preceding memoir [3] 13,

A primary objective of the proposal is the direct representation of
extended and therefore deformable particles under conventional local,
potential and Hamiltonian interactions, as well as additional, nonlinear,
nonlocal and nonhamiltonian internal, short range effects.

A quantitative study of the Bose-Einstein correlation via hadronic
mechanics appears recommendable to attempt a deeper understanding
of the correlation itself, to illustrate the possibilities of the new
mechanics, as well as to confront with experimental data the
fundamental assumption of the theory: the historical legacy on the
nonlocality of strong interactions.

The central notion of hadronic mechanics, from which all other
aspects can be derived, is the generalization of Planck’s constant & into
the integrodifferential operator ift, r, p, p, ¥, ¥1, 0%, a¢t, p, T, ..) of Eq.s
(4.4). The assumption of the this quantity as the algebraic unit of the
theory requires a necessary compatible generalization of the entire
structure of quantum mechanics. The emerging generalized mechanics is
reducible to the following primary mathematical structures:

A) The unmiversal emveloping, isoassociative, operator algebra E,
which coincides with envelope £ of Eq.s (2.1) as vector space (namely, the

elements of { are the same as those of & 14, but it is now equipped with
the new product

def . -1
E: AxB = ATB, T = fixed, T1=1714 (5.1)

permitting T to be the correct right and left unit of the theory, i.e.,

13 proposal [4] was actually that of building hadronic mechanics as a gemofopy [3] of
quantum mechanics resulting in the more general Lie-adwissible algebras for the
representation of open-monconservative conditions , such as one proton in the core of
a collapsing star considered as external. In this paper we study only closed-
conservative conditions , such as isolated composite systems with nonhamiltonian
internal forces, which are represented by the simpler Zsvfopy and related Lie-
sotopic algebras .

4 This is technically due to the property that fke basis of & lnesr .space repamns
unchanged ander isotoples. See ref. [14], Sect. 11.3.
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~

1A = Axl = A V A €f, (5.2}
in which case 1 is called the Zsounit.

B) The isorields F consisting of the isareals $ or isccomplex
numbers C

F={N|N=N1NeF, 1€k}, F=4,¢C (5.9)

where the quantities N, called /sopumbpers , verify the conventional sum
but the isotopic multiplication

» ~

Ny + Ny = (N + Nz)“l, (5.4a)
NyNy = (NyNo} 1, (5.4b)

Note that the isoproduct of an isonumber N by a quantity Q
coincides with the conventional multiplication, NQ = NQ. As a result,
the final “numbers” of hadronic mechanics are the conventional ones
(see later on the isoeigenvalue equations H{ ¢ > = N4 > = N | § >)}15,

C) The isohilbert space 3R which also coincides with JC as vector
space (except for different renormalizations), but is now equipped with
the composition

def
®: <el6> = 1<ylc|p> =
-1 e de et r ol b 00 T ) B €6 (5.5a)

detG#0, G =G, G >0, (5.5b)

where G is generally different than T, and dr is a suitable invariant
measure.

The above structures imply a generalization of each and every
aspect of conventional quantum mechanics. As an example, we have the

15 The reader should be aware of the unifying power of the isotopies and of its
implications. As an example, the infinite class of isoreals R = ® 1 includes as
particular case all existing fields of characteristic zero (real numbers, complex
numbers and gquaternions) as well as all their isotopies, owing to the arbitrariness of
the isounit 1 (ref. [14], Sect. 11.2). As a result, hadronic mechanics on isoreals ® implies
a formulation of quantum mechanics on quaternions [14]. For simplicity, we shall use
in this paper the simpler notion of isoreals ® = X (isocomplex € = Ciyin which the
complex and quaternionic (real and quaternionic) realizations are excluded.
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Isokeisenbergs equation submitted in the original proposal [4]

i = [Q:H]g = QH - H*Q = QTH - HTQ, (5.6)

which is characterized by the so-called Z/e-fsotopic zalgebras
[3,9.10,11] homomorphic to the antisymmetric algebra attached to §, L

§'1, with consequential Lie-isotopic theory.

The equations equivalent to (5.6) were identified subsequently [7,25],
are now known under the name of Isoschrddingers equations, and are
given by!®

b 3t

3 3
i—|g>=H{y> i<y|— = <¢|*H (5.7)
at at

Exactly as expected [9,19], the above equations coincide with Eq.s
(4.7a) constructed via naive hadronization of classical isotopic
formulations (we assume hereon for simplicity, owing to the
arbitrariness of the Hamiltonian, that Heff = H). The equivalence of the
above equations with Eq.s (5.6) was proved in ref. [7).

The corresponding equation for the moments were identified at a
later time, owing to the initial difficulties in identifying an operator
image of the Birkhoffian mechanics in its general formulation (see
footnotel?), In fact a solution of the problem was reached in ref.s [9] only
following the identification of the Hamilton-isotopic particularization of
Birkhoffian mechanics, and can be written

- iy Vil > = prelg >, i<¢|iVigl = <¢|*xp. 63

16 As shown by Jannussis et al. [26], the representational capabilities of Eqs (5.6) and
(5.7) is so vast to include discrefe systems (evidently via the embedding of the
discrete part in the isounit), including Caldirola’s chronon eguativas [27) In particular,
owing to their explicit form , eg.,

H*M’) = HT(t,PaPaﬁ,ll&WaN"&PKH,T,H,---)N’> = E l¢>a (a)

the iscequations are “directly universal” (footnote?) for all possible nonlinear
equations in operator form. Moreover, equations (a) above are Solinear and rsolocal
, that is, they verify the conditions of linearity and locality at the isotopic level, while
being nonlinear and nonlocal when projected in a conventional space. This implies
that monlinearity and nomlocality are pot true geomelric axioms of a theory because
they can be made to dissppear at lhe isotopic level . These results are not merely
mathematical, because they have rather subtle experimental implications, eg., for the
search of nonlinearity, which we hope to consider at some future time. -
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which evidently coincide with form (4.9b) under the identification pff = p.

Note the appearance of the isounit i = T™1 in the Lhs. of V,
originating from the structure R = (pT, 0) in the isotopic action (3.18),
which then appear in the coefficient of the isotopic Hamilton-Jacobi

equations (4.6). This form will have important implications in the operator
realization of isosymmetries.

The exponentiation must be done, for mathematical consistency,
via power series expansions in the isoenvelope £, as permitted by the
Isotopic Poincaré-Birkhofr-Witt Theorem [3),

e];X =1 +aX/1 + @)aX)/ 20 + ..., (5.9)

which can be rewritten in the old envelope for simplicity

elz =1 e]g = (e‘§ )1, {5.10)

and characterizes the operator formulation of ZLie-Jsotopic groups
[4.9].

The isoexponentiated form of Eq.(5.6) is then given by [4]

itH -Hti itTH ~HTti
= L % = 'l %! %
Q) {eE »Q(0) {eE } {ﬁg }Q(0) {elf

- e L0 % (5.11)

Similarly, all operations on } are generalized on }. As an example,
the condition of Hermiticity becomes the following Zsesermiticity (8]

H

H = tigu're! = n (5.12)

that of unitarity becomes the following condition of [sounitarity [4,78]

td T 4

Uy = U=U = 0, Uu =u:; (5.13)

and similarly for all other operations, e.g.,
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Tr & = (Tr A)], {5.14a)

Tr AxB = (TrAx(TrB), (5.14b)

Det A = {Det (AT)} 1, (5.14c)

Det (A=B) = (Det A}<{Det B), (5.1440)
Pet (A7) = (Det A)_}, (5.14¢)

The expectation values of an operator A now acquire the form of
isoexpectatior values

<h> = <YploAx g >T = ifdr' ') G AT Yylr), (5.15)

where the multiplication by the isounit can be ignored for all practical
purposes.

Finally, conventional projection operators are now lifted to the
following Zsoprojection operators [8]

P =leg><r|GlL {5.16)

with intriguing new possibilities of lifting conventional Hamiltonian
models into their isotopic generalizationl?

Regrettably, we cannot review here the entire new mechanics and
must refer the interested reader to ref.s [7.3,9]

We are now in a position to illustrate the construction of hadronic
mechanics as an isotopy of quantum mechanics. To begin, the axiomatic
properties of Planck’s unit i = 1 are nonsingularity, Hermiticity and,
therefore, positive-definiteness. The liftings & = 1 then characterizes
an infinite family of possible isotopes 1 of the original unit f. The point is
that az/ distinctions between FPlancks conustant and the Integrodif-
rerential isounit I cease to exist at the abstract level by conception .

Similarly, one can see that, under assumptions A, B, and C above, the
generalized structure § remains a universal enveloping associative

17 As an example, Animalu [28] showed that the two-body generalized bound states
submitted in the original proposal of hadronic mechanics [4] to represent internal
nonlocal and nonhamiltonian effects can be obtained from the conventional
Schrédinger’s equation for the hydrogen atom via the use of a suitable isoprojection
operator. N
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algebra [3], isofields F remain fields, and isospaces K remain Hilbert [7]
[9,12]. Thus, hadronic mechanics is based on the infinite family of
isotopies ¢ = §, F = F, It = 3, which preserve, by central assumption,
the axiomatic structure of the original theory.

But,

ExE F=F, 3=~ R (5.17)

and all distinctions between £ and &, F and F and 3¢, ) cease to exist at
the abstract level. We therefore have the following property.

Quaptum amd hadromic ®Bechamics coimcide, by
consiruction, 2@ the abstiract rezlizatiom-free level

In particular, from an abstract viewpoint, there is no difference
between the conventional modular action H | > and its isotopic
generalization H * | ¢ >18. One obtains conventional quantum mechanic
when the simplest possible realization of the structures is assumed, and
hadronic mechanics when one selects lesser trivial realizations.

A further consequence is that

The matkhematical consistency of hAadromic mechanpics
is today established. Only Jits physical effectiveness
is wumder consideration in Lhis paper.

After all, criticisms on the mathematical structure of hadronic
mechanics constitute in reality criticisms in the axiomatic structure of
quantum mechanics.

Note that each conventional quantum mechanical model
characterized by given structures £ F and 3 admits an infinite variety
of possible isotopic generalizations characterized by &, F and X

because of the infinite variety of possible quantities 1= T and G.

This means that, while a system is solely characterized in quantum
mechanics by the Hamiltonian operator H = T + V (because of the
generally tacit assumption of the unit %), /7 Aadronic mechanics a

13 These properties imply a truly intriguing connmection (investigated in memoirs [9]
between hadronic mechanics and the so-called “hidden variables”, which are in fact
no longer "hidden”, but turned into “explicit” degrees of freedom represented by the
infinitely possible isotopic operators T in the isomodular “realization of the abstract
actioon H| ¢ > = "He|§ > = “H T|¢§ >, where T = Tf > 0 is independent from H.
“Hidden variables”’ are then explicitly realized via the infinitely posszble isotopic
operators T for each given Hamiltonian [7]
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Sysiem Is characterized by the Hamiltonian operator H = T + V plus the
two independent isotopic operators T and G, as the operator version of
the reaching by Lagrange and Hamifton indicated in Sect 3.

Thus, any original quantum mechanical system of particles
characterized by a Hamiltonian H admits an infinite variety of nonlocal
and nonhamiltonian internal forces characterized by T and G. This is
evidently due to the infinite possibilities of internal physical conditions
and related nonlocal effects for each given set of particles originally
interacting at large mutual distances.

To understand this crucial point, consider a proton and a neutron,
from their simplest possible strong interactions in the deuteron, to high
energy collisions and then in the core of a star undergoing gravitational
collapse. It is evident that nonlocal internal effect are expected to be
very small in the deuteron, then increase with energy in inelastic
collisions, and finally reach their maximal conceivable form in the core
of a collapsing star where, in addition to total mutual penetration of the
wavepackets, we have their compression. All these infinitely different
interior physical conditions with consequently different nonlocal and
nonhamiltonian effects are represented via infinitely different isounits 1.

Finally, the reader should recall that, besides providing the general
laws that must be verified by all Hamiltonians, guamum mechanics
caniot ldentity the numerical value of each Hamiftonian, which must be
identiried via experiments . Along exactly the same lines, besides
providing the general laws that must be verified by all quantities H, 1 and
G, fAadromic mechanics cannol Identity lhe numerical values of the
Isounits 1 and isotapic elements G, which must also be identified via
experiments 19, as we shall see in this paper for the Bose-Einstein
correlation.

It is evident from the above outline that hadronic mechanics
possesses the necessary elements for resolving Limitations 1-5 of
quantum mechanics indicated in Sect. 2. In fact, the new mechanics
permits the following advances:

1) 7 4) ¥
LEXTENDED CHARGE PISTRIBUTIONS . While for conventional
formulations we have to go to the second quantization to reach an
indirect representation of the extended character of particles, hadronic
mechanics permits the direct representation of the actual shape

19 1n fact, mo mathematical or Phipsical theory can identify the value of fis own unit
As a matter of fact, this is the ultimate root of hadronic mechanics and the reason
why it has escaped identification for so long. )
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considered via a factorization of the isounit of the form
1=5%17, 8§ = diag. (blz, b22, b22), by = const. >0; (5.18)

Rather than needing second quantization, the representation exists
already at the classical level, and then simply persists under
hadronization.

More specifically, the representation of arbitrary nonspherical
shapes 8 are permitted under the exact rotational symmetry, of course,
realized at our isotopic level 03), ie., constructed with respect to the
isounit 1 = 37!, which results to be locally isomorphic to 03}, 6(3) = 0O(3)
{see Sect. 7).

As we shall see, hadromnic mechanics permits a direct
representation of the actual shape of the fireball via a factorization of
type (5.18), although in a suitable relativistic extension.

2) DIRECT REPRESENTATION OF THE DPEFORMATIONS OF
EXTENDED CHARGE DISTRIBUT/ONS . This is also permitted by
the isounit via factorizations of the type more general than (5.18)

1= 8717, 8 = diag(h,2 b2 bgd), By =bt,r.f,%.)>0, (519

thus permitting a direct representation of all infinitely possible
evolutions and/or deformations of the original shape, while preserving
the exact rotational symmetry, of course, at our isotopic level (see Sect.
7).

We begin to see in this way the first two applications of the isounit
1 of hadronic mechanics, the representation of the actual shape of the
system considered, as well as of all possible deformations of the original
shape.

Again, this representation of the deformation of shape exists at the
primitive classical level, and simply persists in the operator
formulations.

8) DIRECT REPRESENTATION OF NONLINEAR, NONLOCAL
AND NONHAMILTONIAN INTERACT/ONS . This requirement is also
readily permitted by the isounit of hadronic mechanics. As an example
for the case of two extended particles with wavefunctions §(r) and ¢(r)
in conditions of total mutual penetration, the isounit of hadronic
mechanics admits the realization called Awimalu’s isounit (28]
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_ enJar o) o)

].__
le

(5.20)

which recovers conventional quantum mechanics whenever there is no
overlapping.

The #nonfinear character of the interactions when represented
via the isounits 1 is evident?®.

The wnomfocal character is illustrated in a direct way by isounit
(5.20), although in its simplest possible form, i.e., womlocality in the
waverunctions . The possible nonlocality in all other variables and their
derivatives is then consequential

Finally, the zonpotentia/-nonkamiftonian character is expressed
by the fact that the interactions are not represented by the Hamiltonian,
but rather by the isounit itself, thus providing an operator formulation of
the lack of potential for contact interactions. Equivalently, one can
inspect the action of the isotopic element T in the dynamical equations
(5.6) and (5.7), where it wmu/tjplies the Hamiltonian from the right and
from the left.

3) N SE-EINS
LORRELATION FROM BASIC AX/OMS . Consider again a system of n
particles with correlated states a and uncorrelated ones b represented
with |k, 2> x|k, b > k =1,2, .., n,as in Eq.s (2.9). Then, from isoinner
structure (5.5) of the underlying Hilbert space, conventional expression
(2.9) is generalized into the form

12>

| ——— ll,b>
&y= <ta|<ipl....<nal<nb| G 1= (5.21)

Ina>

20 1his point is important to clarify a number of potentially misleading aspects of
experiments [24] claiming lack of nonlinearity. To begin, experiments [24] were
conducted within purely atomic settings and, as such, they are fundamentally
inapplicable to the interior of strong interactions studied by hadronic mechanics.
Second, experiments [24] considered the simplest possible form of “nonlinearity”, that
in the "wavefunction ", while the most important nonlinearity for hadronic
mechanics is that in the “derivatives 3} of the wavefunctions”, as typically the case
for all drag effects. Finally, the reader should keep in mind that all nonlinearities may
eventually result to be a mere first approximation of the more general nonlocality,
and that our isotopies permit the elimination of all possible nonlinearities and
nonlocalities at the abstract, realization-free level. -
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"which can be written
Ch= {2ka <ka|Gyaxplkb>}1 =

Sk (Kya<ka | GO) | ka> + Kyp<kb | GI0) | kb> + Ky, <ka | GO) | Kb>) } 1,
(5.22)

where the K's are suitable isorenormalization coefficients. The
important point is that, when compared to conventional expression (2.9},
isotopic expression (5.22) exhibits precisely the presence of the cross
terms responsible for the correlation {see Sect.s 8 and 9 for details).

5) RECONSTRUCTION OF EXACT SPACE-TIME SVMME-
TRIES AND RELATIVITIES . One of the primary objectives for
which the Lie-isotopic theory was submitted [3] is precisely the
reconstruction of conventional, exact space-time symmetries when
believed to be broken under nonlocal and nonhamiltonian interactions.
This aspect will be investigated in the next sections in more details. At
this point let us simply outline the following main aspects:

a) All nonlocal-integral effects are embedded in the isounit of the
theory. This permits the preservation of the conventional topologies
virtually unchanged, because, as indicated earlier, algebras and
geometries are insensitive to the structure of their own unit once
positive-definite;

B} The isotopic symmetries result to be locally isomorphic to the
conventional ones. In fact, the property mentioned before that isotopes
O[3} of 0O(3) constructed with respect to 1 > 0 are isomorphic to the latter,
0 = 0(3), extends to all other space-time symmetries, such as the
isogalilean, Isolorentz and isopoincare symmelries, as studied in details
at the classical level in monographs [14,15], and at the operator level in
memoirs [9]. (see the outline of Sect. 7). Thus, e space-time symmetries
4t the roundation orf contemporary theoretical physics are not fost in
our approach to Bose-Fmstern correfation, but actually preserved i
an exact rorm, although realized im therr most general fFnown rorms .

y) The relativities characterized by the isotopic space-time
symmetries coincide with the corresponding, conventional relativities at
the abstract, realization-free level [9,15], as expected from the abstract
identity of hadronic and quantum mechanics (see also Sect. 7).
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We can therefore state that:

badronic meckhamics IS 2 coverimg of comnvemtional
guapium mechamics in the sense that:

I the rormer is based on mathematical rormulations (the
Lie-Isotopic theory om isohilbert spaces/ which are structurally
more general than thase of the latter (the conventional Lies
theory on conventional Hilber: spaces):

#J the rormer represents physical conditions (extended-
deformable particles under nonfinear, nronfocal and
nonhamiltanian forces) which are structurally more general
than those of the latter (point-like particles under local-
potential-Hamiltonian rforces) amnd

iyl the former can approximate the latter as close as
desired ror I = [, and recovers the latter in Its entirety for =7

The formulation described above, sometimes called generz/
hadronic mechanics [9), is excessively broad for the objectives of this
paper. In fact, from hereon, we can effectively restrict our study to the
particular case of the so-called restricted hadronic mechanics
characterized by [9]

T =G, (5.23)
namely, when the isotopic element T of the isoenvelope ¥ coincides with
the isotopic element G of the isohilbert space 3.

This is a particularly significant case in which ke operation or
Isohermitcity colncides with the conventional Hermiticity, ie., from Eq.s

.(5.12), we have

W =H (5.24)

Similarly, the isoexpectation values become
<A> = <y | TAT[d >, (5.25)

the isoprojection operators formally coincide with the conventional
ones

P o= > <yl (5.26)

while all other expressions depending only on the isotopic element T
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remain unchanced.
We therefore have the following

PROPOSITION 5.1 B9 Under condition (523 the observables of
gquantum mechanics remaln observables ror the covering
hadronic mechanics

The implications of the above property are nontrivial. In fact,
contrary to a rather popular belief, we have:

PROPOSITION 52 [ A Hermitean operator H = H! does not
possess a unique set of rezl elgenvalues, bur admits an Iniihite
number of different sets of elgenvalues, each of which Is real

PROOF: Consider a given Hamiltonian H, and suppose that it has the
(discrete or continuous) set of eigenvalues E° in quantum mechanics,

H|¢>=E|¢> H =H (5.35)

Then, the szwe operator H remains Hermitean under isotopy (5.23) and
admits Jifferent eigenvalues within the context of the covering
hadronic mechanics, called /soejgenvalues , trivially, because of the
presence of the isotopic element T,

Hx|$>=HT|¢$> = B4 §> = Ep|$> Ep # E,  (536)

But the isotopic elements T are unrestricted, and can be infinite in
number for each given Hamiltonian H, thus implying an infinite number of
different isoeigenvalues for the same Hamiltonian H. The reality of each
set of isoeigenvalues was proven in ref. [7] QED

Similarly, we have

PROPOSITION 53 [9F A Hermitean operator does nol passess 4
unigue set of real expectation valves, but admits instead an
mnrinite number of different seLs or real expectation valves.

PROOF: Consider again a Hermitean Hamiltonian H, and suppose
that the quantum mechanical expectation values are given by the
familiar form

<¢lp>=1 <P|H|¢>=E €& - (637
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Then, the szme operator H within the content of the covering
hadronic mechanics, say, under the normalization

<§|x[§> =1, <§l > 1=1, (5.38)
admits the different expectation values?!
<§|*H=|§>=<§|THT|§>= E; # E". (5.39)

But there exists an infinite number of different isotopic element T for
each given operator H, thus implying the existence of an infinite number
of different sets of isoexpectation values whose reality was proved in
ref. [7]. QED.

We learn in this way that, contrary to popular belief, 2 grvens
Hermitean Hamiltonian A, by no means, admils unigue eigenvalues and
expectation values £ but instead anr infinite number of different
isoeigenvalues and Isoexpectation values E, depending on the

inrinitely possible Internal nonfocal and nonhamiltonian errects
represented by the infinitely possible isounit or Isotopic efement T [9].

We should finally recall that Propositions 5.1, 5.2 and 5.3 imply that a
given isotopy

H|{¢> =E|¢> = HT|$> = Ep|¥>, (5.40)

essentially characterizes a mwuzation (in the language of ref. [4) of
given quantum mechanical characteristics, in the sense of implying an
alteration of the original numerical values.

Rather than being unexpected or a mere mathematical property,
mutations (540 are exactly the alterstioms of the predictions of

21 Note that this result is nontrivial even when including the isounit. Assume T =
const. Then the isoinner product does not change, because

<P |T|$>1 =< |¢ >, t=Tl=cost.>0, f(a)

thus confirming the identity of J¢ and H at the abstract level. However, for the
iscexpectation values we have

<$|TAT|$>T = <P |A|$>T # < |A|g > ®)

This implies that & numerical change of Flanck’s constant would fmply-an alteration
of tke expectation valees.
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quantum mechanics expected from the addition or internal, short
range, nonfocal and nonhamiltonian mieractions.

To state it differently, consider the bound state of two particles at
large mutual distances under potential interactions only, Hamiltonian H
and an energy spectrum E°. Suppose now that the same two particles can
have a bound state one inside the other at mutual distances less than 1
Fermi , by leaving unchanged the original Hamiltonian H. The resulting
internal nonlocal and nonhamiltonian effects necessarily alter (mutate)
the original spectrum E° via the isotopic element T. As pointed out in the
original proposal [4], the hadronic generalization of guantum mechanics
was ultimately proposed exactly for the representation of such
mutation?2,

In conclusion, ke predictions of quantum mechanics are exact
under all physical conditions of the original conception of the theory
for large mutual distances of particles under which nonlocal and
nonhamiltonian interactions are ignorable, as it is typically the case in
the atomic structure and the electromagnetic interactions at large.

However, guanitum mechanics cam well reswit to be
approximately valid whemever nomlocal and nonkamiltonian
interactions canmot be effectively igmores 23,

Particularly intriguing are the novel possibilities offered by
hadronic mechanics which require specific additional studies, and are
mentioned here on mere grounds of scientific curiosity:

1) 4 possible new, unique znd unambiguous quantization
of gravitation [9] Recall that Einstein gravitation has an identically

2 As shown in the original proposal [4] (and confirmed in the more recent studies [9]
and Animalu's research [28D the isvtopy of the couventional Schridinger’s equation for
the positroafum implies the suppression of the atomic infinite energy spectrum E°
down to only onme emergy level . This is the reason why proposal [4] submitted the
hypothesis that the 7° is a "compressed positronium®, i.e., an electron and a positron
in a hadronic bound state at mutual distances of 1 Fermi. Intriguingly, the model is
capable of representing with one single equation of structure £/ the characteristics
of the 7°, i.e.: total rest energy, charge radius, meanlife, charge, electric and magnetic
moments, space and charge parity and primary decays.

23 This aspect is better focused by a nonlocal-nonhamiltonian scattering theory
proposed by Mignani [25, 29] within the context of hadronic mechanics, which indicate
that monmlocal imlernal effects may fvply an alteration of the cross section. In any
case, such an alteration should be expected from the general principles of hadronic
mechanics, such as mutation (5.40). Unfortunately, we do not have at this writing a
specific re-elaboration of conventionally elaborated experiments in strong
interactions to clarify this aspect. It is therefore hoped that interested
phenomenologists will consider and resolve the issue whether or not rnterasl
noznlocal-gonhariitonian effects in strong imleractions imply am alteration of the
numerical valee of the cross section .
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null Hamiltonian while quantum mechanics is fundamentally dependent
on the existence of a nontrivial Hamiltonian. These occurrences are at
the basis of the problematic aspects in the quantization of gravitation.
This conventional profile is altered by hadronic mechanics. Let
R(xg A) be the Riemannian space of a gravitational theory and M{x,n®)
its tangent Minkowski space with familiar metric n = diag. (1, 1, 1, -1). All
gravitational metrics g(x) can be always decomposed into the form

gx) = T, T>0, (5.41)

under which the Riemannian space can be interpreted as an isotope of
the Minkowski space (ref. [14], Sect. 11.3)

RixgR) = Maf), 7 = Ty, &=41 1=T1, (5.42)

The isoguantizalion of conventional gravitation submitied i rer
[9] is essentizlly given by the Isotopy of comventional relativistic
quantum mechanics in which the isounit represents the curved
component or gravitation, Le,

1 = [T L, Ty = g € RixgH) (5.43)

In different terms, it is possible that an unambiguous quantization of
gravity already exists in the current relativistic quantum theory, only
“hidden” in their units.

In summary, quantum mechanics is only based on the Hamiltonian,
as well known, thus leading to the indicated problematic aspects for
quantum gravity. Hadronic mechanics is based instead in the Hamiltonian
plus the isotopic elements T and G, thus offering the possibility of
quantizing physical models which are nonhamiltonian, exactly as it is the
case for gravitation.

11) Possibility of turming divergent perturbative series
into comvergent omes [9). The idea is so simple to appear trivial
Consider a canonical series which is divergent, e.g.,

2= A rk[AHI/ ¢ +KP[[AHIH /20 + 300, k>1  (5.44)

It is then evident that the divergence may be due to the excessively
simplistic structure of the Lie product [AH] = AH - HA. In fact, given a
divergent series (5.4, there always exists an isotopic product [A , Hf =
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ATH - HTA under which the isotopic series
S = Ag+k[AH /1t +K2[[AJHI HI/ 2 + ..=N<oo, k>1, (545

becomes convergent [9], as it is evidently the case, eg., for [ T |
sufficiently smaller than one.

In different terms, the isotopies imply a form of renormalization
beginning with the classical formulations (see the classical two-body
case of ref. [15], App. 1iLa), and this property evidently persists at the
operator level. Thus, the isotopy of a given model, e.g., with a coupling
constant K > 1 implying divergent series (5.44), can be lifted in such a
way to imply a renormalized coupling constant k » 1 = k < 1, with
evident possibility of rendering convergent perturbative expansions
when conventionally divergent.

111} Possible pew “Iso-grand-unification™ orF all inter-
actions [9]. The isotopic lifting of gauge theories has been identified
by Gasperini [30] precisely along the lines of hadronic mechanics, e.g.,
with respect to our isounit 1. In ref. [9] we therefore suggested zze 7so-
grand-unification”™ essentiglly consisting of the isotopy of conventional
unified gauge theories of wezk and electromagnetic interactions i
which the isoumit 7 represents gravitation as i £q.5 (543) as well as the
nonlocal component of the stromg mleractions ar the kistorical legacy

Predictably, hadronic mechanics implies rather intriguing
revisions of current epistemological studies of quantum mechanics in
regards to causality and other aspects, only preliminarily indicated in
ref.s [9] in the hope that they will be inspected by independent
researchers?4,

24 The following three epistemological aspects studied in ref. [9] are worth a mention.
Their understanding requires the mind specifically set in Jaferior hadroaic
coaditiops, such as a proton in the core of a star and, under no condition should be
investigated by thinking at the typical atomic setting of an electron moving in empty
space for which, as stressed repeatedly, quantum mechanics (originally called for this
reason dlomyc mechanics) is exact.

a) Hidden variables We mention in footnote!d the intriguing realization [9] of
hidden variables via our isotopic eigenvalues equations H¢| > = HT| § > = Eq{ § >. We
can now complement this aspect with the property that ke celebrated vou Newmanu
theorem on the lack of hidden variables becomes inspplicable, because of the
Ingpplicability of its first assamption on the unicity of the efgenvalues of Hermitean
gperators . In different terms, hadronic mechanics clarifies that there may be no
hidden variables under the assumption of the unit of the theory h = 1, but an infinite
number of “hidden degrees of freedom” emerges whenever such an un-necessary
restriction is lifted, and one assumes arbitrary isounits 1.
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Needless to say, we are forced of necessity to leave open
numerous additional aspects, only rudimentarily treated in ref..s [9], such
as the problem of causality under nonlocal interactions, the measure
theory for generalized isounits, etc. Nevertheless, the existence of
consistent generalizations within the context of hadronic mechanics is
guarainteed by the isotopies themselves. In fact, a generalization of the
conventional causality is not isotopic unless the causality axiom itself is
preserved, a generalization of the conventional measure theory is not
isotopic unless the generalized theory is a measure theory, etc.

B) Heiseaberg's amcerfainfy .The equally celebrated Heisenberg's
uncertainty may well need revisions in the interior hadronic problem because it is
apparently replaced by the primcple of isowscertainty 191

Ardp Z t<li>, (@

where < 1 > is a suitable average of 1 (again recovering the conventional uncertainty
b for T = &). Evidently < i > can be smaller than &, (see the case of “isonormalization”
{5.45) of divergent series (5.44)), thus showing that # parficle moving within a hadronfc
medium cap have an wacertainty smaller than lhe same particle in vacaun .
Consider then the uncertainty of a particle in the core of a star undergoing

gravitational collapse. But 1 = T can represent the inverse of the gravitational
component T of a Riemannian metric g(x) = T(x} n ee Eqs (5.41)-43), and, more
particularly the isopoincaré symmetry later om for isocommutation rules (7.30) in
which g is the Riemannian metric g). This implies that 7z # possible operator
forerulation of gravitativon via hadronic mechanics, the (conventional) singularities of
the gravitational field g 2 o e, T'> ), are represented by the zeros of the isounit 7

= 71 [9). Thus, ar the limit of & gravitational siggularity ,

Ar Ap = i <1 gpoyiarities > = 0, ®)

aod Helsenberg’s wncertsinty may well recover the conventional determinisy of
classical phpsics . After all, a star is a classical object whose center of mass can be
exactly determined. But then so is any particle in its collapsed interior.

¢/ Bohr's complementarity . In this case too we have now predictable
revisions in the notion of complementarity, eg., because the particle considered is not
moving in empty space, but could be in the center of the collapsing star considered
above. In this case, the identification of one of its properties does not necessarily
imply a perturbation of the particle itself owing to the contact nonlocal and
nonhamiltonian interactions which may force the particle to keep its position (see the
notion of rZsvcemfer of Sect. 6). These novel physical conditions were not evidently
considered by Bohr.
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6. GENERALIZED HADRONIC PARTICLES AND BOUND
STATES

After having identified in Part | the basic methods, in this Part Il we shall
study the Bose-Einstein correlation beginning with the identification of
the type of state constituting the fireball

This study will be conducted in this section via the generalized
notion of composite systems of hadronic mechanics, called c/ased
nonhamiltonian systewms . These are systems of extended-deformable
particles which are conventionally closed in the sense of verifying all
conventional total conservation laws, but admit nonlinear, nonlocal and
nonhamiltonian internal forces. As such, closed nonhamiltonian systems
appear to represent precisely the fireball of the Bose-Einstein
correlation under our hypothesis of Sect. 1.

Closed nonhamiltonian systems were submitted at both the
classical and operator levels in the original proposal of hadronic
mechanics [4], and subsequently studied in details at the classical level in
monographs [10,15] and in operator form in memoirs [9] (see also the
reviews [16,18]). In this section we can evidently review only the
elements essential for the phenomenological studies of the next
sections.

First, iz the transition rrom gquantum lo hadronic mechanics, the
notion of parddcle andsor constituent of a composite systew is
generalized into a notion called “Tsoparticle” [11,14,15].
Nonrelativistically (relativistically), we have the transition from the
notion of particle as a representation of the conventional Galles
symmetry G3.1) (Poincaré symmetry P(3.1)) with trivial unit I, to the
notion of isoparticle as a representation of the infinitely possible
Galilei-isotopic symmetries — G(3.1) (Poincaré-isotapic syvmmetries
P(3.1)) with isounits 1 (see the first proposal [31] and the subsequent
elaborations in ref.s [9,11-15] with an outline in Sect. 7).

This essentially implies the transition from a point-like particle
which can only experience action-at-distance interactions of local-
potential-Hamiltonian type, to extended-deformable particles which can
experience conventional as well as contact, nonlinear, nonlocal and
nonhamiltonian interactions. Since points are perennial and immutable
geometric objects, the intrinsic characteristics of conventional particles
are immutable. On the contrary, since extended shapes are deformable,
one isoparticle can have an infinite number of different shapes and
other characteristics, represented precisely by the infinitely possible
isounits 1.
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Quantum mechanical bound states are composed of a collection of
point-like ‘particles with perennial characteristics interacting at large
mutual distances. On the contrary, a hadronic bound state is composed
of extended-deformable particles under action-at-a-distance intera-
ctions as well as mutual penetration of their charge-distri-
butions/wavepackets at mutual distances equal or smaller than 1Fermi.
In the latter systems the total characteristics are constants and
conserved, but the individual characteristics are not necessarily so. .A
visual representation of the generalized hadronic bound states is
presented in Fig. 2 below.

In this section we consider systems of isoparticles which are
closed-isolated from the rest of the Universe and, therefore, they are
expected to verify total conservation laws. The study of this issue is
relevant because the recent letter [32] claims that systems of particles
with different Planck's constants violate conventional total conservation
laws and space-time symmetries. At any rate, the issue of the
verification of total conservation laws for an ensemble of constituents
in generally nonconservative conditions is evidently essential for our
study of the Bose-Einstein correlation.

The authors of note [32] (of 199]) were apparently unaware that this
author had previously submitted in ref. [31] {of 1983) the notion of
particles with different units, and previously proved [9] (in 1989) the
validity of total conservation laws and space-time symmetries for
systems of particles with different isounits. In fact, the particles with
different Planck’s constants of ref. [32] are the simplest conceivable
isoparticles with different integrodifferential isounits proposed in ref.
[31].

In essence, as also clarified in ref. [33], note [31/ studied composite
Spstems of particles with different units without the tensorial product
af the Hiltbert spaces, as necessary Ifor conventionzl quanium
mechanics in order not to vielate linearity and other requirements (see,
e.g., [21). The assumption of an incorrect carrier space then leads to
misleading conclusions [33].

In ref.s [9], composite systems of isoparticles are characterized by
a total Hilbert space given instead by the appropriate tensorial product
of the individual spaces. Since the individual spaces have different
isounits by assumption, the unit of the total space is then the tensorial
product of the individual units. Total conventional conservation laws
and space-time symmetries then follow.

To begin, let us assume the simplest possible model of a fireball
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BOUND SYSTEMS IN QUANTUM MECHANICS

UsoNUcLEvs |

FIGURE 2: A conceptual view of the bound states characterized by
quantum and hadronic mechanics. The constituents of a quantum -
mechanical bound state are point-like particles verifying the
conventional Galilei G{(3.1) and Poincaré symmetries P(3.1), resulting in
a bound state having the conventional Keplerian structure. On the
contrary, the hadronic particle-constituent of a bound state under
strong interactions verifies the isogalilean G(3.1) and isopoincaré
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symmetry P(3.1), implies generalized characteristics of the individual
constituents, thus resulting in 2 new notion of composite system. The

most effective way to see this occurrence is the following. The
conventional, quantum mechanical constituents move in empty space,

in which case they require a central suc/eus which must be heavier
than the peripheral constituents, as established in the atomic
structure. On the contrary, inthe transition to the covering hadronic
mechanics, we have extended constituents in conditions of partial or
total mutual overlapping, in which case the constituent at the center,
called /sonucleus [9,11,15] can have an arbitrary non-null mass,
either heavier or smaller than that of the peripheral constituents,
trivially, because of the physical contacts among all the constituents.
From the viewpoint of space-time symmetries, the possible
computerization of a composite system of particles obeying the

Galilei or Poincaré symmetry is expected to yield the atomic

structure, as well known. On the contrary, the possible
computerization of the covering isogalilean or isopoincaré

symmetries is expected to yeld precisely the nuclear structure®. In
fact, nuclei are an aggregate of extended particles under mutual
contact without a conventional central nucleus, but with our
isonucleus. The proposed generalized structure of hadrons for which
hadronic mechanics was proposed [49], is patterned along these lines,
although under internal nonlocal and nonhamiltonian interactions
quantitatively much bigger than the relatively small counterpart of
the nuclear structure. The fireball of the Bose-Einstein correlation
studied in this paper is then expected to be a limit case of these

generalized structures?,

25 The author would like to thank T. Gill of Howard University, Washington, D.C., for
the recommending this visual computerization of the differences between the
conventional Galilei or Poincaré symmetry and their isotopic generalization during
recent talks at his department.

% pata on nuclear volumes as compared to the volumes of individual nucleons
indicate that protons and neutrons are in average conditions of mutual penetration in

the nuclear structure of about 1073 parts of their volumes. By comparison, all massive
particles are known to possess a wavepacket of the order of at least 1Fermi, which is
the order of magnitude of the size of all hadrons. As a consequence, the hadronic
constituents are expected to be in a state of fofa/ mutual penetration and
overlapping of their wavepackets, thus resulting in expected nonlinear and
nonhamiltonian internal effects much bigger than the nuclear ones. The limiting case
is the core of a collapsing star in which, as we indicated earlier, we have not only
total mutual penetration but also compression of a large nwmber of wavepackets in a
very small region of space. The very high energy p-p interactions originating the
fireball, e.g., those for the UA1 experiments at CERN, are expected to produce physical
conditions (e.g., densities) beyond those of the structure of hadrons, and approaching
those in the core of a collapsing star.
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within the context of hadronic mechanics consisting of two isoparticles
of the same ‘mass with constant isounits?’ and isotopic elements T = G

1, = T, ! = diag(by; 2 bya 2 ba37) =const. >0, a = 1,2, (6.1)

with corresponding isoenvelopes §,, isofields F,, isohilbert spaces I,
isostates | $,> and linear momenta p,. It should be indicated that the
analysis of this section also holds for the most general possible

functional dependence of the isounits, with the sole exclusion of the r-
dependence, 1 = 1{t, p, p, ¥, ¢1, 3%, 3¢t, ..). In turn, the latter dependence
excludes gravitational considerations from the analysis.

The eigenvalue equation of the linear momenta can now be
assumed to have the generalized isotopic structure (5.8) [9]

d
Par*|¥a > = PaxTal¥a> = -ilgp—4,> 62)
arak

where, hereon, there is no sum on the repeated Latin indices unless

specifically indicated. The understanding is that realization (6.2) is, by

far, non-unique because of the degrees of freedom of hadronic

mechanics, and a number of other alternatives are possible (see below).
The fundamental isocommutation rules are then given by

[Fai- Tl *l 92> = Ipgis Pyl *[¥2> =0, (6.32)
Pai: rafl *l4g > = —ibia 2 8%y, > (6.3b)
,j=1,2,3, a,b =12
where the isocommutator is given by

[A;Bl, = [A:B]E = AB - BxA = AT,B - BT,A, (6.4)
a

27 This is generally possible for the “global’ approach to a composite hadronic
system, that is, its study from the outside as a whole. The explicit functional
dependence of the isounit is instead needed for the “local” internal behavior, eg., for
the description of one particle in the interior of hadronic matter. At the classical level,
the former isounits are given by a suitable average of the latter [15], and a similar
situation is expected at the operator level.
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Note the correspondence of the isoeigenvalues 0 and - i b2 8jj of
the fundamental isocommutation rules (6.3a) and (6.3b), respectively, with
the corresponding classical expressions 0 and by 2 8¢, given by Eq.s
(111.3.30) of-ref. [15], thus confirming that the hadronization of Sect. 4 is
indeed consistent and of the desired type.

This result has a number of predictable implications, from the
confirmation of the isotopic character of hadronic over gquantum
mechanics, to the preservation of conventional space-time symmetries.

It is furthermore assumed that each isoparticle is individually free
at this first stage. As such, it is represented by Hamiltonians

Hy = Pa?/2m = Py TPy /2m (6.5)
with related isoschrédinger equations
19 |9, > = Hyx|, > = Hy T, |4, > = E,|¢, > (6.6)

Eq.s (6.6) essentially represent free but extended particles with a
well identified shape described by isotopic elements (6.1), e.g., two
different oblate spheroidal ellipsoids

Ty = diag. (bllz’ b122, b132) F T2 = gdiag. (b212, b222, b232). 6.7

We now study the two isoparticles when forming a composite
system with mutual interactions of both local-potential as well as
nonlocal-nonpotential internal type. This composite system is assumed
to be the simplest conceivable model of fireball provided by hadronic
mechanics. Numerous generalizations are evidently possible, as we shall
see, both in the number of the constituents as well as in the nonlocal
internal nature of the interactions.

The first and most fundamental point is the identification of the
total isounit and total isotopic element which, in their simplest possible
form, are given by the tensorial products

Tgor = 1y x 1, Too= T1* T2 (6.8)

The understanding is that more general realizations of the total isounit
with additional terms caused by the mutual interactions are, not only
possible, but actually recommendable in specific models {see next
sections).
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This essentially implies that, according to hadronic mechanics, the
rudimentary fireball here considered is based on the total isoassociative
algebra of operators [9]

def
E1:()t: AxB = ATmtB» {6.9)

total isofield
Fror: Fix Fy. (6.10)

and total isohilbert space
Hige: Ky x ¥y, (6.11)

The total quantities of the fireball must then be properly defined in
the total isospaces by following essentially the same rules as those for
ordinary quantum mechanics [21]. In particular, the coordinates ryx and

momenta p, of the individual particles now become
Pig = g * T = 1yxrgp, {6.12a)
P = Pre<ly  Pag = 1y * P (6.12b)
while the total quantities become
P=py + py = pyxiy + Iyxp,, (6.13a)
R=4@y + Iy = #(ryx1y + 1y xry M = 2m, (6.13b)
with relative expressions
P =F -y =ryxly -1 xry, (6.142)
k=4 - py) =f(px1y ~Tyxpy)y  pw=4m. (6.14b)

The total Hamiltonian for the two interacting particles can then be
written

Hyo = p12/ 2m + p22/ 2m + Viry-ry) =

= P2/2M + K%/ 2 + V() = (PT P/ 2M + (KT k) /20 + VE). (6.15)
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By assuming l $ior > as the total isostate, the fireball is then
described by the isoschrédinger equation

10| ¥or> = Hyge | ¥02 = Hyop Tror $ior™> = Egorl $por>»  6:16)

where one recognizes the presence of conventional local-potential—-
Hamiltonian forces described by V(r), as well as the additional presence
of nonlocal nonhamiltonian interactions represented by itot or,

equivalently, by T,

By comparison, the description of ref. [32] is based on total and
relative quantities given by the conventional nontensorial sums or
differences, e.g.,P = py + Py, I = Iy — I'y, €LC.

Letter [32] is essentially based on the following property in
conventional nontensorial spaces

{Pl N r}lg = - (Il - ]2) Si] N (6. 17)

which consequently implies the presumed lack of conservation of the
total energy

[Hyoe. Ple # 0, (6.18)

in which case one would have the additional violation of the
conservation law of the linear momentum and other physical quantities.

The first aspect proved in ref. [9] is the validity of the total
conservation laws. In fact, one has the independence of the total linear
momentum from the relative coordinates, say, for particles 1 and 2 in one
space-dimension

PPN

ot
{6.19)
with similar expressions in arbitrary dimensions.
This readily establishes the following properties
H,, . 13’](s = [v@), Plz =0, {6.20)
tot tot

where the isocommutator is in Etoc under which one evidently has the
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conservation of the total energy H,,. of the rotal linear momentum

Prop and or other pliysical guaniriies

As we shall see in the next section, this result can be confirmed via
the use of the applicable space-time symmetries within the context of
the Lie-isotopic theory

7: OPERATOR ISOSYMMETRIES AND ISORELATIVITIES

No significant study of the Bose-Einstein correlation with nomnlocal
nonhamiltonian internal forces can be done without a knowledge of the
applicable symmetries and relativities.

As indicated in Sect. 2, the historical legacy of Bogoliubov, Fermi
and others on the ultimate nonlocality of sirong interactions is
incompatible with conventional space-time symmetries and relativities
on numerous independent counts. This requires the identification of
suitably generalized space-time symmetries and relativities valid under
the broader interactions considered.

The operator isorotational symmetry, which is evidently
fundamental per se as well as for all others, was studied in paper [34] and
its content is tacitly implies hereon. We shall instead review in this
section the construction of the isogalileanand Fsopoincaré symmetries
for nonlinear, nonlocal and nonhamiltonian interactions, first identified
at the classical level in ref.s [11] (see also monographs [14,15] and
reviews [16-18]), and at the operator level in ref.s [9] (see also the recent
ICTP preprints [35,36]).

Let us begin with a review of the classical isogalilean symmetries
G(3.1). The basic carrier spaces are the isospaces #xT*E(r g}, where

fip = Rl 1 = bg2>0, (7.1)

is the isofield representing time, and T*E(r.g.#) represents isospaces
{3.6).

Isosymmetry G(3,1) for a system of n particles can be defined as the
Lie-isotopic group of the most general possible, nonlinear, nonlocal and
noncanonical isotransformations (3.8) on ®xT*E(rg,#) leaving invariant

the isoseparations?8

28 Note the uniqueness of the interior isometric for all particles. This is requested by
evident geometrical needs for one single space, and it is not in conflict with the
results of the preceding section owing to the arbitrariness of the metric itself.
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ta — tp =inv, {7.22)
P _ r 2 . - — -

("qk i) by, {t, p, p. ...} (rak rbk) =inv. atty, =1t,, (7.2b)

ta. tp € Re, ry Ip € ECGH) k=1,2,8, a,b=1,2,..,n

The general isogalilean transformations are given by [11.15]

t=t+¢thb 4_2, isotime translations (7.3a)
reo= Tt r Ei—z, isospace translations (7.30)
rf =1+ UV B2,  isogalilei boosts {(7.3¢)
r = R *r, isorotations {7.3d)
I =Tf*r =-r, =Tt =-t isoinversions (7.3¢)
1T=19=-1, isodual isotransformations {7.31)

where; isotransformations (7.3d) are the isorotations of ref. [34];
isotransformations (7.3f} are new, in the sense that they have no image
in the conventional Galilei’s relativity and characterize a new class of
“jsodual spaces” which can only be defined via nontrivial isounits T = -
I, with intriguing geometrical implications (see ref. [15], Sect. 111.8 for
details); the isoinversion operators are given by w=m 1, T = 7 I, where
m and T are conventional inversion operators; and the b’s, called the
characreristic runcltions or lhe medium considered are nonlinear
and nonlocal functions in all variables characterized by

B, %)

1

ﬁi"z + 1% [By2 ,‘Pj] /2 + r°pry 672 TPyl TPyl / 88 +...(7 »
B 2v) = b, 2+ veilb 2 G/ 2+ v v T2 IG ]Gy +
] (7.5b)

The restricted isagalilean transformalions occur when the b's
are constants, in which case by = by = by = cost. > 0, and
Isotransformations (7.3) evidently become linear and local, but still
more general than the conventional ones.

Thus, being highly nonlinear, general isotransformations (7.3) are
highly nmoninertia/ , and actually characterize a class of frames
equivalent to an actual frame in our Earthly environment which, as
such, is noninertial?%. On the contrary, the restricted transformations
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are indeed inertial as the conventional ones.

Moreover, we should recall that the full nonlinear, nonlocal and
nonhamiltonian dependence of the characteristic b-functions is
needed only for the local internal description, say, of one constituent
at a given internal space-time point [15] The noninertial character of
the underlying symmetry then confirms the achievement of a
generalized composite structure.

On the contrary, the exterior global treatment of such a
generalized system as a whole requires the restricted
isotransformations, owing to the need of the global behavior of the
interior medium (e.g., we need the average speed of light passing
through our entire atmosphere, in which case the characteristic b-
functions of our atmosphere are averaged to b-constants)3?,

The reader should therefore keep in mind that on/y restricted and
therefore inertigl isotransformalions are applicable for the exterior
treztment of the [fireball, while the general noninertial
isolransrormaltions are needed only for the study of the expected
fghly noninertial conditions of the individual counstituents of the
rireball.

This point is important for the Bose-Einstein correlation. In fact,
experimental measures are evidently external, thus requiring
restricted isotransformations with consequential preservation of
conventional inertial settings.

The structure of the Jsggalilean algebra G@38.1) is expressed in
terms of the Lie-isotopic brackets

) 8A 3B A,
[A%B] = by “t,r,p.) - b, “t.r,p.) @.6)
8rra 8 Pka 8 Pxa 3 rKa

aB

{verifying the Lie algebra axioms because of the isopoincaré lemma of
Sect. 3), possesses the conventional (ordered sets of) parameters

29 we should recall that, in the final analysis, rwerfial reference frames sre &
Philosoplifcal abstraction because they do nol exist in owr Earthly physical reality,
nor gre they atisinable i our Solar or Galactic systems .

30 As elaborated in ref. [15], the assumption of an swersiz/ framework for the
individual constituents would evidently restrict the applicable symmetries and
relativities to be Jitesar , thus leading to a coaventional Keplerian system with
stable individual orbits without advances. On the contrary, a necessary condition for
the achievement of a generalized composite system is the assumption ab iaitio of a
moprnertial setting for the swdividual constituents which then permits the
identification of mopfpcsr symmetries for wmstable individual orbits, all this in a
way fully compatible with a stable total system, conventional total conservation
laws, and inertial exterior-global treatments.
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w = {wy) = 65, r°, v t) k=12..10, (7.7)
and generators
X = {X¢} = {9 = 2 sk FaPras Pi = 2, Pigs {7.8a)

Gi = m r - tp) H=pg,b2p /m, . Vi) (7.80)

4 ~
rap =Ira -~ rp *= {(rka - rkb) bkz (rka - l‘kb)}ﬁ, (7.8¢c)

although now defined in R xT*E(r.g#), with isocommutation rules

U 09) = ey B e MR = gy BER (Toa)
o [Ji :Gj] = ik 5{2 G, BiHl =09, (7.9b)
fei 7P = 8 M Bj‘z, 6,1l = o, {7.9¢)
[Pi: Pj] =[G, Gj] = Ip,/Hl = o, (7.99)

while the (local) fsocasimirs invariznts are the familiar expressions
properly written in isospace

A N A “ 5
C(o) = 1y, C() = (PgP - MH) Iy, (7.10a)

>

P —MJ - GAPR2 = {(MJ - GAPJEIMJ - GAP)]12,  (7.10b)

The comnected isogalifean group G(3.1) can be expressed via the
structure

Moy Yo x)e
6B r = {[[] e Wi Ty 8% @) 1ohkr,  (7.10)

4

which results to be well defined owing to the consistent isotopic
extension of the Baker-Campbell-Hausdorff composition theorem [3,14],
and whose integrated form yields exactly isotransformations (7.3}, as
the reader can verify.

The proof of the local isomorphisms G(3.1)  G(3.1) can be done in a
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number of ways, e.g., via a simple redefinition of the basis under which
the structure constants of G{(3.1) and G(3.1) coincide (see ref. [15], Sect.
111.5 for details).

The infinitely possible isosymmetries G(3.1) evidently characterize
an infinite number of new systems, which are precisely the closed
nonhamiltonian systems of the preceding section. In fact, as recalled
earlier, all isotopies G(3.1) = G(3.1) preserve the original generators,
which are therefore conserved as in the conventional case. The
systems, however, admit nonlinear, nonlocal and nonhamiltonian
internal forces characterized by the isounits 1, thus confirming the
validity of conventional total conservation laws under nonhamiltonian
internal forces at the classical level

The classical isogalifean refativities [3,1011,15] can therefore be
defined as a form-Jnvariant descriplion of classical closed non—
Hamiltonian spstems , in a way fully parallel to the conventional
relativity. Note that the generalized symmetries and relativities are
not necessarily assigned a priori, as in the conventional case, but
constructed from given equations of motion via the techniques of the
inverse problem. Regrettably, we are forced to refer the interested
reader to monographs [14,15] for further details.

The operator formulation of the isogalilean relativities was
submitted, apparently for the first time, in memoirs [9] Consider the
{ordered set of) conventional parameters and generators of the
quantum mechanical Galilei algebra G(3.1), only properly written in the
hadronic structures &, F and 3¢ of the preceding section

X={X}=1{J=2,19Ap,P, G=2,0mr, - tp)H} (7.12)

where the subscript “tot” has been dropped for simplicity, and the
angular momentum components have the familiar form Jy = €5 1j pj31.

The isocommutation rules are then given by Eq.s {6.4) with T = diag. (blz,

b2 bgd, by = bylt, p, p. ¥, 3y, ¥1, 8yt,..) > 0.
The use of the fundamental isocommutators rules (6.3)in ¢ {= Etot)

31 The noninitiated reader should be aware that conventional products of

operators or “squares”,such as p 2= pp. are mathematically and physically
inconsistent in hadronic mechanics (e.g., because they violate linearity and

transitivity), and must be replaced by the isoproduct” or “isosquares” ;2 = p*p.

The angular momentum components are expressed in terms of the product of
a variable r ¢ ® and an operator p and, for this reason, they are expressed in
terms of the ordinary product rp because of the identities r*p=r p,r e &
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implies the Lie-isotopic structure32

B9 = -l b By, BiIP = iy by APy, (7.13a)

[9;7G] = —i€ 026G, i H = 0, (7.13b)
G(3.1) : ]] L
[Gi: P]] = Sij bj—z M, [Gi: Hl =0, (7.13c)
[Pi,‘Pj] =[Gi.Gj =P ;Hl =0, ij=1236xy7, (7.130)

whose algebraic equivalence to rules (7.9} is evident.
The Zsocasimir invariants of G(3.1) are then given by33

PN

&0 =i, ¢l =p2 -mH, &3 = (MJ - GAPR . (7.14)

The construction of the isoexponentiation of rules (7.13) to the
operator Zsogalilean group G(3.1) is then left as an exercise for the
interested reader, jointly with the verification of isocommutation rules
(7.13) and isocasimirs (7.14).

An inspection of the structure of isocasimirs (7.14) illustrates the
generalized notion of particles characterized by the isogalilean
symmetries indicated in preceding sections.

The above results can be readily extended to an arbitrary number
of constituents, as well as to more complex isounits, under a judicious
use of the various rules and structures of hadronic mechanics.
Nevertheless, as indicated earlier, the exterior-global case with
characteristic b-constants is amply sufficient for the exterior treatment
of the Bose-Einstein correlation.

It is easy to see that the above isogalilean symmetry is indeed the
symmetry of the operator, two—body, composite system of the preceding
section. This establishes another proof of the validity of total

32 The reader not familiar with hadronic mechanics should keep in mind the Avigpic
differential rale used in deriving Eqs (7.13)

[A«B [C] = A«[B,C] + [A°C]+B (a)

identified the first time in ref. [7].

33 Note that in the classical realization, only the functions multiplying the isounits
are the isocasimir invariants, while in the operator case the entire structures are
isocasimirs, including the isounits. This is evidently due to the fact that the
isocommutation rules are computed among functions in the former case, and among
matrices in the latter case.
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conservation laws, because the generators of the isosymmetry, which
are evidently conserved, are total quantities.

This also proves the exacr validity of the Galiler symmelry for the
nonrelativistic treatment of the fireball under nonlocal and
nonhamiltonian Internal interactions, while the same symmetry is
evidently violated in the treatment of ref. [32]

The relativistic generalization of the above results is important for
this paper because the correlation is essentially relativistic in nature.
Let M{xn.%) be a conventional Minkowski space with metric v = diag. (1,
1, 1, 1) over the reals . The classical isorelativistic formulations are
based on the isotopies of Mxn.R), called Zsominkowski spaces which
were first introduced in ref. [31] and can be written

Mxzs): x=6 x4 = (@, cot), reBrdf)  (7.153)

g=Tym, (7.15b)

n = diag. (L,1,1,-1) € M{xnH), (7.15c)
x2 =Xuguvx" — b2 x! +x2 5252 1+ 335253 - x¥p2xh=
1 1 1 Co?
=X17—2X1 + xzj—-é—x2+ X3j—'é 3 - th—zt., (7.15d)

ny ) ng Ny

Ty = diag. (012,852,552, 6,8 >0, f=1ly 1y =Ty, (7.15€)

where: C, is the speed of light in vacuum; the invariant quantity s is
defined by

PN

9s2 = —dxP g dx¥ = - dr¥p, 2
pv

Lar a2, (1.18)
the b’s have the functional dependence
b, =1/ny =Bk, X, 0, 7. n,.) >0, @=1,23,4 ©.17)
and the quantity c is given by
C = coby = cy/iy (7.18)
The general isopoincaré symmetries [11,15] can be defined as z#e
Lie-isotopic group of the most general possible nonfinear, rnonfocal

and noncanonical isotransformations on Mx.g5) leaving invariant
the Isoseparation
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Xap? = (g - xpH) Byl %1 T, ) (657 - xpV), (7.19)
The gefze.{'él Isopoincare transformations can be written [11,15]
xP = xb + xPbls, x, %, ...), isotranslations (7.20a)
X o= Axx isolorentz transformations (7.20b)
¥ = x = (rxd, ¥ =7x*x=(~x%,isoinversions  (7.20c)
1=19 = -1 isodual isotransformations (7.209)

where: the functions b are given by

2_ . 2 Qp —2- 0@ _oBrs “2ap q-

EH —bu +a [b!‘l . Pa]/Z! +X X {bll ’Pa]’ PB]/3! + ...
(7.21)

the isolorentz transformations are characterized by the conditions [31]

0B.1): x = Axx = AT,x, ABA=AgAt = !, (.22

and are explicitly given by the isotopic space-rotations 6(3) of ref. [34],
plus the isolorentz boosts of ref. [31],

xt = xl, (7.232)
x2 = %2, (7.23b)
x3 = 63 - pxh, (7.23¢)
¥t = 3t - g, (7.230)

where34

8 The author would like to thank E. Ferrari of the Phys. Dept. “G. Marconi” of the
Univ. "La Sapienza” in Rome, Italy, for bringing to his attention the original
insufficient form ¥ = (1 - $2) ~* during a seminar delivered at the Math. Dept. “G.
Castelnuovo” of the same University. In fact, certain physical media imply 32 >1
even for speeds v < C, (see later on in this section), which would imply imaginary
values of y. This aspect was resolved during discussions with R. Mignani of the same
Phys. Dept. following the seminar, and resulted in the expression y = | 1 - §2 | ¢
based on paper [38] Prior to these discussions, the general form of the isolorentz
transformations was thought to be form (5.28) of ref. [37]. These discussions essentially
implied that all possible isolorentz transformations can be cast in form {7.23) above,
including those with $2 > 1. In turn, this has important physical implications owing to
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vb vKp, 4v™
) 3 ) 3 K
B =vic,, Bp=—-, p2= p%-= s, (1240)
Coby ‘fob 4 o
cosh (v bgb) = ¥ = |1 - g2| (7.24b)
sinh (vbg by = B ¥; {7.24¢)

the isoinversions operators are the same as in Eq.s (7.4); and the
isodual transformations (7.20d) are particularly intriguing, inasmuch as
they allow the identification of the Zsodual isominkowski spaces

MO gdfd), gd = -5 #d = a1d, 19 = -1 (7.25)

This includes the isodual of the conventional Minkowski space
MO8 R9), n8 = - 4, #9 = % 19, 19 = —|, which has remained undetected
in contemporary relativistic (and gravitational) theories because it
necessarily requires the isotopic structures for its very
identification3d.

The restricted Jisopafncaré transrormations [15] occur when the
characteristic quantities of the medium are constants, Eu = 611 = bll =
const. > 0; they hold for the “global” exterior representation of a
system as a whole; and they imply the full preservation of the inertial
character of conventional relativities because isotransformations
{7.20) return to be linear and local.

The /sopoincare ajgebra P(3.1) admits the decomposition as in the
conventional case

P3.1) = 6(3.1) & T(.1), (7.26)
with conventional (ordered sets of) parameters

w={wg}= {0,u.x°} k =12.,10 (7.21)

the abstract identity of isotransformations (7.23) with the conventional ones [15].

85 This isodual isospace is nontnvxal and fundamentally different from the
convenfional Minkowski space M(x,‘q JR) with metric i~ = -n but on an ordinary
field R In fact, f.suspaae MW, ﬂﬂ?’}s & space with a negative-valeed wnit 1. As a
consequence, Md(x;nd& } is a sort of “mirror image” of our space M{xm,R) in which
all numerical values are negative, including absolute values, e.g., | 3 | 3.
Intriguingly, physical events are admitted jointly by a space and its isodual, that is,
the equations of motion coincide for Mixn. %) and Md(x ) thus yielding a new
universal invariance law under isoduality (see ref. [15] Ch. V) for details).
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and generators

X = {Xk} = Uy =2a & 0uPra " Xya Pua’ 'Z Pua b (7.28)

with relativistic isocommutators

8A 9B aB aA
[AB] = g - g
T\ 187
axy ap,, axy ap,,
3A uvaB 3B " aA
= g - g \ (7.292)
axM ap¥ axh ap¥

(BW) = (1™ = @) 1= (o T%) L (29)

yielding the Jsocommutation rviles of the classical Jkapcxz};caré' gleebra
[11,15]

[Juv ’ Ja I = Eyolpu” guaJBv— gvgJau+ guB"av, (7.30a)
P(3.1): [ Jw PJ = g o Eve P (7.30D)
Py, Pyl =0, wr=1,234 (7.30c)

po fv

As one can see, isoalgebras (7.30) formally coincide with the
conventional Poincaré algebra, although the quantities éuv are now
the components of the isometrics and, as such, possess a nontrivial
functional dependence on all possible quantities.

Despite that, it is easy to prove that all possible isoalgebras P{3.1)
are locally isomorphic to the conventional algebra P(3.1) for all
positive-definite isounits 1 (see ref. {15], Sect. 1V.6).

The isocasimir invariants are given by

C(o) = 12 = Tz_l, (7.31a)
¢ = p2 = By )1, = ¥ P12, (7.31b)
(2) fred 2 = u & = aB p

and they illustrate better the notion of Isgpartic/es as constituents of
a hadronic composite system.

Finally the connected isopoincaré groups P(3.1) can be expressed
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via the exponentiations

ir 1, J (3, .
x = Gofina ={[e]§WKm Igp (aJXk)(al)]“Iz}*a _
‘ = {Sé(e,u) ,Té(xt’)} a, (7.32)

which confirm the (connected components of) isotransformations (7.20),
as explicitly given for the case of isotranslations by

Ta61: x P = e = o+ P P Ton.),  (7.33)
p = 1)~ pt = pH, (7.33p)

while the isolorentz components are those of ref. [31].

Note as an incidental comment that, except for the positive-
definiteness, the isometrics g = T 1) are unrestricted and, as such, they
can indeed be conventional Riemannian metrics gix) = T 3. Thus, e
Isopoincaré symmetry P3.1) is the general isometry of a Riemanmian
space Rixg% , i.e., the methods here outlined allow the explicit
construction of the symmetry transformations of any given
gravitational line element, such as the Schwartzschild’s element39.

It is useful for Sect. 9 to briefly outline the Isorelativistic
Kkinematics on M{xg®R) (ref. [15], Sect. 1V.7). The Jisorourvelocity oW =
dx'/ds can be defined by

w2 = ot gy, e = - (7.34)
with components
at et
u4 = — I —— = 'y C=’YC064, (7.353.)
ds ds

=
>

= e bvE,  (7:350)

';' = ll - Bél —é» 32 = (kakzvk)/ (Coﬁ4200), {7.35¢)

where v is the velocity in Euclidean isospace Eor3.8).

36 As it was the case for the isodual isospaces and isosymmetries, these general
symmetries of conventional gravitational models require the necessary lifting of the
unit of the theory, and this is the reason for their lack of detection until recently.
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We now introduce the Isorourmomentwy as the isofourvector in
M(x.g %)
p=0p" = @u) = @ 3evk my o), (7.36a)

~ ~

m=m_ v, (7.36b)

The isocasimir (7.31b) then implies the following sumdamental
Isoinvariant of the ISopoincare Symmerries

p2 = ph gy, pY = PR B2 P - pie?p?

= moz 5,2 c2 vK bkz vk _ moz &,2 c4 -
= - mozifz ct i1 - 32) = - mo2 ct = - mo2 cO4 b 44, (7.37)

or, equivalently,

(pM &y PY) / mp?ct =1, (7.38)

where the reader can see the automatic “renormalization” of the mass,
energy and other physical quantities permitted by our isotopies
already at the classical level

Much along the conventional case, Z#e isospecial relativities
[31.15] are a form-invariant description of closed-isolated relalivisuc
systems verilving all conventional total conservation laws, while
admitting nonlinesr, nonlocal and nanhamiitonian internal rorces .

It should be recalled that the isogalilean and isospecial relativities
share the same mutual compatibility as in the conventional case, e.g.,
because of the existence of a consistent isotopy of the Inonli-Wigner
contraction which maps the isopoincaré symmetries into the
isogalilean ones (ref. [15], Sect. VL.3)37.

The agperator rformulation or the isopoincaré symmelry has been
investigated in ref.s [9,35] via two equivalent methods. The carrier
spaces remain isominkowski spaces (7.15) in both cases. Consider then
the conventional parameters and generators of the operator P(3.1)
symmetry, as in Eq.s (7.27) and (7.28), respectively.

The first method consists in assuming the conventional, regular
(also called fundamental) matrix representation of generators (7.28)

37 1n turn, these occurrences are a particular case of the Fsuremers! relativities on
isoriemannian spaces R&.8,%) of ref. [15] which are not considered in this paper.
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and subject their commutation rules to the lifting
[ABl = AB - BA = [A]B] = ATB - BTA, (7.39)

where T is the diagonal matrix (7.15¢). The isocommutators of said
conventional generators then formally yield the same the same rules
(7.30) and isocasimir invariants (7.30), with reformulation of group
structure (7.32) in the operator envelope E.

The second method, evidently equivalent to the preceding one, is
based on assuming a representation of the conventional generators
(7.28) via isodifferential operators. A relativistic generalization of the
hadronization of Sect. 4 then leads to the following operator iso-four-
momentum

i)

> = PayTalty> = -l @ ——|u,> (.40
pau !Jr‘a pau a]'ba 1 ap., axavlllja ( )

n=12134 a=123,..,n

Under the assumption of an isotopic element T independent of X or
constant, the fundamental isocommutation rules are given by the
following isorelativistic extension of rules (6.3)

[Xau . be] * l b > = [pau ; Ppy *] ¥,> =0, (7.41a)
[Pay Xl x|y > = iy e[, > (7.41b)

namely, the isoeigenvalues do not exhibit b-terms any more as in Eq.s
(6.3), by coinciding with the corresponding conventional eigenvalues33

As it happened in the operator isogalilean case, the isopoincaré
algebra is then given by

LJW: JaB] x| >=i (nvaJBM—nuaJBV - anJ ap* nllBJ o) * |y >

(7.42a)
PE1:  Dyys Pl > = 10 0P = 0Py | > (7.42)
Py P> =0 wv=1234 (7.42¢)

%8 This is due to the fact that the quantity %g, in Eqs (7.41b) is covariant and thus
given by

= & av - 2 ac  ya o
Ray = Byg XV = b S myxit, XU =X, {a)

which eliminates the b2 terms originating from the isccommutators {Pu .=
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namely, the structure constants of P(3.1) formally coincide with those
of P(3.1), thus confirming not only the local isomorphisms P(3.1) ~ P(3.1),
but also the identity at the abstract level of the conventional and
isotopic symmetries. The identity at the abstract level of the
corresponding relativities is then consequential.

The interested reader may verify that the isocasimirs under
realization (7.41) remain those of Eq.s (7.31), build the corresponding
connected component of P(3.1), and work out the operator formulation
of the isorelativistic kinematics as an operator image of Eq.s (7.34}
7.38).

The rsofield theory , ie., the isotopy of conventional field
equations in a way to be invariant under P(3.1) has been studied with
preliminary applications in ref.s [9] and preprint [34.

We close this section with an indication of the primary function of
the isominkowski spaces (7.15): a relativistic geometrization of interior
physical media (such as water, gases, conductors, super—conductors,
nuclei, hadrons, stars, etc.), which has some similarities with the
Riemannian characterization of gravity, although it is independent of it
because it holds for flat spaces, and then persists in the presence of
curvature.

When the medium is transparent {e.g., water or atmospheres), the
function ¢ = cy/fig represents the Jocz/ speed of light, with ny being
the local index of refraction. When considering their averages into
constants, the quantity ¢ = ¢,/ny represents the zvergge speed of
light through the medium considered (e.g., the average speed of light
when passing through our entire atmosphere), and ny is the average
index of refraction.

When the medium is not transparent, the local {global) quantity ¢
{c) is a purely geometrical gquantity which does not necessarily
represent a physical speed (much along the term -g44 of the
Riemannian metric) but merely expresses the alteration of the
geometry of space due to the presence of matter.

Assume for simplicity that all space components of the
characteristic functions are equal

by =by=bg, ny=ny=ng (7.43a)
i i
X2 = —— xpex - —— x4, (7.43b)
2 2
ng nyg

to remove the isorotational component, and focus the attention on the
isolorentz contributions. Also, assume for simplicity the exterior global
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case with constant b's.

In examining isoseparation (7.43b), one can see the existence of a
first class of isotopies with ng = ny, resulting in the scalar isotopies of
the Minkowskian separation

X2 = ——x2, : (7.44)

which evidently represent the simplest possible cases of
homogeneous and isotropic physical media, such as water39,

However, in general, ng # ng, in which case isospaces M(x.g.®)
represent genuine inhomogeneous and anisotropic physical media.

A study of all geometrically significant cases conducted in ref. [11]
{see also ref. [15], Sect. IV.10} has identified the following mime differenr
Lypes of (flay) isominkowski spaces depending on the relative values
of 1, ng and ny

TYPEL: ng=ng ng=1; =8, vy=v (7.452)
TYPE2: ng = ng ng>1; B=8, Y= (7.450)
TYPES: ng=ny, n,<t; =6, vy=v (7.45¢)
TYPE4 ng<ny ng>1 B>B, ¥<v (7.45d)
TYPES: ng<ng ng=1 B>B, y<v (7.45¢)
TYPE6: ng<ng ng<1 B>p, y<v (7.451)
TYPE7: nqa>ng ng>1; B<B, y>v; (7.45g)

39 The isospecial relativity, which is specifically and solely conceived for
relativistic motion within physical media, dispel a number of rather popular beliefs
in conventional special relativities. As an example, fke wniversal invariant speed
results to be the maximsal causal speed Vyy,. =, 83 7 8y and nol the speed of lght
In fact, the sumr of two speeds of lght In water Is not equal to the local speed of
Zighr , as one can easily verify. On the contrary, the maximal causal speed in water
iS Vpgayx = Co > ¢ (as for the electrons in the Cherenkov light, which travel at local
speeds bigger than the speed of light ¢ = c¢/ny). Then, ke isurelativistic s of two
¥ ppas does indeed produce Vyy, . Also, the maximal causal speed is not the speed of
light, evidently because electrons can travel in water faster than light. Of course, for
the conventional special relativity Vjj, = ¢, because motion is in vacuum . The
point however persists that ke speed of Ight is an fnvariant oaly in vaceam and,
therefore, it is not a “universal” invariant. The interested reader may consult ref. [15]
Chap. V (and Chap. VII for experimental verifications) on these and several other
intriguing aspects on the isotopy of the special relativity.
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TYPES: ng>ny ny=1; B<B, ¥> v (7.45n)
TYPEQ: ng>ny ng<1; B<B, y>v, (7.45)

By and large, the above classification represents media of
increasing geometrical complexities, e.g., in regard to inhomogenuity
and anisotropy. Also, while the media of the first types represent
ordinary matter, the achievement of the media of higher Types 7, 8 and
9 requires increased densities which can be only achieved in the
interior of hadrons and stars.

In fact, media of Type 1 represent the conventional Minkowski
space (i.e., the empty space-time); those of Type 2 can represent
water, or any homogeneous and isotropic physical medium in which the
speed of light is ¢ < c¢g; media of Type 3 are under investigation to
represent superconductors [28]; media of Type 4 can apparently
represent planetary or astrophysical atmospheres [38,39]; media of
Type 5 and 6 can apparently represent nuclei [15); and, finally, media of
Type 7, 8 and 9 can apparently represent the interior of hadrons and
stars [39,40].

An important objective of this paper is lo ideniiry the type of
Physical media we expect in the [fireball of the Bose-
Einstein correfstion .

This is important because it can provide information suitable for
possible additional tests of the nonlocality of the correlation. As an
example, media of Type 4 imply a redshift of light [11] (because § > B
and Yy < ), that is, zke isorelativistic theories predict that light
passmng through an inhomogeneous and anisolropic atmosphere of
Type & Is redshirted (see the presentation of ref. [15]), with
implications for quasars redshifts [38] which are apparently suitable
for independent experimental verification [39].

By contrast, wmedia of Type 7, § and 9 imply 2 blueshire[11] (because
B < B and v > v). These latter media are apparently useful for a
unified description of the behavior of the meanlife of unstable hadrons
with speeds [39,40].

As we indicated earlier, owing to the very high energies involved,
the fireball of the Bose-Einstein correlation is expected to have a
density bigger than that of hadrons. We therefore expected that the
correlation fireball is a physical medium of type 7, or 8 or 9. This
knowledge is evidently useful for comparative purposes with other
settings [38-40].
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8. INTERIOR ISORELATIVISTIC TREATMENT OF THE
BOSE-EINSTEIN CORRELATION

We are now equipped to conduct a direct study of the interior of the
fireball of Bose-Einstein correlation based on the following main40

HYPOTHESIS 81: The Bose-Frnstein correlation Is created by
nonlinear, nohlocal and nonkamillonian interactions caused by

the total mutuzal overlapping of the wavepackets and charge

distributions of the original constitvents at the lnitiation of Lhe
fireball

Once created, a number of theoretical arguments imply that the
correlation persists at all subsequent stages the process.

In this section we shall study the origin of correlation inside the
fireball immediately after its creation, e.g., immediately after the
annihilation of the original proton-antiproton.

Our central assumption is that the nonlocal internal interactions
imply a generalization of the conventional Minkowski space

Mxn®): x2 = xunuvx" = XXy + XoXo + XgXa ~ XXy, (8.12)

x = 6M) = Bx) x=cot, n=1,234 (8.1b)
into isominkowski space (7.15), now assumed for the interior problem,

Mlnt(x,é,?i) . X2 = Xu‘éuvx = X1612X2 + X2f)22xZ + X3632X3 - X4E4ZX4,

8..2a)
T=T >0, g =Ty,  =RL, 1="T71, (8.2b)

where the isotopic element T has the most general possible, nonlinear

40 as stressed in footnote® no quantitative treatment of Hypothesis 8.1 is permitted
by relativistic quantum mechanics and the special relativities because of: the
nonlocal and nonhamiltonian character of the interactions; their integral nature; the
inhomogeneous and anisotropic structure of the medium; and other reasons. The
identification of which covering mechanics is suitable for Hypothesis 8.1 is evidently
debatable at this writing, and ke lreafment wia hadronic mechanics is ol
necessardy presented as unigue . The point however persists that the fusafficiency
of relativistic quantum mechanics and related special relativity for the treatment of
Hypothesis 8.1 remaims out of sclentific doubts .
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and nonlocal dependence on all variables, wavefunctions and their
derivatives, as well as additional quantities as requested by the physical
conditions considered,

T = The, &, b, 4, a0, 08", ..) . (8.3)

For clarity, let us first review the conventional treatment of
correlation [1] and, then present our isotopic generalization. Suppose, for
simplicity, that the fireball is made-up of two unspecified particles a
and b, which can each exist in two separate states denoted 1 and 2 at
the location ry and ry, as detected from the observer’s position x. The

individual states are then given by
Loy > = |gloery) > + %0y >, (8.42)

|4y > = |dylle-ry) > + |20y >, (8.4b)

For the case of ordinary plane waves in Minkowski space, the
above structure acquires the familiar realization 11

iplx-r.,)

elp(x~r1) + M€ , (8.5a)

¥, = fa1

_ iplery) foo eip(x-r)

El"b = I € (8. Sb)

The probability of observing two particles with momenta p; and py
is then given in the generic case by

|45 >
P(pl, Pp_) = <y | < quzi =< ‘l’aﬂ bay” + < *bzl +Pp2 >,
| g > (8.6)

which, in realization (8.5), becomes
Plpy. py) = (g% + ()2 (8.7)

In the above case we have: A) a strictly local theory, B) full
coherence of the two states, and C) complete absence of correlation.
We now introduce the isotopic generalization of the above setting
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for the specific intent of treating nonlocal internal interactions. It is
evident that these interactions cannot affect the coherent states which
can be at best renormalized. The nonlocal interactions are therefore
expected to affect in a primary way the remaining components of the
states.

This physical setting can be well represented as follows. First, we
introduce the isostates of isohilbert space of Eq.s (5.5) here interpreted
as the internal one Xy,

[ §1 > = [#g90cTy) >+ [§150ry) >, (8.8)
LBy > = [digybery) >+ [igple-ry) >, (8.8b)

where the second subscript indicates a new state, e.g., because of the
new normalization in an internal isospace ¢

The realization of the above states corresponding to Eq.s (8.5) is
now given by the generalized notion of /isoplanewaves [11,15]
representing conventional plane-waves while traveling within an
inhomogeneous and anisotropic physical medium geometrized via
isominkowski spaces (8.2), and can be written

. dpx-rg . ipxxry)
¥, = 1y eP v, fazep 2 (8.9a)
. . ipx-r,) . ipxx-r,)
wb = rbl € 1 + sz € 2 N (89b)

where the composition are now in the isospace (8.2), i.e, pxx = pTyx =
ppéMVxy = py x*

In order to proceed, we have to select the appropriate, explicit
form of the isotopic element. That suggested for the simplest possible

case under consideration is given by the the (2x2)-form acting in the
tensorial product of the total state (Sect. 6)

FoolX
- Ky li-e Ny ot yite) basbc),

Ny 0% 1 400) 1466)

Kpylt - e ] Kp2
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{8.10)

where: the exponents characterize Anzimalus isouniz[28] and the K’'s and
N’s quantities are non—null real constants.

By using the above expression, we reach the isoexpectation value
{Sect. 4

p(Pp po) = { Ky li‘a1 | T(O) | $a0 > + Kpo < lfibg | T(0) | li‘bz >} +

icy Jatx Pipol) $a,66)

{Kapll-e o 2 < | O [ 9y >+

; 4

iCy) a%¢ Yt (%) i1 ()

Kpilt-e a2 P ] < $a2 | T(0) | Yp1 > 2 {8.11)
By using isoplanewaves (8.9) and via suitable selection of the

element T(0), it is possible to reduce the above expression to simpler

forms with the structure

|9 (g PR |2 = ((41Kpy * Ty Ko 2 + 6.12
iCJ a4 Pty b0) §166) iczf aty yt 25'%) b1 )
Ka2[1 - € ] Kblll - € ] X

cos (Ap x Ar),

Expression [8.12] can be easily made to coincide with Eq. (19) of ref.
[t] via a suitable choice of the K-coefficients.

The above results show quite clearly the nonlocal origin of the
correlation because of the following properties:

I) the integrals in the exponents of Eq.s (8.12) show clearly their
dependence on the superposition of the indicated wavepackets, exactly
along the notion of nonlocality of hadronic mechanics (Sect. 4};

I} The above superposition occurs for the uncorrelated states,
exactly as desired; and

111) At the limit when the wavefunctions are no longer
superimposed, i.e., disjoint in space-time, the exponents of the integrals
in Eq.s (8.12) are identically null, the coefficients of the correlation are
also identically null, thus recovering the original uncorrelated structure
identically.
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We can therefore conclude by saying that fadronic mechanics
provides a direct interpretation of the Bose-£instein correlation, which
can ke essentizlly reduced to the Identification and svitable treatment
af the Ilnternal nowrfocal interactions. ln particular, the correlation Is
directly linked to the isotopy of Planck’s constant inte a nondiagonal
isounit

Bl = HiK % § 6,86, 86,.), (8.13)

Finally, such nondiagonality emerges from the tensorial product of the
ndividual isounits of parcles vnder short-range nonlocal interactions.

9. EXTERIOR ISORELATIVISTIC TREATMENT

We now pass to the study of a further aspect, the exterior isorelativistic
description of the formation and decay of the fireball. its use for a
better fit of available experimental data will be considered in the next
section.

For this purpose, we introduce an external isominkowski space

PY

e 0. . .
Meye (ER): %% = x g, %", & =81 g="Tn, 1=T7% @1

which carries a physical interpretation different than that of the
preceding section. In fact, as indicated earlier, in the exterior problem
the isotopic element T can be assumed to have a structure of the type

T = 20 Fir..} T, 9.2)

where: #(0) is the isoprojection operator to coherent states of the
preceding section; F{r,.) provides the representation of the original
nonlocality (i.e., that prior to the emission of free particles), the term T is
of the type

T = diag.lo,% b,% b, b, by, = constants > o, (9.3)

whose space component

§ = diag. (b % b,% bgd), (9.4)
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represents the shape of the fireball to be determined later on from the
experimental data. Finally, the fourth component b4 represents a further
degree of freedom of the theory to be clarified below and also computed
from the experimental data.

For the case of n isoparticles a = 1, 2,.., n, the internal nonlocal
interactions preceding the emission can be assumed as having been
averaged into Gaussians, and the originally nonlocal term Fir, ...) can be
assumed to have expressions of the type

F(rl, rz,,..) = Firy) F(rz) ..... Flry), {9.53)
Fir,) = R,S/4n?d e "2 R’ (9.5)

where: the the R’s are the widths of the Gaussian; the increase of their

power from the value R* of current use [1] to R® will be evident shortly;
all compositions of vectors are of isotopic type, while those of numbers
such as the R’s are ordinary squares.

In different terms, in the preceding section we showed that, at the
time of the creation of the fireball, we have interactions which are
nonlocal and nonseparable , (i.e., not factorizable into individual local
terms).

After the completion of the internal process and the production of
the particles, all interactions can be effectively assumed as being Jocz/
and separable (i.e., factorizable into individual local terms). This
illustrates the lack of nonlocal terms in structure (9.5). Moreover, we can
also effectively assume the separability of the isotopic element into
terms depending on individual particles, as done in Eq.s (9.5). However,
the particles cannot be effectively approximated as being point-like,
and this illustrates the Gaussian forms, on one side, and the local setting
on the other.

Needless to say, numerous additional expressions can be identified
for F(ra) via Bessel and other functions, which are here left to the
interested reader for brevity.

Assume the isohilbert space X, with isostates: §l(t, ry, rp,..... Tpp).

Then the isoprobability for the production of two correlated bosons with
four-momenta p, and p, originally produced at ry and r, to be detected

at x4 and X,, is given by

Py, py) = J ary ofry By, Xy £y, 1) T galky, Xps 1y, 1) Flrg) Flry)
{9.6)
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where the correlation has been assumed to be implemented, thus
allowing us. to ignore the projection component #(0) hereon, and the
symmetrization requested by the Bose-Einstein statistics is implied.

For all practical purposes, the isominkowski space can therefore
be reduced to the form

M, 008 : X2 =3 = xuf]w x> =Ty, & = 81,1 = 7L, (9.79)
7 = diag (b2 b,% b2 - b3, by =const. >0, (9.7p)

The enhanced isoprobability for the production of two identical
correlated bosons can then be expressed via the Jisocorrelzzion
function

Plpy. po)
C(Z) = ——p—l‘*g‘z—‘ R (9.8)
Plpy) * Plpy)

with symmetrized isostate
‘1512(7(1, Xz; Iy, 1'2) =

e R L e T R oS T e S
(9.9)

where one should keep in mind that the compositions are in the
isominkowski space (9.7).

In a way much similar to, and jointly with the symmetrization of the
isostate requested by the Bose-Einstein statistics, the Gaussian
component (9.5b) of the isotopic element T must also be symmetrized
over all directions in space-time, resulting in the form

Py

2, 2 21,2
-41r°bh 6 - b
Flry, o) = (b15/4112)e 1+ by /4m?) e 10y +
2 - 1 1r2p 2
-4y i r“b
+ (ofran) e P - bframde 4 (9.10)

where: one should note the replacement of the generic Gaussian width
Ru, with the element f'uu of the isometric; two of the space components
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of the b’s are expected to be equal owing to a conceivable cylindrical
symmetry of the shape of the ellipsoid (see below); the term representing
symmetrization with respect to the time component is evidently
negative; and the expression can be written in a unified notation

 p2p 2
- b
Flirg, 1) = 3y My 2/ 4nd)e T (9.11)

For future needs, one should keep in mind that exactly the same
symmetrization can be done with conventional quantum mechanics,
resulting in Eq.s (9.11) with by = 1 (up to normalization factors). This

conventional relativistic formulation has been apparently derived in this
paper for the first time.

One can now understand the extra power bu2 in Gaussians (9.5b). In

essence, by repeating the same argument in a conventional Minkowski
space, one can see that the normalization of the Gaussian for the space
components are +1 and that for the time component is -1, that is, the
normalization is done with respect to the element of the metric Ty,,. It is

then immediate to see that the repetition of the argument under our
lifting necessarily requires the normalization of the individual Gaussian
to the diagonal elements of the isometric f‘uu’ thus requiring the extra

ower b 2
p T

By repeating the various passages and integrations as in the
conventional case [i], we reach the following expression for the
isocorrelation function

0..2,n2 0 2/m2
Q122/ by Qq2°/ by

Cg= 1+ blze + b22e

20 2 2,42
-Q,%/b -Qq»%/ b
2 W12 /b3 b42e 12 4, ©.12)

+ bg“e
where the square is isotopic in Mg, &xt)8), the quantity Q,, is given by

Q12 = pl - p2, (9.13)

and expression (9.12) can be written
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2,y 2
) . Q2D
Cy=1 + Zyfy © 12770 (9.14)

(where, again, we have an isocomposition for the fourvector Qq,, and
the ordinary square for the number bu), which directly shows the
normalization coefficients ﬁuu as factors of the exponentials.

By repeating the same procedure for the isocorrelation function
for three hosons, one get an expression of the type

2

2/ p 2 4502

Cg = 1+ 2pjjppe

Let us now study in more details expression (9.14). The terms in the
exponents are explicitly given by

+ 22 fpye

-

Q% 6,2 = (b,%Q; + Qby%Q, + QgPb3Q? - Q %p,%Qy) / by? ., (0.162)
Q= Q12 =Py~ Py (9.16Db)

Let us suppose that the conventional relativistic limit, prior to
isotopies/correlations, is based on the perfectly spherical and rigid
fireball

RZ2=1+1+1=3= const (9.17)

as directly represented by the conventional Euclidean metric 8§ = diag.
1,1, 1.

However, experimental evidence indicates that the fireball is a
prolate spheroidal ellipsoid oriented in the direction of the p-p collision.
We can therefore assume that ke geomelry of the process implies a
derormation of the above sphere into an ellipsoid

B2 = b2 + by2 + bo? #3, b2 #1, k=1,2,3 (9.18)
1 2 3 K

As we shall see, experimental data can indeed provide the
numerical value of the relative shape of the fireball expressed in a way
invariant under expansions.

Our nonrelativistic representation of the fireball is outlined in Fig.
3. Its relativistic extension is straightforward. In fact, the Poincare
symmetry P(3.1) of the Minkowski metric v, by no means, is lost within the
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context of relativistic hadronic mechanics, but it is instead assumed at
the foundation of the theory, although in the isotopic form P{3.1) of Sect.

7 which leaves invariant the isoseparations x‘f)x; the isosymmetry can
smoothly interconnect the transition from the original Minkowski
structure to our isopoincaré structure

1 "
Py xZ=xn X > PBD: xE = Y (019)

and, last but not least, all possible isosymmetries P(3.1) are locally
isomorphic to P(3.1) for positive-definite isotopic elements T, as per our
basic assumption (8.2b).

REPRESENTATION OF FIREBALL
IN HADRONIC MECHANICS

A[;;

Y

g
2
b

(2

bl

FIGURE 3: A schematic view of the fireball as represented in hadronic
mechanics. The plhysical contextis the following. Experimental data -
indicate that: 1) the fireball is not spherical but has instead the shape
of a prolate spheroidal ellipsoid; 2) the prolateness is oriented in the
original direction of p-p flight, and 3) once created, the fireball
expands rapidly by essentially preserving the prolate ellipsoidical

shape. By assuming that the original p-P direction is along the X 3 axis,
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we can therefore represent the fireball with the prolate spheroidal
ellipsoid

R2 = b (1) + byt)? + by} #cost., by=by bg>by by ()

The condition of preservation of the original prolate ellipsoidical
character can be essentially represented via a time dependence of the
characteristic b-functions which is the same for all, ie.

b lt) = £t by, by = constants, k=1,2,3, (b1)
RZ2=b,t) « bt} + b = ) (b2 + b2+ b3 (2

b 12 + b22 + b?’2 = K2 = constant. b3)

We reach in this way the conclusion, rather important for
phenomenological fits {see later on)

b (027 [B ()% + B)? + Byw? ] = constant, k=1,23. ()

Hadronic mechanics permits the direct and quantitative representation
of spheroidal ellipsoid (a) via its fundamental symmetries, the
fsorotational symmetries Of3) originally identified in ref. [34], and then
studied in more details in memoirs [9]. These isosymmetries are
constructed with respect to the isounit

1=diag {b 02 6,072 b2} @

isotopic element T =171 = diag. { b l(t)z, b 2(1:)2, 133(1;)2 }, Lie-isotopic
product {A; B} = A*B - B+A = ATB - BTA, conventional parameters 8

{the Euler’s angles), and conventional generators, resulting in the
isocommutation rules and invariant

Jk = €xij i Pj fe1)

4] i:Jj]

Jé

-ieg ijk Bszk* (e2)

JTJ = inv., {e3)
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where we have evidently used the fundamental isocommutation rules
(6.3). For the equivalent matrix representation, see ref. [34]. As one can
see, structure (e} is fully equivalent to the corresponding classical
framework presented in Sect. 111.3 of ref. [15] The above representation
of the fireball is incorporated in the isorelativistic representation
provided in the text. In summary, our isorotational symmetries O(3)
provide:

1) the groups of isometries of all possible ellipsoids (a), that is, a
theory of deformable bodies ;

2) a smooth interconnection in the transition from the sphere to the
ellipsoids,

O3k r g1y + pyry + Ty = 0@ : v 15 121*1 + rZB 22r2 + r35 32r3, (]

and

3) the reconstruction of the exact rotational symmetry for the
deformed ellipsoids (a), because of the local isomorphisms 6(3) = O{3).

The full understanding of the above results requires the treatment
within the context of the Jsoriemannizn geometry [15], with related
Isoparallel trapspors and Jsogeodesic motior . In fact, the geometric
reason why, contrary to a rather popular belief, the refationz/
symmetry results to be exact for eMjpsoids is that ellipses on the
surface of the ellipsoids are indeed geodesics, of course, after
abandoning the trivial unit I = diag. (1, 1, 1) of the current Lie's theory
in favor of less trivial units of type (d).

Note finally that the quantities Qqp2 / Pu2 in exponents (8.16) are

invariant under scalar renormalization of the metric, namely, they are
invariant under the scale transformations

x2 > Nx2 = xMyx, ff = Nij, Ne# (9.20)

evidently because of the appearance of the isotopic element bu2 in the
denominator.

As a result, the interpretation of the experimental data is
insensitive to the assumed normalization or, equivalently, to the
evolution of the fireball, because its expansion is characterized by a
multiplicative function of time appearing identically in the numerator
and denominator.

We can therefore summarize our analysis with the following
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primary results.
Isocorrelation runction (914 can be reached rfrom the
corresponding, conventional, refativistic expression
-Q122
Cy=1 + 2yMyup © : (9.21)

via a swooth deformation of the Minkowski space Mx.p8 into the
isominkowski space Mp o8, 7 =Ty K =81 = 77, where T is
symmetric, real/-valued, positive-delinite and, thererore, always
diggonalizable to rorm (87 This rormulation permits: 1) the treatment of
nonfocal internal effects of the Bose-Einstein correlation: 2 the
derivation of the actual shape or the fireball rrom the experimental/
data; and 3/ a gquantitative representalion of avallable experimental
data derived frop a basic lheory which Is not provided by current
empirical models (Sect 2/ .

Point 1) and 2) have been proved in the preceding sections. To
verify Point 3}, we proceed as follows. First, we note that tie resulls
reached untll now are essentially exact, with the sole approximation
used i the calculation of the [socorrelation functions being based ot 2
Gaussian representalion of the extended character of the partcles, £g.
58/

From now on a number of approximations have to be made in order
to reach an expression of the isocorrelation function which is suitable
for experimental verification.

Next, exponent (9.16) must be reduced to a form solely dependent
on the best quantity usually derived from the measured tracks, the
transverse momentum olfference ol boson pairs q; in MChR) with

corresponding form g in Mg, c,n8).
This approximation Is here done exactly along conventional lines .

We assume that, in first approximation and for the case of equal masses,
the total four-momentum P = py + p, is isoperpendicular to Qqo, ie. (see

the isorelativistic kinematics of Sect. 7 for details)
P=q = By 1YQ, = (pr* PPy~ P ~ 0, 022)
This is the case if and only if

¢]
qO = Q12 = plo 0 » 0. (923)
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The use of the isorelativistic kinematics then leads to the value for
the longitudinal momentum transfer ql ~ 0, exactly as in the conventional

case.

Thus; in the above indicated first approximation, the relativistic

isokinematics implies that, under the conventional approximation
recalled above,

Q2/ buz = {qt2(b12 + b22 + b32) + q12{b12 + b22 + b32) _ q02b42 }/ buz

© g2 @2+ a2+ a3 /b2 = q2/b2 (9.242)

2)_

by = by /@2 + a2+ qg (9.24b)

The implementation of the above approximation in the
isocorrelation function (9.14) then yields our final expressionil

41 The author would like to thank F. Cardone and R. Mignani of the Dept of Physics of
the Univ. “La Sapienza” in Rome, Italy, for a careful reading of this manuscript in one
of its earlier versions, for a number of invaluable comments and, more specifically,
for suggesting the writing of Eqs {9.25) in terms of f;t, rather the author’s formulation
in terms of g;. It may be useful for the interested phenomenologist to review this
alternative. By recalling that q,, = 0 and q; = 0, the correct exponent of Egs (9.25) is

2 (by% + by + b3 /b2 @

But the model is invariant under scale transformation {9.20), thus leading to the
property of Figure 3

b|.L2 /(042 + by + bg?) = K2 = constant ®

which implies the equivalences

g2 (b2 + b2+ 039 /b2 » §2/by %~ q? /b2, by =Dby/K. ©

which, however, have different implications for the normalization of the model (see
later on Eqs (10.9)). The model under study has been conceived to be invariant under
scale transformations of the isometric, i ., to be insensitive to the actual expanding
shape of the fireball, and only senmsitive to the "normalized shape” to a given
ellipsoid. 7#e suthor prefers expression (9.25) in terms of ¢y € MEn3) and &' 2 ¢
MEvtle, %) ratker than fn terms of g, and bﬂz & My dxn%) because the
isominkowski space Mg 5,7.%) is a geometrical space wseful for a quantirative
treatment of the correlation, with the understanding that the physical space fn which
the measures are made is the conventional space M &l But the gquantity
measared is g, € M,7.%) and not gy € Mexds, .5 This leads to stracture (9.25).
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2, .. 2
Cgy =1+ 20 e s
| 2 uh,
2, 2 2, .. 2
~q,%/ b -q,2/ b
= 1+b2% e’ Py + by i’ 2

2, 42 2, 4 2
-q,~/ b -q;“/ b

(9.25)

which still non-renormalized, but nevertheless in a form already suitable
for plotting with experimental data, as shown in the next section.

10. VERIFICATION WITH EXPERIMENTAL DATA

For the sake of clarity, let us review the main phenomenological steps of
the conventional treatment of the Bose-Einstein correlation. This will
provide us the elements necessary for the final normalization of Eq.s
{9.25).

The first step is the conventional Gaussian relativistic treatment
which results in Eq. (9) of ref. [1], ie.,

22
- Q"R
C,=1+e M2

@ R (10.1)

with the following conventional limits at Qqp = 0 and Qjp = o,
respectively,

Max _ Min _
C(z) - 2, C(z) - 1 (10.2)

However, as stressed in ref. [t], the above model is not verified by
available experimental data forcing the introduction by hand of the
coefficient X, called the cgoticity, as per form [i]

2,2

-Q2" R
C.. =1+ 2xe , 10.3
@ (10.3)

which has the primary motivation of obtaining a maximum value lower
than 2, while keeping the minimum value one.
Despite the addition of the theoretically unknown caoticity,
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expression (10.3) remains unsatisfactory, owing to the insufficient
number of free parameters, their unknown origin and other reasonms. The
interested reader may consult ref. [1] and quoted paper for additional
aspects, as_well as models essentially patterned along the above lines.
One of the current plots is shown in Fig. 4

A SAMPLE OF EXPERIMENTAL DATA
IN BOSE-EINSTEIN CORRELATION

2.0 1 T I i ]

1.8

pra

1.6 A

1.4

(2 (Q)

1.2

1.0

1 i 1 )
0.8 05 1.0 15

Q(GeVIc)

FIGURE 4: The correlation function of two identical pions from ref. [1]
originating in e~ e* annihilation experiments. The full line is a fit to

a Gaussian, while the dashed line represents a string model. Note the |
insufficiency of the latter for a representation of the data.

By observing the preceding expressions, the most recommendable
normalization of the radius of the perfect sphere is to one. This suggests
the replacement of normaiization (9.17) with the following one
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i 1 1
R2 = —— 4+ — + — = 1 = const. (10.4)
3 3 3

As a result, our limit relativistic model in the absence of
correlation and nonlocal-nonhamiltonian internal effects, Eq.s (9.21),
acquires the final, properly normalized form

1 a2
o= 1" 3—Zu=1,2,3,4 My € 2 (10.5)

A direct consequence of the above model is the lowering of the
maximum value (10.2) without introducing theoretically unmotivated,
empirical parameters by hand, according to the new expression below,
while keeping the minimum value the same as that of Eq. (10.1),

Co =1+ 3+ 1/3+1/3) - 1/3 = 161, CuMn = 1. (106)

The above expressions are the first numerical results of our
analysis. To our best knowledge, ZJimits {10.6] are verified by all
available experimental dats (see, e.g., those of ref. [1]).

Evidently, expression (10.5) is inadequate to reproduce the
experimental data, and remains unsatisfactory even if we add by hand
the caoticity, because of the lack of sufficient parameters.

Model (10.5) is however a limit model to be recovered by our
isotopic model at the limit ﬁ = 1. Thus, model (10.5) suggests the
normalization coefficients 1/3 of our isotopic generalization (9.25), by
reaching in this way our 7zl properly normalized, two-particles,

Socorrelstion runction
1 ~q,2 K2/ b, 2
by =1+ — @ (e b=
@ 3 “Mp
2 -q.2 K2/ b,2 2 -q,2K2/ b,?
3 3
b32 B e"ltsz / b32 _ b 42 ) e—qtz Kz / b42

3 3 (10.7.2)
K2= b2+ b2+ bg? (10.7b)

+



-122 -

which can be equivalently written in the form

Kz . _q2/b2
Coy =1+ — 2 (e L
‘ 22  -q.2/b,2 212 —q.2/p.2
Pl G 0 B AL SE - R
3 3

+

3 3
(10.8)
or in the still equivalent form
s2 —q.2n 2
&, =1+ Soa (et P
2 3 H
g2 ~q,2 n,2 2 -q2ny?
=1 + —— e + — e +
31112 3n22
2 q2p.2 $2  -q2n2
LA L (10.92)
3 n32 3 1'142
i 1 1
§2 = + + {10.91)
n12 n22 n32

where we have introduced the redefinition of the characteristic b—
constants of the fireball as per definition (7.15c)

bu2 = 1/nu2. {10.10)

As we shall see shortly, reformulation {10.9) is preferable for the
identification of the type of isominkowskian geometrization holding in
the interior of the fireball among the nine possible cases (7.45).

Model {10.9) is now ready for experimental plots (see later on Fig. 5).
The reader should remember that model! (70.9) is exszct, ie.,
deduced from [First principles, with the sole approximalion
of gg = 0 and gy » O, as in lhe conventional tresiment

Our next objective is that of reaching a preliminary estimate of the



-123 -

characteristics n-constants of model (10.9) also from first principles, and
prior to any plot of the model with experimental data.

The geometrization of the physical medium in the interior of the
fireball via ‘our isospecial relativity outlined in Sect. 7 (see ref. [15], Sect.
1V.10 for details) predicts that, at the very high energy of the UAl
experiments at CERN, the fireball is a medium of Type 9, Eq.s (7.45i) at
the time of its formation. This is due to the fact that the density of the
fireball is much higher than any known heavy hadron, by approaching
the density in the core of collapsing stars, as elaborated in Sect. 7.

We have indicated earlier that, immediately after its formation, the
fireball rapidly expands and decomposes itself into correlated bosons.
This implies average densities not necessarily higher than those in the
interior of hadrons. Nevertheless, the final maximal dimension at the
time of decomposition of the fireball must remain of hadronic type.

This identifies the open problem of the zvergge deunsity of lhe
firebal/ which, as we shall soon see, affects the numerical value ny.

In summary, & firs:, fundamenial theoretical prediction
of the isospecial refativity Is that the characteristic nm-
constanis oFf the Firebalf must have valwes verifying the
following conditions, Le.,

FIREBALLS ARE MEDIA OF TYPE %
ng > ny, ng <1, B<p y>y (10.11)
where2

B=vny/cong, B=v/cg ¥ = |1-p2| 5 y=]1-p2% (10.12)
This yields the second theoretical prediction of our model, namely,
that photons emitted inm the interior of the firebzll are
~“Blueshirted~ while propagaiing Wwithin the inhomogeneous
and anisolropic medium Iinside the fFireball according to a
prediction first made in ref. [11] via the generalized Doppler’s law of the

isospecial relativity (see ref. [15], Eq.s (9.48) for a detailed treatment)

@ =owy{l-pcosa) {10.13)

42 The attentive reader may have noted that we have used absolute values for the
conventional ¥ too. This is due to the currently considered speeds of gquasars reviewed
later in this section which are bigger than c,, thus implying imaginary vy if
conventionally expressed.
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which, for B < B, v > v, yields the fireball isoblueshilt © > .

This .essentially means that &e pholons delected in lgboratory
which are emitted In rthe interior of the fireball have original
Irequencies lower than those actually measvred Stated differently, the
occurrence is one way of representing the extremely energetic fireball
medium and the (classical) expectation that, as such, the medium
transfers energy to electromagnetic waves propagating in it.

This occurrence is intriguing because it is complementary to that
under study for guasars isoredshift . In fact, it was conjectured in
ref. [11] that ZJght experiences a natural redshirt wihile propigating
wiLhin the hifiomagenecus and anisolropic almospheres of the quasars
according also to Isodoppler’s law (10.13) Stated differently, the
prediction expresses the expectation that electromagnetic waves lose
energy while propagating in inhomogeneous and anisotropic planetary
atmospheres, whose density is much lower than that of the fireball.

It should be noted that z#e fZppothesis was suvbmitied as z
correction to the current interprelation of the quasars speeds lo
prevent a violation of Einsteinian laws under Einsteinian conditions
{motion in vacuum at speeds higher than c¢g/. In fact, redshifts have

considerably increased to such values to require speeds v of the order
of ten time and more the speed of light in vacuum, v # 10c,. Proposal [11]

essentially consists in using isodoppler’s law (10.13) to bring quasars
speeds below cq, while maintaining the expansion of the Universe {that
of the associated galaxies).

Numerical calculations along this proposal were done in ref. 38]
showing that isodoppler’s law (10.13) can indeed reduce the speed of the
quasars all the way to that of the associated galaxies. Evidently, this
was submitted as a limiting case in which the quasars are at rest with
respect to the associated galaxies and the difference in the measured
redshift (between galaxies and quasars) is entirely of isotopic nature,
that is, due to the particular isominkowskian geometry of quasars’
atmospheres. It is understood that various intermediate cases are
possible in which the quasars are indeed expelled from their associated
galaxies, but at Einsteinian speeds v < C,.

The results of ref. [38] were examined in ref. [39] by showing that
QUASARS” ATHOSPHERES ARE A MEDIUK OF TYVPE £
ng<ng, ng>1, B>p ¥y <y {10.14)

namely, they are media which are transparent, thus admitting a local
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speed of light ¢ = ¢y ny < Cq, and which predict a natural redshift @ < o,
due to their inhomogenuity and anisotropy In different terms, according
to isominkowskian geometrization (10.14), the frequency of the light
measured vutside the quasars’ atmospheres is smaller than that at the
time of its emission in the interior of the medium.

In particular, the average value of the ratio nz / nyg for all
quasars’s isoredshift measured in ref. [38) is given by [39]

o -2
< Mg/ Mgy sars ™ 137X 1072 (10.15)

Additional numerical data in the characteristic n—constants, which
are particularly useful for this paper as a comparison, are those of ref.

[40] on light hadrons, such as the KO. In essence the behavior of the

meanlife of the K° with speed is noneinsteinian between 35 and 100 GeV
according to experiments [41] while it is Einsteinian between 100 to 400
GeV according to the experiments [42] In papers [40] we showed that,
rather than being incompatible, these two experiments are fully

compatible, provided that the K° is interpreted as an isominkowskian
medium, exactly along the lines used in this paper for the fireball

In particular, the use of the combined experimental data [41,42]
yields the following numerical values [40]

bg2 = 0.909080 + 0.00004, ng2 = 11 (10.16a)
b2 = 1.002 £ 0.007, ng2 = 0.998, {10.16b)
bg? / by3 =0.907 ng2/ng2 =1.102. (10.16¢)

These values were re-examined in ref. [39] by showing that experimental

measures [41,42] imply that zhe AC is a medium of Type 9, Eqs
(10.14)).

The above results are confirmed by the low energy studies of ref.
[43] in the Higgs sector of spontaneous symmetry breakdown for light
mesons, resulting in the identification of the generalized metric for the
interior of the particles

f = diag. {(1 -a/3),(1 -@/3),(1 - a/3),- L +a)}  (10.17)
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with the following values for the pions
a = (-379+ 137 x 1073 (10.18)
and the different values for the kaons

@ = (+061+0.17)x 1073 {10.19)

But generalized metric (10.17) is exactly our isometric as submitted
in ref. [31] and, as such, it can be reinterpreted in terms of our

isominkowski space, yielding the values [39]

ngZpe ~ 0.998, ngpe ~ 1.004, ngPre / nglpe = 2495 (10.202)
ngZe & 1.002, ngge ~ 0.998, gl /ngde =1.004,  (10.20b)
that is, according to measures [43)
THE 7 -MESONS ARE MEDIA OF TYPE 7
ng>ng ng>1, B<P, Y>>y (10.21a)
THE K*~MESONS ARE MEDIA OF TYPE %
(10.21b)

This confirms the experimentzl plots of ref. [40] for the
kaons, Eg.s (10.16), as well as the expeciation that all

hadromic media with a density heavier tham that of the K°

are media of Type 9 .
We are now equipped to present our prediction of the numerical

values of the characteristic n—constants of the fireball which can be
identified via the following:

CONDITION 1I: Prolzte spheroidal character of the

firepail
2 = nyd {10.22)
ellipsoid

CONDITION 2 Normalizalior of Lhe
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KZ = blz + ﬁzz * ﬁgz o 3, i.e.,

1 1 1
82 = + + =3 (10.23)
ny2 ny? ng?

CONDITION 2 Prolatenmess proporéiional io lhe epergy.
Specifically, if the energies of the UA1 experiments are of the order of
30 times those of experiments [41,42] we assume

n2=ny? ~ 30 ng2 (10.24)

The above three conditions evidently yield the numerical values
ny2 =32/3 =10.666, ny2 32/3 = 10.666, ng? =32/90 = 0.355 (10.25)

We finally remain with the evaluation of n42. This is readily
achieved via the following additional

CONDITION +4- AMadel (10.9) ypields conventional
refativistic value (10.6] at g, = ¢ . In different terms, this

hypothesis assumes that at q; = 0, we have no correlation, thus resulting
in the condition easily derived from isocorrelation (10.9)

1+ - = 1.67 {10.26)

from which we obtain the numerical value
bg? = 1/233 = 0.429 (10.27)

Summarizing, the above conditions imply the following, evidently
preliminary numerical values for the geometrization of the fireball
medium (see Fig. 5) for a preliminary analysis)

ns2 =10.666, ny2 = 10.666, nz? = 0.355, ng2 ~ 0429, (10.272)

ng2/ng2 = 0827, <ny2>/ng2 = 16.850. {10.28b)
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As one can see, the above values verify in full Conditions (10.11) for
the geometrization of the fireball as a medium of Type 9.

EXPEIiIMENTAL VERIFICATION

1.4

1.3°
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FIGURE 5: The first experimental plot of the model of nonlocal Bose-
Einstein correlation of this paper conducted by F. Cardone and R.
Mignani of the Department of Physics "G. Marconi” of the University
”La Sapienza”, Rome, {italy (private communication). The plot was
conducted for model (9.25) via the use of the UA1 experimental data at
CERN and resulted in the following numerical values of the
characteristic quantities of the fireball: '
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B,2 = 0.0925, b2 = 0.0971, bs® = 3.463, b = 3616 )
or, equi?alently, for definitions {10.10),
ng = 10.801, n,2 = 10.309, ng = 0.288, nd = 0.276. b)

As one can see, the plot confirms the main hypotheses of this paper,
such as: 1) the nonlocal origin of the fireball represented via an
averaged deviation from the Minkowskian description; 2) the behaviour
of the two-points correlation function; 3) the maximum value 187 of
the two-points correlation function; 4} the high prolateness of the

fireball with a ration 22 / n32 £ 36 vs the value 30 assumed in the text;

and 5) the central prediction that the fireball is an isominkowskian
medium of Type 9, Eq.s (7.45i).

The plot is however preliminary, because conducted for our
unrenormalized isocorrelation function (9.25) prior to the availability of
our fully normalized model (10.8) or (10.9). In fact, for numerical data (a),

the K>value of Eq. {10.7b) is not normalized to the value K% = 3, but
rather to the value

K 2=p2+bf+bf = 3653 (©

It is our knowledge that the final plot of renormalized model (10.8) or
{10.9) by Cardone and Mignani is being published elsewhere.

For the reader interested in conducting additional, independent
plots, we note that the fully remornalized model of two-bosons
isocorrelation function is model (10.8) or (10.9) under maximum and
minimum values (10.6) and normalization (10.23}, such as the
expression

2 2 2
1 -g*n 1 -g%*xn,2
¢ =1 + e % + — g % 2
@ 2 2
noo¢ n 2
1 ~¢2xn2 ! -q,2 % 0.429
. e 7O e X @
n 42 0.429
K2 = n1"2 + n2—2 =n3'2 = 3, {e)

which verifies by construction the maximum and minimum values

¢ @q=>0 167, € @, q o0 1, )
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We should also indicate for clarity that numerical values (10.28} are
merely indicational. In fact families of different values are permitted
by isorelativistic hadronic mechanics for the following reasons:

i) The value of n 42 can differ from value 0.429 for various

reasons, including the possibility that the actual maximal value of the
isocorrelation function is lower than the relativistic limit 1.67 f{e.g.,
because there is still some residual correlation at that value), or
because the average density of the fireball, from its creation to its
disintegration, is lower than what expecied;

2) The prolateness of the fireball, condition (10.24), is empirical,
to begin with, and also dependent on the energy, thus clearly admitting
values in a broader range, say, from 20 to 40;

3) The normalization K 2=1b42 + by + bg? = 3, condition (10.22),
is also arbitrary, and different normalizations may be needed,
depending on the case at hand. It is evident that different

normalization of K2 directly imply different values for all n uz;

and other reasons. It is hoped that interested phenomenologists will
resolve these alternatives in the only possible way, via the plotting of
model (10.9) with experimental data.

11: CONCLUDING REMARKS

In this paper we have shown that quantum mechanics is unable to treat
the expected nonlocal and nonpotential character of the Bose-Einstein
correlation via conventional basic axioms because of their inherent
local-potential structure.

We have then reviewed the covering nonrelativistic and
relativistic hadronic mechanics and shown that the correlation is fully
interpretable from their first principles under the hypothesis that it is
due to nonlinear, nonlocal and nonhamiltonian effects in the interior of
the fireball caused by the deep mutual overlapping of the charge
distributions and wavepackets of the original proton and antiproton
collisions at high energy.

The emerging hadronic model (10.9) preserves the exponential
structure of conventional quantum models, but exhibits four free
parameters, the characteristic nu—constants, w =1, 2, 8, 4, which are an

average of the internal nonlocal effects as seen from the outside, and
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imply an isominkowskian geometrization of the medium inside the fireball
apparently shared by all (heavy) hadrons. As such, model (10.9) is
definitely an improvement for experimental plots over existing models
with a smaller number of theoretically unmotivated parameters.

To our best knowledge at this writing, model (10.9) can :

1) Explain the origin of the correlation via nonlocal and
nonhamiltonian effects in the interior of the fireball;

2) Represent in a satisfactory way available experimental data
from first principle, such as the isoexpectation values;

3) Verify the currently available maximal value L67 of the two-
point correlation function and its minimum value {;

4) Directly represent the actual non-spherical shape of the
fireball as a highly prolate spheroidal ellipsoid along the
original particle-antiparticle flight, as well as its rapid
expansion in time; and

5) Reconstruct the exact Poincaré symmetry at the isotopic level
under nonlinear, nonlocal and nonhamiltonian effects in the
interior of the fireball.

However, in the opinion of this author, Zhe most sigrificant
implication of the studies is Ethal, If comfirmed By additional
independent plols, the Bose-finstein correlation could
result to be the [rirst experimental evidence of Gthe
hListorical legzcy by Bogofiubov, Fermi snd others, om Ethe
uitimate monlocality of the Strong ipleraciions, with far
reaching Jimplications, Ssuch 25 ke mpeed rFfor & #EwW
generation of relativities specifically built for the mBOSE
general conceivable interactions in the Universe.
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