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In this paper we study three aspects of generalized classical and operator theories, herein
generically called deformations, which do not appear to have propagated in the rather
vast literature in the field: (1) the first known studies on classical and operator deforma-~
tions; (2) their rather serious physical and mathematical shortcomings due to lack of
invariance when conventionally formulated; and (3) the ongoing efforts for the achieve-
ment of invariant formulations preserving the axiomatic consistency of the original
theories. We begin by recalling the mathematical beauty, axiomatic consistency and
experimental verifications of the special relativity at both classical and quantum levels,
and its main axiomatic properties: universal invariance of the fundamental units of
space and time; preservation of hermiticity-observability at all times; uniqueness and
invariance of numerical predictions; and other known properties. We then review the
first known, generally ignored, classical and operator deformations. We then study the
generally ignored problematic aspects of classical and operator deformations in their
current formulation which include: lack of invariance of the fundamental units of space
and times with consequential inapplicability to real measurements; loss of observability
in time; lack of uniqueness and invariance of numerical predictions; violation of causality
and probability laws; and, above all, violation of Einstein’s special relativity. We finally
outline the generally ignored ongoing efforts for the resolutions of the above shortcom-
ings, and show that they require the necessary use of new mathematics specifically
constructed for the task. We finally present a systematic study for the identical refor-
mulation of existing classical and operator deformations in an invariant form.

Keywords: Classical and quantum deformations, Lie-isotopic and Lie-admissible theories,
isomathematics and genomathematics.

1. Statement of the Problem

The first part of this century will undoubtedly be considered in the history of
physics as signaling the triumph of the special relativity! in both its classical and
quantum versions because of its mathematical beauty, axiomatic consistency and
experimental verifications.

*E-mail: ibr@gte.net http://homel.gte.net/ibr
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Quite likely, the second part of this century will also pass to the history of physics
as being characterized by numerous attempts at broadening the mathematical,
physical and experimental, as well as nonrelativistic and relativistic foundations of
the special relativity. The latter theories are generically known under the name of
(classical and operator) deformations, and we shall preserve such a terminology in
this study.

This paper is devoted to the differences in axiomatic structure between the
special relativity and the various generalized theories. In particular, we shall show
that, as currently formulated on conventional spaces over fields, deformations have
an undeniable mathematical beauty but, in their current formulation, are afflicted
by a number of rather serious problematic aspects of physical consistency, because
they lose the main properties of the special relativity, such as: invariance of the fun-
damental units of space and time; preservation in time of hermiticity-observability;
invariant probabilities; causality; and other known features.

The literature of this century contains numerous generalizations-deformations,
first, of the classical setting underlying the special relativity, Hamiltonian me-
chanics, and then of its operator foundations, (nonrelativistic or relativistic) quan-
tum mechanics, which require an individual inspection.

The first objective of this paper is to recall the origin of what are today called
classical deformations which are generally ignored in the vast literature in the
field, and which can be traced back to the founders of analytic mechanics, such
as Lagrange,? Hamilton,® Jacobi,* and others. In fact, Lagrange and Hamilton pre-
sented their celebrated equations with external terms which were then removed in
this century, resulting in what are often called the “truncated Lagrange and Hamil-
ton equations.” Similarly, Jacobi [loc. cit.] did not prove his celebrated theorem for
the analytic equations of the contemporary literature, but rather for the original
ones with external terms.

Despite the successes of special relativity (which mostly motivated the removal
of the external terms in the analytic equations), the legacy of Lagrange and Hamil-
ton has persisted and actually increased with the passing of time. In essence, the
special relativity is exactly valid under the conditions of its original conception,
which were historically referred to as those of the exterior dynamical problem, here
denoting particles which can be well approximated as being pointlike when moving
in the homogeneous and isotropic vacuum under action-a-distance/potential inter-
actions. Typical examples of exterior dynamical problems are a spaceship in a
stationary orbit around earth or an electron in an atomic cloud.

By contrast, in Lagrange’s and Hamilton’s view there exist conditions under
which one sole quantity, today called Lagrangian or Hamiltonian, cannot represent
the entire physical reality and, for this reason, they added the external terms to their
celebrated equations. The latter conditions were historically referred as those of the
interior dynamical problem, here denoting particles which cannot be approximated
as being pointlike when moving within a generally inhomogeneous and anisotropic
physical medium. Typical examples of interior dynamical problems are a spaceship




Origin, Problematic Aspects and Invariant Formulation of ... 3159

during re-entry in our atmosphere, or a neutron in the core of a neutron star,
which experience both action-a-distance, potential-Hamiltonian as well as contact
nonpotential-non-Hamiltonian interactions due to the motion of an extended object
(whether a spaceship or a neutron) within a physical medium.

Lagrange’s and Hamilton’s historical view is therefore amply sufficient to provide
physical motivations for the study of generalized theories.

However, the addition of the external terms in the dynamical equations has
profound mathematical and physical implications because it implies the loss of the

_entire Lie theory in favor of a covering formulation known as Lie-admissible theory,
whose algebraic axioms were identified by Albert® in 1948 and whose applicability
to Hamilton’s equation with external term was identified by Santilli®® in 1967 (see
Refs. 7(a) and 7(b) for a general presentation up to 1983,7():7(®) for a recent study,
and Ref. 8 for independent accounts).

An important feature of Lie-admissible formulations is their direct univer-
sality,”® ie. their capability to represent all possible Newtonian systems (uni-
versality) in the frame of the experimenter (direct universality). In fact, the
Hamiltonian represents all potential interactions, while the external terms represent
all non-Hamiltonian forces and effects. By comparison, conventional Hamiltonian
mechanics can represent only a rather limited class of Newtonian systems in the
frame of the observer.”(®)

We shall exclude throughout our analysis the use of Darboux’s transforms and
only use direct representations, i.e. representations in the fixed coordinates of the
observers. The main reason is that, since they map non-Hamiltonian into Hamilto-
nian systems, Darboux’s transformations are highly nonlinear in all variables. As
such, Darbouz’s transforms imply the loss of the inertial character of the reference
frames with consequential loss of Galilei’s and Finstein’s relativities. Only after
non-Hamiltonian systems have been represented in the fized inertial frame of the
observer, may the transformation theory acquire a physical value, precisely as it is
the case for conventional conservative systems.

It is evident that the transition from Lie’s theory to its Lie-admissible covering
implies structural departures from the physical foundations of the special relativity.
Even though mathematically appealing, this creates the rather serious problems of
identifying a new covering relativity, proving its axiomatic consistency and then
establishing it experimentally.

Another objective of this paper is to recall the complementary line of generalized
classical formulations initiated by (G. D.) Birkhoff® in 1927. His main point was also
the expected insufficiency of one single quantity, the Hamiltonian, to represent the
entire physical reality. Rather than adding the external terms, Birkhoff’s considered
the most general possible, first-order, Pfaffian, action functional.

This implied a broadening of the brackets of the Hamiltonian time evolution
into the so-called generalized Lie brackets, as studied by numerous authors (see,
e.g. Ref. 10). Birkhoff’s approach was studied in details by Santilli®(9):7(¢):7(d) sho
showed that the brackets characterized by Birkhofl’s equations imply a step-by-step,
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axiom-preserving generalization of Lie’s theory in all its branches (enveloping alge-
bras, Lie algebras, Lie groups, representation theory, etc.).

The latter theory was submitted under the name of Lie-isotopic theory®():7(d)
where the term “isotopic” is used in its Greek meaning of being “axiom-preserving.”
The emerging new mechanics was then submitted under the name of Birkhoffian
mechanics.”(4 The more general mechanics of Lie-admissible type was submitted
under the name of Birkhoff-admissible mechanics®(@7() to denote the fact that
the Lie-isotopic theory is a particular case of the Lie-admissible version.

In particular, Lie-isotopic formulations also resulted to be directly universal

" although for the more restricted class of well behaved, local-differential and analytic
systems in a star-shaped regular point of their variables.”()

It is evident that, despite the preservation of the Lie character, a departure from
the canonical realization of space—time symmetries implies an inevitable departure
from the special relativity, thus creating again the problems of identifying a covering
relativity, proving its axiomatic consistency and then establishing it experimentally.

Note since these introductory lines that, in view of the totally antisymmetric
character of the product, Lie-isotopic theories admit conventional total conserva-
tion laws under generalized internal forces represented precisely by the generalized
brackets (see systematic studies”). On the contrary, since their product is neither
totally antisymmetric nor totally symmetric, the covering Lie-admissible theories
are particularly set to represent open nonconservative systems under unrestricted
external forces.”

In summary, as a result of their direct universality, all possible, well behaved,
unconstrained, classical deformations can be classified into:

(I) Deformations preserving the Lie character of Hamiltonian mechanics, in which
case they can studied via one of the various realizations of the Lie-isotopic
theory; or

(II) Deformations abandoning the Lie character of Hamiltonian mechanics in favor
of a covering of the Lie and Lie-isotopic theories, in which case they can be
studied via the Lie-admissible theory.

(IIT) Deformations of the still broader multivalued type currently under study by a
restricted class of experts, which will not be studied in this paper for brevity
(see later on Refs. 28 for details).

The above classification is important because it permits the study of axiomatic
profiles in a unified way, rather than for individually for a seemingly disparate
variety of deformations.

Additional types of generalized theories, such as the antiautomorphic images of
Classes (1), (IT), (III) currently under study for a classical treatment of antimatter,
will not be considered at this time for brevity (see Refs. 7(e) and 7(f)). The extension
of the results of this papers to Classes (I), (II), (III) and their antiautomorphic
images to the case with subsidiary constraints is left to the interested reader.
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Another objective of this paper is the identification of the origin of what are
today called operator deformations which can be traced back to the inception
of quantum mechanics itself, such as the theories relaxing the linearity of quan-
tum mechanics (see the historical accounts in Refs. 12), or relaxing the potential
character,'® or relaxing the local structure,”{d) or relaxing the algebraic structure
via external collision terms.!4

The first known deformations of the Lie product [A,B] = Ax B —-Bx A
of quantum mechanics was identified by Santilli®(® back in 1967 via the expres-
sion (4,B) = px AXx B — ¢ x B x A where p and ¢ are non-null parameters.
The g-deformations with product (A4,B) = A X B — g x B x A introduced by
Biedenharn!®(®) and Macfarlane!®®) in 1989, are an evident particular case San-
tilli’s (p, ¢)-deformations. The latter g-deformations were then studies by a large
number of authors (see the representative list'®) although without the quotation of
the origination of the deformations in Ref. 6(a).

The above studies were then follows by a large variety of operator deformations.
Without any claim of completeness due to their shear number, we here mention: the
deformations under the somewhat misleading name 6f “quantum groups;”*? the k-
deformations (which are a particular relativistic version of quantum groups);'® the
so-called “star theories”!® whose product is, as we shall see, the basic isoassociative
product of the Lie-isotopic theories; theories with nonassociative envelopes;?° the
so-called “squeezed states theories;”?! a nonunitary statistical mechanics by Pri-
gogine and his associates;2? the Ellis-Mavromatos-Nanopoulos model of black hole
dynamics with Santilli's Lie-admissible structure;?® noncanonical time theories;24
supersymmetric theories;?® Kac-Moody superalgebras;?6 and others.

As we shall see, all the above generalized operator deformations can also be clas-
sified depending on their algebraic character. In fact, all (p, g)- and g-deformations
evidently abandon the Lie character of quantum mechanics in favor of a generalized
algebra which, since it is not totally antisymmetric or symmetric, it also results to
be of Lie-admissible type as originally proposed by Santilli.®(® However, quantum
groups,'” generalized statistical formulations®? and other theories preserve the Lie
character of the underlying algebra, although expressed in a generalized form, in
which case they can be considered as a particular class of Lie-isotopic theories.

We should note that other theories, such as the nonlinear models'? appear to
have a conventional Lie algebra structure in their brackets, while at a deeper in-
spection such a structure results to be generalized, as evidently expected from the
strictly linear character of Lie’s theory when compared to the nonlinear character
of the models here considered.

In regards to the generalized operator formulations it is therefore sufficient for
us to consider only the classes of Lie-isotopic and Lie-admissible generalizations,
because the latter have also resulted to be directly universal in operator settings.” (¥
The understanding is that, again, the former are a particular case of the latter.

To avoid trivial cases, we shall solely consider classical (operator) deformations
outside the class of equivalence of Hamiltonian (quantum) mechanics. Also, we shall
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solely consider deformations as currently treated, that is, on conventional spaces
over fields.

To avoid possible misrepresentations, we shall use the generic term “operator”
rather than “quantum” deformations, because we are dealing with theories outside
the class of equivalence of quantum mechanics.

The above definition of deformations evidently includes current gravitational
theories. No study of the problematic aspects of available deformations can therefore
be considered as sufficiently exhaustive without a consideration of classical and
operator theories of gravity.

In summary, the first objective of this paper is to review the origin of classmal
and operator deformations and their unified treatments via Santilli’s Lie-isotopic
and Lie-admissible formulations®? which are significant in the study of deformations
because they unify seemingly disparate approaches, yet are generally ignored in the
vast literature in the field.

The second objective of this paper is to point out that, even though with an un-
questionable mathematical beauty, all possible classical and quantum deformations
as currently treated are afflicted by rather serious problems of physical consistency.
These problematic aspects have been studied in Refs. 27 and 28(b) mainly for the
operator version. To our best knowledge, this is the first systematic study of the
problematic aspects of deformations beginning at the classical level and then pass-
ing to their operator counterpart.

It is at this point where the mathematical beauty, axiomatic consistency and
experimental validity of the special relativity emerge in their full light. A funda-
mental quantity of the special relativity is the four-dimensional unit

I = Diag({1,1,1},1), (1.1)

which represents in a dimensionless form the basic units of space {1,1,1} (e.g.
1 cm, 1 cm, 1 cm for the three Euclidean axes), as well as the basic unit of time
(e.g. 1 sec). \

A pillar of the axiomatic consistency of the special relativity at both classical
and quantum levels is the universal invariance of the basic space and time units
(1.1), where the term “universal” stands to indicate invariance under all possible
space-time symmetries as well as dynamical equations.

In fact, quantity (1.1) is the fundamental unit of the Minkowski space and of its
basic Poincaré symmetry. As such, unit (1.1) is the unit of the universal enveloping
associative algebra of the acting space-time symmetry, which is the definition. of
unit tacitly implied hereon.

The invariance of the basic unit is not a mere mathematical curiosity because it
carries fundamental physical implications. In fact, it first implies lack of ambiguities
in the physical applications and experimental verifications of the theory, evidently
because the basic units used in measurements say, (1 cm, 1 cm, 1 cm, 1 sec) are
universal invariants. The same invariance has then implications at all axiomatic
and physical levels.
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A primary objective of this paper is to study the problematic aspect of defor-
mations implied by the following theorem whose classical proof will be presented
in Sec. 3 and its operator counterpart in Sec. 4.

Theorem 1.1. All possible classical and operator deformations, here defined as
being outside the class of eguivalence of conventional theories yet defined on con-
ventional spaces over conventional fields, do not possess invariant units of space,
time, energy, etc.

As a result, the numerical applications and experimental verifications of de-
formed theories, whether classical or operator, are in question because of the lack
of invariance of the basic units used for the measurements themselves.

A subsequent objective of this paper is to show that the lack of invariance of the
basic units implies additional rather serious problematic aspects, again, of physical
character.

As an example, one may attempt to bypass the probiematic aspects of Theo-
rem 1.1 by assuming that the rest of the universe is deformed jointly with that of
the basic units, thus implying valid measurements. -

Such a position is evidently questionable for the measurements of far away
objects which, as such, are independent from local dynamics.

Independently from that, the above position is insufficient to resolve the short-
comings, because the lack of invariance of the unit has additional, rather serious
implications. For example, it implies: the loss of the base field with evidently dis-
astrous axiomatic consequences; the lack of preservation in time of the hermiticity
with consequential lack of physically acceptable observables; the lack of uniqueness
as well as invariance of the numerical predictions; the loss of invariant probabilities;
the violation of causality; and, above all, the violation of the axioms of the special
relativity.

These problematic aspects are sufficiently serious, first, to warrant their collegial
awareness, and then to require systematic studies for their resolutions.

Note that we have used the terms “problematic aspects,” rather than “inconsis-
tencies,” because we do not claim at all that theories'?2?6 are physically inconsis-
tent. We only insist that their problematic aspect should be addressed in the only
possible scientific way, via publications.

As a matter of fact, our third objective is to indicate the ongoing efforts on the
invariant formulation of Lie-admissible and Lie-isotopic theories which also appear
to be largely ignored in the vast literature on deformations.

In fact, in the memoirs® we present mathematical and physical studies for an
apparent first solution of the above problematic aspects which consists of general-
ized classical and operator theories constructed under the fundamental requirement
of preserving the axiomatic structure of the special relativity, thus including univer-
sally invariant basic units, the preservation of hermiticity-observability at all times,
uniqueness and invariance of the numerical predictions, etc.
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Other resolutions of the problematic aspects are also possible, and their study is
here encouraged, but under the physically uncompromisable condition of possessing
invariant basic units.

A summary of the content of this paper is presented in note.?”(®)

2. The Notions of Lie-Admissibility and Lie-Isotopy
2.1. The first notion of Lie-admissibility

In 1948 Albert® introduced the first notion of Jordan admissible and Lie-admissible
algebras as generally nonassociative algebras U with elements a, b, ¢, and abstract
product ab which are such that the attached algebras Ut and U™, which are the
same vector spaces as U equipped with the products {a, b}y = ab+ba and [a,bly =
ab — ba, are Jordan and Lie algebras, respectively. Albert then studied the algebra
with product

(A,By=pxAxB+(1-p)xBxA, (2.1)

where p is a parameter, A, B are matrices or operators (hereon assumed to be
Hermitian), and A x B is the associative product. It is easy to see that the above
product is indeed jointly Jordan- and Lie-admissible because {4, B}y = A x B +
BxAand [A,Bly =(2p—1)x (Ax B—-Bx A).

Note that for p = 0 product {2.1) becomes that of a commutative Jordan alge-
bra, but there exist no (finite) value of p under which product (2.1) recovers the
Lie product. As a result, product (2.1) cannot be used for possible coverings of
current physical theories. In fact, Albert [loc. cit.] was primarily interested in the
Jordan, rather than in the Lie content of nonassociative algebras (see Ref. 5 for
more details).

2.2. The second and third notions of Lie-admissibility

In view of the above occurrence, in 1967 Santilli®®®) introduced the second notion
of Lie-admissibility which is Albert’s first notion [loc. cit.], plus the condition that
the algebras U admit Lie algebras in their classification or, equivalently, that the
generalized Lie product admits the conventional one as a particular case.
Santilli®®)~6(c) therefore introduced the algebra with product

(A,B)=pxAxB-gxBxA, (2.2)

with related time evolution in the infinitesimal and finite forms (i = 1)
ix%:prxH—quxA, (2.3a)
A(t) = eXIH o A(Q) x e tXPXIxH (2.3b)

where: p and ¢ are non-null parameters with non-null values p=g¢; A, B are Hermi-
tian operator (or matrices), and A x B is also the associative product. It is easy to
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see that product (2.2) is Lie- and Jordan-admissible and admits the Lie and Jordan
products as particular (nondegenerate) cases.

The second notion of Lie-admissibility®(® also resulted to be insufficient for
physical applications because, as we shall see shortly, the parameters p and g be-
come operators under the time evolution of the theory. Santilli®(®):6(¢) therefore in-
troduced the third notion of Lie-admissibility (also called general Lie-admissibility)
which is the second notion plus the condition that the algebras U admit Lie-isotopic
(rather then Lie) algebras in their classification (see below).

The latter notion was realized via the general Lie-admissible product (first intro-
duced in Ref. 6(e), p. 719)

(A,B)=AxPxB—-BxQXxA, (2.4)
and time evolution in infinitesimal and finite forms (Ref. 6(e), pp. 741, 742)
,_dA
szt—zAxPxH—HxQxA, (2.5a)
A(t) — eixHxth % A(O) X e-vixw:x];')u‘l7 » (2.5b)

where P, () and P+(@) are nonsingular, generally non-Hermitian operators with non-
singular values P+ @ admitting of the parametric values p and q as particular cases.
The conventional Heisenberg’s equations are evidently recovered for P = @ = 1.

Note that the P and Q operators must be sandwiched in between the elements
A and B to characterize an algebra as commonly understood in mathematics. In
fact, the script P x A x B— @ x B x A with P, @ fixed, is acceptable when P and
(@ are parameters, but it would not characterize an algebra for P and @ operators
because of the violation of the right distributive and scalar laws (see Ref. 7(d) for
details).

2.3. The notion of Lie-isotopy

A fundamental property of the general Lie-admissible algebras U identified in
Refs. 6(d) and 6(e) is that their attached antisymmetric algebras U~ are not char-
acterized by the traditional Lie product [4, B] = A x B — B x A, but rather by the
product (first introduced in Ref. 6(e), p. 725)

[A’Bly=AXB=BXxA=AxTxB-BxTxA,

T=P+Q=Tt, 2

called Lie-isotopic, because verifying the Lie axioms although in a more general
way. The product A X B = A x T x B is called isoassociative because more general
then the conventional associative product A ><'B, yet preserving associativity,
AX(BXC)=(AXB)xC.5©

According to the above results, the nonassociative algebra U with product
(A, B), Eq. (2.4), can be replaced with an algebra £ with isoassociative product
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AXB = A x T x B, in the characterization of the attached antisymmetric
algebrab(e),7(d)
[A}Blu = (4,B) — (B,A) = [A]B]; = AXB-BXx A (2.7)

The latter property permitted the construction of the Lie-isotopic
theory,8(4):8(e:7(d) j o a step-by-step axiom-preserving lifting of the conventional
formulation of Lie theory in terms of the isoassociative product A x B, including the
lifting of numbers, spaces, enveloping algebras, Lie algebras, Lie groups, Lie sym-
metries, transformation and representation theory, etc. The emerging new theory
is today called Lie-Santilli isotheory.8:30:31

As a particular case of the broader Lie-admissible formulations, San-
ti11i8(e):7(d), 7(E) therefore studied the Lie-isotopic time evolution in infinitesimal and
finite forms for T = T (first introduced in Ref. 6(e), p. 752)

ix i—? =[AjHli=AXxH-HXA=AXxTxH-HxTxA, (28a)
A(t) — eixHxTxt X A(O) % e—ixthxH, (2.8b)

which admit conventional quantum equations for T = 1.

Note for future needs that the Lie-admissible product (2.4) the (Lie-isotopic
product (2.7)) are the most general possible nonantisymmetric (antisymmetric)
product, respectively. This property is at the foundation of the unified treatment
of deformations as we shall see. For additional details we refer the interested reader
to monographs.”():7(f)

3. Origin and Problematic Aspects of Classical Deformations
3.1. Birkhoffian mechanics

No operator theory has sufficient depth without well-defined classical foundations.
For this reasons, Santilli studied the classical counterparts of the preceding theories,
as reported in monographs.” In essence, the classical action underlying Lie-isotopic
theories resulted to be the most general possible, first-order, Pfaffian action in phase
space”(d)

ta db*

A= t dt [Ru(b)—J[ + H{t, b)} ,
1

b={0}={"m}, R={R}={4(rp), B rp)}, (3-1)

p=12,....6, k=1,2,3,

whose variations yield Birkhoff’s equations® in the covariant and contravariant
forms (see Ref. 7(d) for all historical notes and references)

dv  OH(t,b)

L (O) = =~ (3.2a)
db SH(¢,b)
Y ur 2N ) .
— = ) = (3.2b)
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with (nowhere degenerate) covariant and contravariant tensors

__OR, OR,
Quu - 61)’1‘ - BbV 3 (33&)
Q7 (b) = (1Qapl~H™. (3.3b)

The ensuing mechanics, called Birkhoffian mechanics in Ref. 7(d), was said
to be isotopic because it preserves the main axioms of conventional Hamiltonian
mechanics although realized in their most general possible form. We are here refer-
ring to: (1) derivability from the most general possible first order action (analytic
isotopy); (2) characterization by the most general possible, regular symplectic struc-
ture in local coordinates (geometric isotopy),

Q =, (b)db* A db; (3.4)

and (3) characterization by the most general possible regular (unconstrained) brack-
ets verifying the Lie axioms (algebraic isotopy)
. OA_ . . 0B
[A, B]* = WQ“ (b)w (3.5)

Conventional classical Hamiltonian mechanics is admitted as a particular case
at all levels for R = R? = (p,0), as one can easily verify.

One may consult Ref. 7(d) for additional aspects, including: the unified treat-
ment via the conditions of variational selfadjointness; the isotopies of Lie’s theory;
the proof of the “direct universality” of the mechanics for local-differential and
analytic systems; and other aspects.

Since Eqgs. (2.8) and (3.5) have the same generalized (unconstrained and regu-
lar) Lie structures, the latter were introduced in Refs. 6(e) and 7(d) as the clas-

sical counterpart of the former, an assumption subsequently confirmed by specific
studies.”(®

3.2. Hamilton-admissible and Birkhoff-admissible mechanics

References 6(b), 6(d), 7(a) and 7(b) were devoted to the study of the classical
counterpart of Lie-admissible equations (2.5). Conventional Newtonian forces are
divided into variationally self-adjoint (SA) and non-self-adjoint forces (NSA),7()
Fy(t,b) = F2A 4 FNSA, The SA forces are represented in terms of a conventional
potential U (%, b) via the techniques of the inverse problem [loc. cit.]. The NSA forces
are represented via the algebraic tensor of the theory, according to the equations
first introduced in Ref. 6(d)

ab” OH(t,b) mdvy, SA' NSA
nv —
e S#¥(t,b) B = T EpA(L,b) — F 22 (¢, b)), (3.6a)

(§#) = (W) + (s*) = (_(1) é) + (8 (FNSA/(()BH/ap)> , (3.6b)
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where w"¥ is the familiar canonical Lie tensor and S*¥ is a Lie-admissible tensor
because

SHY(1,b) — SYE(t, b) = 2wH” . (3.7)

Consequently, the brackets of the time evolution

dA dA oH
—_— e [ald e
— = (A, H) = 58" (t,0) 75 (3.8)

are of Lie-admissible type,
(Aa B) - (B,A) = 2[A> B, (39)

(with a trivial character of this type because the factor 2 is constant) with a com-
patible lifting of the symplectic two-form (3.4) called symplectic-admissz’ble.7(b)

The emerging mechanics was called in Ref. 7(b) Hamilton-admissible mechanics
when the attached antisymmetric tensor is Lie (as in Egs. (3.6)) or Birkhoff-
admissible mechanics when the attached antisymmetric tensor is the Birkhof-
fian one.

Note the simple direct universality of the Hamilton-admissible mechanics
(without any need to go to the broader Birkhoff-admissible case) for all possible
Newtonian systems, owing to general algebraic solution (3.6b). This simple direct
universality should be compared with the rather complex direct universality of
Birkhoff’s equations (3.4).7(®)

It is important to know that Lie-admissible equations (3.7) were constructed
along the original Hamilton’s equations, those with external terms here denoted
FNSA In fact, the number of independent functions in the external terms ERNSA
and that in the Lie-admissible tensor S*” coincide.

Reformulation (3.6) is requested by the fact that the brackets of Hamilton’s
equations with external terms violate the conditions to form any algebra, let
alone Lie algebras, thus preventing the construction of a covering of conventional
Hamiltonian mechanics. On the contrary, brackets (3.8), first of all, verify all con-
ditions to characterize an algebra, and, second, that algebra results to be Lie-
admissible, i.e. a covering of the algebraic structure of conventional Hamiltonian
mechanics.

Note also that the (autonomous) Lie-isotopic equations (3.4) are structurally
reversible, that is, they are reversible for reversible Hamiltonians. On the contrary,
Lie-admissible equations (3.6) are structurally irreversible, that is, they are irre-
versible even for reversible Hamiltonians. These main characteristics will persist at
the operator level of the next section.

Therefore, the Lie-admissible equations are particularly suited for an aziomati-
zation of irreversibility, that is, its representation via the structure of the theory,
rather than the addition of symmetry breaking terms in a time-symmetric Lagran-
gian or Hamiltonian.




