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In this paper we study three aspects of generalized classical and operator theories, herein
generically called deformations, which do not appear to have propagated in the rather
vast literature in the field: (1) the first known studies on classical and operator deforma-~
tions; (2) their rather serious physical and mathematical shortcomings due to lack of
invariance when conventionally formulated; and (3) the ongoing efforts for the achieve-
ment of invariant formulations preserving the axiomatic consistency of the original
theories. We begin by recalling the mathematical beauty, axiomatic consistency and
experimental verifications of the special relativity at both classical and quantum levels,
and its main axiomatic properties: universal invariance of the fundamental units of
space and time; preservation of hermiticity-observability at all times; uniqueness and
invariance of numerical predictions; and other known properties. We then review the
first known, generally ignored, classical and operator deformations. We then study the
generally ignored problematic aspects of classical and operator deformations in their
current formulation which include: lack of invariance of the fundamental units of space
and times with consequential inapplicability to real measurements; loss of observability
in time; lack of uniqueness and invariance of numerical predictions; violation of causality
and probability laws; and, above all, violation of Einstein’s special relativity. We finally
outline the generally ignored ongoing efforts for the resolutions of the above shortcom-
ings, and show that they require the necessary use of new mathematics specifically
constructed for the task. We finally present a systematic study for the identical refor-
mulation of existing classical and operator deformations in an invariant form.

Keywords: Classical and quantum deformations, Lie-isotopic and Lie-admissible theories,
isomathematics and genomathematics.

1. Statement of the Problem

The first part of this century will undoubtedly be considered in the history of
physics as signaling the triumph of the special relativity! in both its classical and
quantum versions because of its mathematical beauty, axiomatic consistency and
experimental verifications.

*E-mail: ibr@gte.net http://homel.gte.net/ibr
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Quite likely, the second part of this century will also pass to the history of physics
as being characterized by numerous attempts at broadening the mathematical,
physical and experimental, as well as nonrelativistic and relativistic foundations of
the special relativity. The latter theories are generically known under the name of
(classical and operator) deformations, and we shall preserve such a terminology in
this study.

This paper is devoted to the differences in axiomatic structure between the
special relativity and the various generalized theories. In particular, we shall show
that, as currently formulated on conventional spaces over fields, deformations have
an undeniable mathematical beauty but, in their current formulation, are afflicted
by a number of rather serious problematic aspects of physical consistency, because
they lose the main properties of the special relativity, such as: invariance of the fun-
damental units of space and time; preservation in time of hermiticity-observability;
invariant probabilities; causality; and other known features.

The literature of this century contains numerous generalizations-deformations,
first, of the classical setting underlying the special relativity, Hamiltonian me-
chanics, and then of its operator foundations, (nonrelativistic or relativistic) quan-
tum mechanics, which require an individual inspection.

The first objective of this paper is to recall the origin of what are today called
classical deformations which are generally ignored in the vast literature in the
field, and which can be traced back to the founders of analytic mechanics, such
as Lagrange,? Hamilton,® Jacobi,* and others. In fact, Lagrange and Hamilton pre-
sented their celebrated equations with external terms which were then removed in
this century, resulting in what are often called the “truncated Lagrange and Hamil-
ton equations.” Similarly, Jacobi [loc. cit.] did not prove his celebrated theorem for
the analytic equations of the contemporary literature, but rather for the original
ones with external terms.

Despite the successes of special relativity (which mostly motivated the removal
of the external terms in the analytic equations), the legacy of Lagrange and Hamil-
ton has persisted and actually increased with the passing of time. In essence, the
special relativity is exactly valid under the conditions of its original conception,
which were historically referred to as those of the exterior dynamical problem, here
denoting particles which can be well approximated as being pointlike when moving
in the homogeneous and isotropic vacuum under action-a-distance/potential inter-
actions. Typical examples of exterior dynamical problems are a spaceship in a
stationary orbit around earth or an electron in an atomic cloud.

By contrast, in Lagrange’s and Hamilton’s view there exist conditions under
which one sole quantity, today called Lagrangian or Hamiltonian, cannot represent
the entire physical reality and, for this reason, they added the external terms to their
celebrated equations. The latter conditions were historically referred as those of the
interior dynamical problem, here denoting particles which cannot be approximated
as being pointlike when moving within a generally inhomogeneous and anisotropic
physical medium. Typical examples of interior dynamical problems are a spaceship
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during re-entry in our atmosphere, or a neutron in the core of a neutron star,
which experience both action-a-distance, potential-Hamiltonian as well as contact
nonpotential-non-Hamiltonian interactions due to the motion of an extended object
(whether a spaceship or a neutron) within a physical medium.

Lagrange’s and Hamilton’s historical view is therefore amply sufficient to provide
physical motivations for the study of generalized theories.

However, the addition of the external terms in the dynamical equations has
profound mathematical and physical implications because it implies the loss of the

_entire Lie theory in favor of a covering formulation known as Lie-admissible theory,
whose algebraic axioms were identified by Albert® in 1948 and whose applicability
to Hamilton’s equation with external term was identified by Santilli®® in 1967 (see
Refs. 7(a) and 7(b) for a general presentation up to 1983,7():7(®) for a recent study,
and Ref. 8 for independent accounts).

An important feature of Lie-admissible formulations is their direct univer-
sality,”® ie. their capability to represent all possible Newtonian systems (uni-
versality) in the frame of the experimenter (direct universality). In fact, the
Hamiltonian represents all potential interactions, while the external terms represent
all non-Hamiltonian forces and effects. By comparison, conventional Hamiltonian
mechanics can represent only a rather limited class of Newtonian systems in the
frame of the observer.”(®)

We shall exclude throughout our analysis the use of Darboux’s transforms and
only use direct representations, i.e. representations in the fixed coordinates of the
observers. The main reason is that, since they map non-Hamiltonian into Hamilto-
nian systems, Darboux’s transformations are highly nonlinear in all variables. As
such, Darbouz’s transforms imply the loss of the inertial character of the reference
frames with consequential loss of Galilei’s and Finstein’s relativities. Only after
non-Hamiltonian systems have been represented in the fized inertial frame of the
observer, may the transformation theory acquire a physical value, precisely as it is
the case for conventional conservative systems.

It is evident that the transition from Lie’s theory to its Lie-admissible covering
implies structural departures from the physical foundations of the special relativity.
Even though mathematically appealing, this creates the rather serious problems of
identifying a new covering relativity, proving its axiomatic consistency and then
establishing it experimentally.

Another objective of this paper is to recall the complementary line of generalized
classical formulations initiated by (G. D.) Birkhoff® in 1927. His main point was also
the expected insufficiency of one single quantity, the Hamiltonian, to represent the
entire physical reality. Rather than adding the external terms, Birkhoff’s considered
the most general possible, first-order, Pfaffian, action functional.

This implied a broadening of the brackets of the Hamiltonian time evolution
into the so-called generalized Lie brackets, as studied by numerous authors (see,
e.g. Ref. 10). Birkhoff’s approach was studied in details by Santilli®(9):7(¢):7(d) sho
showed that the brackets characterized by Birkhofl’s equations imply a step-by-step,
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axiom-preserving generalization of Lie’s theory in all its branches (enveloping alge-
bras, Lie algebras, Lie groups, representation theory, etc.).

The latter theory was submitted under the name of Lie-isotopic theory®():7(d)
where the term “isotopic” is used in its Greek meaning of being “axiom-preserving.”
The emerging new mechanics was then submitted under the name of Birkhoffian
mechanics.”(4 The more general mechanics of Lie-admissible type was submitted
under the name of Birkhoff-admissible mechanics®(@7() to denote the fact that
the Lie-isotopic theory is a particular case of the Lie-admissible version.

In particular, Lie-isotopic formulations also resulted to be directly universal

" although for the more restricted class of well behaved, local-differential and analytic
systems in a star-shaped regular point of their variables.”()

It is evident that, despite the preservation of the Lie character, a departure from
the canonical realization of space—time symmetries implies an inevitable departure
from the special relativity, thus creating again the problems of identifying a covering
relativity, proving its axiomatic consistency and then establishing it experimentally.

Note since these introductory lines that, in view of the totally antisymmetric
character of the product, Lie-isotopic theories admit conventional total conserva-
tion laws under generalized internal forces represented precisely by the generalized
brackets (see systematic studies”). On the contrary, since their product is neither
totally antisymmetric nor totally symmetric, the covering Lie-admissible theories
are particularly set to represent open nonconservative systems under unrestricted
external forces.”

In summary, as a result of their direct universality, all possible, well behaved,
unconstrained, classical deformations can be classified into:

(I) Deformations preserving the Lie character of Hamiltonian mechanics, in which
case they can studied via one of the various realizations of the Lie-isotopic
theory; or

(II) Deformations abandoning the Lie character of Hamiltonian mechanics in favor
of a covering of the Lie and Lie-isotopic theories, in which case they can be
studied via the Lie-admissible theory.

(IIT) Deformations of the still broader multivalued type currently under study by a
restricted class of experts, which will not be studied in this paper for brevity
(see later on Refs. 28 for details).

The above classification is important because it permits the study of axiomatic
profiles in a unified way, rather than for individually for a seemingly disparate
variety of deformations.

Additional types of generalized theories, such as the antiautomorphic images of
Classes (1), (IT), (III) currently under study for a classical treatment of antimatter,
will not be considered at this time for brevity (see Refs. 7(e) and 7(f)). The extension
of the results of this papers to Classes (I), (II), (III) and their antiautomorphic
images to the case with subsidiary constraints is left to the interested reader.
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Another objective of this paper is the identification of the origin of what are
today called operator deformations which can be traced back to the inception
of quantum mechanics itself, such as the theories relaxing the linearity of quan-
tum mechanics (see the historical accounts in Refs. 12), or relaxing the potential
character,'® or relaxing the local structure,”{d) or relaxing the algebraic structure
via external collision terms.!4

The first known deformations of the Lie product [A,B] = Ax B —-Bx A
of quantum mechanics was identified by Santilli®(® back in 1967 via the expres-
sion (4,B) = px AXx B — ¢ x B x A where p and ¢ are non-null parameters.
The g-deformations with product (A4,B) = A X B — g x B x A introduced by
Biedenharn!®(®) and Macfarlane!®®) in 1989, are an evident particular case San-
tilli’s (p, ¢)-deformations. The latter g-deformations were then studies by a large
number of authors (see the representative list'®) although without the quotation of
the origination of the deformations in Ref. 6(a).

The above studies were then follows by a large variety of operator deformations.
Without any claim of completeness due to their shear number, we here mention: the
deformations under the somewhat misleading name 6f “quantum groups;”*? the k-
deformations (which are a particular relativistic version of quantum groups);'® the
so-called “star theories”!® whose product is, as we shall see, the basic isoassociative
product of the Lie-isotopic theories; theories with nonassociative envelopes;?° the
so-called “squeezed states theories;”?! a nonunitary statistical mechanics by Pri-
gogine and his associates;2? the Ellis-Mavromatos-Nanopoulos model of black hole
dynamics with Santilli's Lie-admissible structure;?® noncanonical time theories;24
supersymmetric theories;?® Kac-Moody superalgebras;?6 and others.

As we shall see, all the above generalized operator deformations can also be clas-
sified depending on their algebraic character. In fact, all (p, g)- and g-deformations
evidently abandon the Lie character of quantum mechanics in favor of a generalized
algebra which, since it is not totally antisymmetric or symmetric, it also results to
be of Lie-admissible type as originally proposed by Santilli.®(® However, quantum
groups,'” generalized statistical formulations®? and other theories preserve the Lie
character of the underlying algebra, although expressed in a generalized form, in
which case they can be considered as a particular class of Lie-isotopic theories.

We should note that other theories, such as the nonlinear models'? appear to
have a conventional Lie algebra structure in their brackets, while at a deeper in-
spection such a structure results to be generalized, as evidently expected from the
strictly linear character of Lie’s theory when compared to the nonlinear character
of the models here considered.

In regards to the generalized operator formulations it is therefore sufficient for
us to consider only the classes of Lie-isotopic and Lie-admissible generalizations,
because the latter have also resulted to be directly universal in operator settings.” (¥
The understanding is that, again, the former are a particular case of the latter.

To avoid trivial cases, we shall solely consider classical (operator) deformations
outside the class of equivalence of Hamiltonian (quantum) mechanics. Also, we shall
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solely consider deformations as currently treated, that is, on conventional spaces
over fields.

To avoid possible misrepresentations, we shall use the generic term “operator”
rather than “quantum” deformations, because we are dealing with theories outside
the class of equivalence of quantum mechanics.

The above definition of deformations evidently includes current gravitational
theories. No study of the problematic aspects of available deformations can therefore
be considered as sufficiently exhaustive without a consideration of classical and
operator theories of gravity.

In summary, the first objective of this paper is to review the origin of classmal
and operator deformations and their unified treatments via Santilli’s Lie-isotopic
and Lie-admissible formulations®? which are significant in the study of deformations
because they unify seemingly disparate approaches, yet are generally ignored in the
vast literature in the field.

The second objective of this paper is to point out that, even though with an un-
questionable mathematical beauty, all possible classical and quantum deformations
as currently treated are afflicted by rather serious problems of physical consistency.
These problematic aspects have been studied in Refs. 27 and 28(b) mainly for the
operator version. To our best knowledge, this is the first systematic study of the
problematic aspects of deformations beginning at the classical level and then pass-
ing to their operator counterpart.

It is at this point where the mathematical beauty, axiomatic consistency and
experimental validity of the special relativity emerge in their full light. A funda-
mental quantity of the special relativity is the four-dimensional unit

I = Diag({1,1,1},1), (1.1)

which represents in a dimensionless form the basic units of space {1,1,1} (e.g.
1 cm, 1 cm, 1 cm for the three Euclidean axes), as well as the basic unit of time
(e.g. 1 sec). \

A pillar of the axiomatic consistency of the special relativity at both classical
and quantum levels is the universal invariance of the basic space and time units
(1.1), where the term “universal” stands to indicate invariance under all possible
space-time symmetries as well as dynamical equations.

In fact, quantity (1.1) is the fundamental unit of the Minkowski space and of its
basic Poincaré symmetry. As such, unit (1.1) is the unit of the universal enveloping
associative algebra of the acting space-time symmetry, which is the definition. of
unit tacitly implied hereon.

The invariance of the basic unit is not a mere mathematical curiosity because it
carries fundamental physical implications. In fact, it first implies lack of ambiguities
in the physical applications and experimental verifications of the theory, evidently
because the basic units used in measurements say, (1 cm, 1 cm, 1 cm, 1 sec) are
universal invariants. The same invariance has then implications at all axiomatic
and physical levels.
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A primary objective of this paper is to study the problematic aspect of defor-
mations implied by the following theorem whose classical proof will be presented
in Sec. 3 and its operator counterpart in Sec. 4.

Theorem 1.1. All possible classical and operator deformations, here defined as
being outside the class of eguivalence of conventional theories yet defined on con-
ventional spaces over conventional fields, do not possess invariant units of space,
time, energy, etc.

As a result, the numerical applications and experimental verifications of de-
formed theories, whether classical or operator, are in question because of the lack
of invariance of the basic units used for the measurements themselves.

A subsequent objective of this paper is to show that the lack of invariance of the
basic units implies additional rather serious problematic aspects, again, of physical
character.

As an example, one may attempt to bypass the probiematic aspects of Theo-
rem 1.1 by assuming that the rest of the universe is deformed jointly with that of
the basic units, thus implying valid measurements. -

Such a position is evidently questionable for the measurements of far away
objects which, as such, are independent from local dynamics.

Independently from that, the above position is insufficient to resolve the short-
comings, because the lack of invariance of the unit has additional, rather serious
implications. For example, it implies: the loss of the base field with evidently dis-
astrous axiomatic consequences; the lack of preservation in time of the hermiticity
with consequential lack of physically acceptable observables; the lack of uniqueness
as well as invariance of the numerical predictions; the loss of invariant probabilities;
the violation of causality; and, above all, the violation of the axioms of the special
relativity.

These problematic aspects are sufficiently serious, first, to warrant their collegial
awareness, and then to require systematic studies for their resolutions.

Note that we have used the terms “problematic aspects,” rather than “inconsis-
tencies,” because we do not claim at all that theories'?2?6 are physically inconsis-
tent. We only insist that their problematic aspect should be addressed in the only
possible scientific way, via publications.

As a matter of fact, our third objective is to indicate the ongoing efforts on the
invariant formulation of Lie-admissible and Lie-isotopic theories which also appear
to be largely ignored in the vast literature on deformations.

In fact, in the memoirs® we present mathematical and physical studies for an
apparent first solution of the above problematic aspects which consists of general-
ized classical and operator theories constructed under the fundamental requirement
of preserving the axiomatic structure of the special relativity, thus including univer-
sally invariant basic units, the preservation of hermiticity-observability at all times,
uniqueness and invariance of the numerical predictions, etc.
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Other resolutions of the problematic aspects are also possible, and their study is
here encouraged, but under the physically uncompromisable condition of possessing
invariant basic units.

A summary of the content of this paper is presented in note.?”(®)

2. The Notions of Lie-Admissibility and Lie-Isotopy
2.1. The first notion of Lie-admissibility

In 1948 Albert® introduced the first notion of Jordan admissible and Lie-admissible
algebras as generally nonassociative algebras U with elements a, b, ¢, and abstract
product ab which are such that the attached algebras Ut and U™, which are the
same vector spaces as U equipped with the products {a, b}y = ab+ba and [a,bly =
ab — ba, are Jordan and Lie algebras, respectively. Albert then studied the algebra
with product

(A,By=pxAxB+(1-p)xBxA, (2.1)

where p is a parameter, A, B are matrices or operators (hereon assumed to be
Hermitian), and A x B is the associative product. It is easy to see that the above
product is indeed jointly Jordan- and Lie-admissible because {4, B}y = A x B +
BxAand [A,Bly =(2p—1)x (Ax B—-Bx A).

Note that for p = 0 product {2.1) becomes that of a commutative Jordan alge-
bra, but there exist no (finite) value of p under which product (2.1) recovers the
Lie product. As a result, product (2.1) cannot be used for possible coverings of
current physical theories. In fact, Albert [loc. cit.] was primarily interested in the
Jordan, rather than in the Lie content of nonassociative algebras (see Ref. 5 for
more details).

2.2. The second and third notions of Lie-admissibility

In view of the above occurrence, in 1967 Santilli®®®) introduced the second notion
of Lie-admissibility which is Albert’s first notion [loc. cit.], plus the condition that
the algebras U admit Lie algebras in their classification or, equivalently, that the
generalized Lie product admits the conventional one as a particular case.
Santilli®®)~6(c) therefore introduced the algebra with product

(A,B)=pxAxB-gxBxA, (2.2)

with related time evolution in the infinitesimal and finite forms (i = 1)
ix%:prxH—quxA, (2.3a)
A(t) = eXIH o A(Q) x e tXPXIxH (2.3b)

where: p and ¢ are non-null parameters with non-null values p=g¢; A, B are Hermi-
tian operator (or matrices), and A x B is also the associative product. It is easy to
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see that product (2.2) is Lie- and Jordan-admissible and admits the Lie and Jordan
products as particular (nondegenerate) cases.

The second notion of Lie-admissibility®(® also resulted to be insufficient for
physical applications because, as we shall see shortly, the parameters p and g be-
come operators under the time evolution of the theory. Santilli®(®):6(¢) therefore in-
troduced the third notion of Lie-admissibility (also called general Lie-admissibility)
which is the second notion plus the condition that the algebras U admit Lie-isotopic
(rather then Lie) algebras in their classification (see below).

The latter notion was realized via the general Lie-admissible product (first intro-
duced in Ref. 6(e), p. 719)

(A,B)=AxPxB—-BxQXxA, (2.4)
and time evolution in infinitesimal and finite forms (Ref. 6(e), pp. 741, 742)
,_dA
szt—zAxPxH—HxQxA, (2.5a)
A(t) — eixHxth % A(O) X e-vixw:x];')u‘l7 » (2.5b)

where P, () and P+(@) are nonsingular, generally non-Hermitian operators with non-
singular values P+ @ admitting of the parametric values p and q as particular cases.
The conventional Heisenberg’s equations are evidently recovered for P = @ = 1.

Note that the P and Q operators must be sandwiched in between the elements
A and B to characterize an algebra as commonly understood in mathematics. In
fact, the script P x A x B— @ x B x A with P, @ fixed, is acceptable when P and
(@ are parameters, but it would not characterize an algebra for P and @ operators
because of the violation of the right distributive and scalar laws (see Ref. 7(d) for
details).

2.3. The notion of Lie-isotopy

A fundamental property of the general Lie-admissible algebras U identified in
Refs. 6(d) and 6(e) is that their attached antisymmetric algebras U~ are not char-
acterized by the traditional Lie product [4, B] = A x B — B x A, but rather by the
product (first introduced in Ref. 6(e), p. 725)

[A’Bly=AXB=BXxA=AxTxB-BxTxA,

T=P+Q=Tt, 2

called Lie-isotopic, because verifying the Lie axioms although in a more general
way. The product A X B = A x T x B is called isoassociative because more general
then the conventional associative product A ><'B, yet preserving associativity,
AX(BXC)=(AXB)xC.5©

According to the above results, the nonassociative algebra U with product
(A, B), Eq. (2.4), can be replaced with an algebra £ with isoassociative product
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AXB = A x T x B, in the characterization of the attached antisymmetric
algebrab(e),7(d)
[A}Blu = (4,B) — (B,A) = [A]B]; = AXB-BXx A (2.7)

The latter property permitted the construction of the Lie-isotopic
theory,8(4):8(e:7(d) j o a step-by-step axiom-preserving lifting of the conventional
formulation of Lie theory in terms of the isoassociative product A x B, including the
lifting of numbers, spaces, enveloping algebras, Lie algebras, Lie groups, Lie sym-
metries, transformation and representation theory, etc. The emerging new theory
is today called Lie-Santilli isotheory.8:30:31

As a particular case of the broader Lie-admissible formulations, San-
ti11i8(e):7(d), 7(E) therefore studied the Lie-isotopic time evolution in infinitesimal and
finite forms for T = T (first introduced in Ref. 6(e), p. 752)

ix i—? =[AjHli=AXxH-HXA=AXxTxH-HxTxA, (28a)
A(t) — eixHxTxt X A(O) % e—ixthxH, (2.8b)

which admit conventional quantum equations for T = 1.

Note for future needs that the Lie-admissible product (2.4) the (Lie-isotopic
product (2.7)) are the most general possible nonantisymmetric (antisymmetric)
product, respectively. This property is at the foundation of the unified treatment
of deformations as we shall see. For additional details we refer the interested reader
to monographs.”():7(f)

3. Origin and Problematic Aspects of Classical Deformations
3.1. Birkhoffian mechanics

No operator theory has sufficient depth without well-defined classical foundations.
For this reasons, Santilli studied the classical counterparts of the preceding theories,
as reported in monographs.” In essence, the classical action underlying Lie-isotopic
theories resulted to be the most general possible, first-order, Pfaffian action in phase
space”(d)

ta db*

A= t dt [Ru(b)—J[ + H{t, b)} ,
1

b={0}={"m}, R={R}={4(rp), B rp)}, (3-1)

p=12,....6, k=1,2,3,

whose variations yield Birkhoff’s equations® in the covariant and contravariant
forms (see Ref. 7(d) for all historical notes and references)

dv  OH(t,b)

L (O) = =~ (3.2a)
db SH(¢,b)
Y ur 2N ) .
— = ) = (3.2b)
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with (nowhere degenerate) covariant and contravariant tensors

__OR, OR,
Quu - 61)’1‘ - BbV 3 (33&)
Q7 (b) = (1Qapl~H™. (3.3b)

The ensuing mechanics, called Birkhoffian mechanics in Ref. 7(d), was said
to be isotopic because it preserves the main axioms of conventional Hamiltonian
mechanics although realized in their most general possible form. We are here refer-
ring to: (1) derivability from the most general possible first order action (analytic
isotopy); (2) characterization by the most general possible, regular symplectic struc-
ture in local coordinates (geometric isotopy),

Q =, (b)db* A db; (3.4)

and (3) characterization by the most general possible regular (unconstrained) brack-
ets verifying the Lie axioms (algebraic isotopy)
. OA_ . . 0B
[A, B]* = WQ“ (b)w (3.5)

Conventional classical Hamiltonian mechanics is admitted as a particular case
at all levels for R = R? = (p,0), as one can easily verify.

One may consult Ref. 7(d) for additional aspects, including: the unified treat-
ment via the conditions of variational selfadjointness; the isotopies of Lie’s theory;
the proof of the “direct universality” of the mechanics for local-differential and
analytic systems; and other aspects.

Since Eqgs. (2.8) and (3.5) have the same generalized (unconstrained and regu-
lar) Lie structures, the latter were introduced in Refs. 6(e) and 7(d) as the clas-

sical counterpart of the former, an assumption subsequently confirmed by specific
studies.”(®

3.2. Hamilton-admissible and Birkhoff-admissible mechanics

References 6(b), 6(d), 7(a) and 7(b) were devoted to the study of the classical
counterpart of Lie-admissible equations (2.5). Conventional Newtonian forces are
divided into variationally self-adjoint (SA) and non-self-adjoint forces (NSA),7()
Fy(t,b) = F2A 4 FNSA, The SA forces are represented in terms of a conventional
potential U (%, b) via the techniques of the inverse problem [loc. cit.]. The NSA forces
are represented via the algebraic tensor of the theory, according to the equations
first introduced in Ref. 6(d)

ab” OH(t,b) mdvy, SA' NSA
nv —
e S#¥(t,b) B = T EpA(L,b) — F 22 (¢, b)), (3.6a)

(§#) = (W) + (s*) = (_(1) é) + (8 (FNSA/(()BH/ap)> , (3.6b)
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where w"¥ is the familiar canonical Lie tensor and S*¥ is a Lie-admissible tensor
because

SHY(1,b) — SYE(t, b) = 2wH” . (3.7)

Consequently, the brackets of the time evolution

dA dA oH
—_— e [ald e
— = (A, H) = 58" (t,0) 75 (3.8)

are of Lie-admissible type,
(Aa B) - (B,A) = 2[A> B, (39)

(with a trivial character of this type because the factor 2 is constant) with a com-
patible lifting of the symplectic two-form (3.4) called symplectic-admissz’ble.7(b)

The emerging mechanics was called in Ref. 7(b) Hamilton-admissible mechanics
when the attached antisymmetric tensor is Lie (as in Egs. (3.6)) or Birkhoff-
admissible mechanics when the attached antisymmetric tensor is the Birkhof-
fian one.

Note the simple direct universality of the Hamilton-admissible mechanics
(without any need to go to the broader Birkhoff-admissible case) for all possible
Newtonian systems, owing to general algebraic solution (3.6b). This simple direct
universality should be compared with the rather complex direct universality of
Birkhoff’s equations (3.4).7(®)

It is important to know that Lie-admissible equations (3.7) were constructed
along the original Hamilton’s equations, those with external terms here denoted
FNSA In fact, the number of independent functions in the external terms ERNSA
and that in the Lie-admissible tensor S*” coincide.

Reformulation (3.6) is requested by the fact that the brackets of Hamilton’s
equations with external terms violate the conditions to form any algebra, let
alone Lie algebras, thus preventing the construction of a covering of conventional
Hamiltonian mechanics. On the contrary, brackets (3.8), first of all, verify all con-
ditions to characterize an algebra, and, second, that algebra results to be Lie-
admissible, i.e. a covering of the algebraic structure of conventional Hamiltonian
mechanics.

Note also that the (autonomous) Lie-isotopic equations (3.4) are structurally
reversible, that is, they are reversible for reversible Hamiltonians. On the contrary,
Lie-admissible equations (3.6) are structurally irreversible, that is, they are irre-
versible even for reversible Hamiltonians. These main characteristics will persist at
the operator level of the next section.

Therefore, the Lie-admissible equations are particularly suited for an aziomati-
zation of irreversibility, that is, its representation via the structure of the theory,
rather than the addition of symmetry breaking terms in a time-symmetric Lagran-
gian or Hamiltonian.
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Since Egs. (2.5) and (3.6) have the maximal possible (unconstrained and regular)
Lie-admissible structures, the latter were assumed in Refs. 6(e) to be the classical
image of the former, as confirmed by subsequent studies.”(®

A most dominant characteristics of Birkhoff’s equations is that of being derivable
via noncanonical transformations b — b'(b) of Hamilton’s equations.”(® This can
be seen from the fact that the most general possible, nowhere degenerate symplectic
tensor €2, (b) is a noncanonical image of the fundamental symplectic tensor w,,
according to the rules (see Ref. 7(d), Subsec. 5.3 for details)

ob* ov?

Quu(b) = éﬁwaﬂgl—)ﬁ .

(3.10)

The transition from the fundamental symplectic tensor wqp to the symplectic-
admissible tensor S,,, is more general, and requires fwo noncanonical transforma-
tions b — b'(b) and b — b"(b), one acting to the right and one from the left,
according to the rules

ob® P

S (b) = grwas g -

(3.11)

3.3. Problematic aspects of the Birkhoffian and
Birkhoffian-admissible mechanics

We are now equipped to present the following:

Proof of Theorem 1.1 (classical profile). The fundamental units of space I =
Diag(1,1,1) are embedded in the canonical symplectic structure according to the
familiar form

(W) = (? _é> , (3.12)

with an evident extension to four-dimensional space—time units for relativistic for-
mulations.

An important axiomatic property of conventional Hamiltonian mechanics is that
of admitting the basic unit I = Diag(1,1,1) as the fundamental invariant. In fact,
the transformation theory, including all possible symmetries, are given by canoni-
cal transformations, that is, transformations leaving invariant structure (3.12) by
assumption. The emerging mechanics is then axiomatically and physically consis-
tent, as well known.

It is then easy to see that all deformations of Hamiltonian mechanics of Lie-
isotopic type, by their very conception, do not leave invariant the basic units because
they must deform the fundamental canonical structure as a necessary condition to
exit from the class of equivalence of the conventional theory.

Liftings of type (3.10) are reducible to the generalization of the unit I =
Diag(1,1,1) into 3 x 3 matrices whose elements have an arbitrary functional de-
pendence on local quantities (see Ref. 7(d) for details),
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@ =(7 7o) ﬂnuu):(f(‘;,) ‘Iéb')>, (3.13

which evidently implies the loss of the units of the original theory.

All deformations of Hamiltonian mechanics of Lie-admissible type also imply a
greater loss of the basic units of the original theory, because the ensuing matrix
(Suv) is no longer totally antisymmetric, i.e. of the type

(W) = (? "é) o (S) = (;‘((5)) —Iéb')> , (3.14)

thus implying the loss of the very image of the units of the original theory, and this
proves Theorem 1.1 for the classical profile. q.e.d.

Thus, all classical deformations of the conventional Hamiltonian mechanics do
not appear to be physically viable as conventionally treated, because they do not
possess invariant units of measurements and, as such, their physical applications
and experimental verifications are afflicted by eviderit problematic aspects.

The classical implications of Theorem 1.1 are rather serious. The lack of in-
variance of the basic unit evidently implies the following (see also Refs. 27 and
28(b) for more details):

Corollary 3.1. Classical deformations do not possess an invariant field of numbers.

But conventional Euclidean and Minkowskian spaces are centrally dependent
on the field on which they are defined. We therefore have the following additional
problematic aspect (see also Ref. 23(a) for more details)

Corollary 3.2. Classical deformations do not have invariant carrier spaces.

The following additional problematic aspects, considered the most important
one by this author, can then be easily proved:

Corollary 3.3. Classical deformations violates the axioms of the special relativity.

The above problematic aspects illustrates the reasons why, after the labo-
rious study of the classical Lie-admissible and Lie-isotopic theories reported in
monograph,” this author had to restart his classical studies from the beginning in
order to reach generalizations of classical Hamiltonian mechanics with universally
invariant basic units, as reported in memoirs.2®

We close this section by nothing that Theorem 1.1 also applied to the Rieman-
nign geometry as well as to all gravitational theories with non-null curvature. In
fact, all such theories in 3 4 1 dimensions are noncanonical images of Minkowskian
theories. As a result, all gravitational theories with non-null curvature do not possess
basic units of space, time, etc., which are invarient under the time evolution and/or
under the symmetries of the line element. For a detailed study of this occurrence
we refer the interested reader to the memoir.29(®)
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4. Origin and Problematic Aspects of Operator Deformations

4.1. The majestic axiomatic and physical consistency of
quantum mechanics

The axiomatic beauty and physical consistency of quantum mechanics are the result
of an articulated body of individually consistent and mutually compatible formu-
lations, including (see, e.g. Ref. 11 and historical accounts quoted therein): the
underlying linear, local and potential structure; the universal enveloping associative
algebra with fundamental unit I (say, I = Diag(1,1,1) representing the three-
dimensional Euclidean units of length), elements A, B, H, etc. given by operators
that are Hermitian on a Hilbert space H over the field of complex numbers C,
associative product A x B, etc.

& I, AxB, Ax(BxC)=(AxB)xC,

(4.1)
IxA=AxI=A, VAce;

the fundamental Heisenberg finite and infinitesimal time evolution for Hermitian—
Hamiltonians

At) =U x A(0) x UT = et x A(0) x e
~ —i(Ax H—H x A) = —i[A4, H]; (4.2)
the equally fundamental Schrédinger equation,
H(t,r,p) x ¢(t,7) = E X ¢(t,r), (4.3)
the underlying unitary structure of the theory,
UxUl=U'xU =1; (4.4)

the equivalence of the Heisenberg and Schrodinger representations; the invariance
of the basic units of time, length, energy, etc. with consequential consistent appli-
cation to measurements; the preservation of hermiticity under the time evolution of
the theory with consequential physically acceptable observables; the verification of
causality and probability laws; the rigorous validity of the axioms of Galileo’s and
Einstein's special relativities (e.g. via Mackay imprimitivity theorem!!); and other
features.

4.2. Initial operator deformations

Attempts at generalizing the structure of quantum mechanics via the relaxation of
one or the other of its axioms can be traced back to the inception of the theory
itself. In this section we show that all such broader theories, with no exception
known to this author, have rather serious physical shortcomings when they are
outside the class of equivalence of quantum mechanics, are regular-unconstrained
and are formulated with the conventional mathematics of quantum mechanics.
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In the next section we shall then show that the problems herein studied emerge
in the treatment of deviations from conventional quantum axioms when repre-
sented via conventional mathematics, such as conventional numbers and fields,
conventional vector and Hilbert spaces, etc. On the contrary, when deviations from
quantum axioms are treated with new mathematics specifically conceived for that
purpose, realistic possibilities of regaining the original axiomatic beauty and phys-
ical consistency exist.

One of the oldest attempts that comes to mind is the relazation of the aziom
of linearity of quantum mechanics, i.e. the formulation of theories nonlinear in the
wave functions (see, e.g. the recent Refs. 12 and historical accounts therein). In
essence, doubts on the capability of a strictly linear theory to describe the entire
universe date back to the very birth of quantum mechanics. They have been inves-
tigated throughout this century with nonlinear equations of the type

H(t,r,p,¢) X ¢(t,7) = E x ¢(t,7). (4.5)

Even though mathematically impeccable and generally unitary, when formulated
on conventional spaces over conventional fields, nonlinear theories of type (4.5)
violate the superposition principle, as one can verify. As a result, nonlinear theories
cannot be used for physically consistent representations of composite systems, such
as hadrons, nuclei, atoms, stars, etc. The same theories also have additional deeper
shortcomings, e.g. in the topology, with consequential loss of the imprimitivity
theorem!! and evident violation of established relativities (owing to their notorious
linearity).

The above problematic aspects of nonlinear theories have been studies by Santilli
and others (see Ref. 7(f) and literature quoted therein). Additional comprehensive
studies on the limitations of nonlinear theories have been studied by Schuch (see
Ref. 27(e) and papers quoted therein).

A second type of attempts which can also be traced to the early part of this
century consists in the relazation of the amiom of locality of quantum mechanics.
In fact, doubts have always existed as to whether the operator description of a
finite set of isolated points can represent the entire universe.”) As experimentally
established, all massive particles have extended wavepackets and their deep over-
lapping is evidently not reducible to a finite number of isolated points. Since the
sole known operator theory was Hamiltonian, it became rather nature to attempt
the representation of nonlocal interactions via the addition in the Hamiltonian of
“integral potentials,” i.e. potentials characterized by surface or volume integrals.

Regrettably, these broader theories have no mathematical or physical value of
any known type for various reasons. Mathematically, they imply the violation of the
underlying nonrelativistic and relativistic topologies (because they are well known
to be strictly local-differentials), with consequential invalidation of the mathemat-
ical foundations of the theory.

Physically, nonlocal effects due to wave-overlappings are known to be of “con-
tact” type for which the notion of potential has no known meaning (i.e. it would be
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like representing the resistive forces experienced by the space-shuttle during re-entry
in atmosphere with a potential, whether local-differential or nonlocal-integral). As a
result, nonlocal interactions due to wave-overlapping, to have physical sense, should
be represented with anything ezcept the Hamiltonian.

For comprehensive studies on nonlocal interactions and related literature one
may consult Santilli.”

. A third, rather old, generalized formulation that comes to mind was attempted
via the relazation of the the aziom of potentiality. As indicated in Sec. 1, doubts
as to whether all interactions in the universe are derivable from a potential can be
traced back to Lagrange, Hamilton and Jacobi, and they persisted in the transi-
tion to operator theories in the early part of this century. Since, again, the only
known operator theory is Hamiltonian, it appeared logical to attempt the repre-
sentation of nonpotential effects via “imaginary potentials” ¢V (t,r). This leads to
the well-known dissipative nuclear models (see, e.g. Ref. 13) with non-Hermitian
Hamiltonians, H = Hy + iV # HT, and consequential finite and infinitesimal time
evolution,

A(t) = U x A(0) x UT = et x A(0) x e~ itH'
~—i(Ax HN — H x A) = —i(A, H, HY). (4.6)

Unfortunately, the above theories are seriously flawed on physical grounds
because dissipative nuclear models (4.6) lose “all” algebras in the brackets of their
time evolution, let alone all Lie algebras, evidently because of the loss of the bilinear
Lie product [A, H] in favor of the triple product (A, H, HT). As a consequence, the
notion of nucleons with spin 1/2 has no known mathematical or physical meaning
for dissipative nuclear model (4.6) and the same fate occurs for all other notions
characterized by a Lie algebra. ,

This is due to a “hidden,” yet fundamental requirement of dynamics accord-
ing to which all applicable symmetries must be characterized by the brackets of the
time evolution, because the use of different brackets implies the referral to different
systems. This fundamental requirement is indeed verified for quantum mechanics,
while it is not verified for models (4.6). As a consequence, the SU(2)-spin symmetry
cannot be even conceived, let alone treated for the models considered, thus imply-
ing the complete loss of meaning of the terms “spin 1/2.” Moreover, dissipative
nuclear models (4.6) have a nonunitary finite time evolution, thus suffering of all
the additional shortcomings of Theorem 1.1 studied below.

Studies on the problematic aspects in representing dissipation via triple systems
have been conducted by Santilli and others (see Refs. 7(a), 7(b) and 7(f) and papers
quoted therein).

A fourth representative class of rather old generalizations of quantum mechanics
can be today characterized via the relaxzation of the universal enveloping associative
algebra. This third attempt occurred in statistical mechanics at large, and in the
behavior of the density matrix in particular. In essence, the insufficiency of the
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Hamiltonian for the representation of collisions was identified since the inception
of quantum mechanics, resulting in the addition of an external collision term to
the Liouville equation for the density, with equations used throughout this century
(see, e.g. Ref. 14)

idp

-zi—t—:(p,H):pr—pr—l—C:{p,HH—C. (4.7)

The latter models suffer of physical shortcoming greater than the preceding
ones. In fact, as it is the case for models (4.6), models (4.7) also lose all algebras
in the brackets of the time evolution (p, H), let alone all Lie algebras (this time
because of the violation of the scalar and distributive laws). In addition, the latter
models lose the exponentiation of the time evolution to a finite form, thus losing
any consistent application of basic topics such as rotations or Lorentz transforms,
let alone violating the premises for the implementation of any known relativity.

At a deeper inspection, the technical reason for the above occurrences is that the
addition of an external term to the Lie brackets implies the loss of any consistent
enveloping algebra, whether associative or not. By recalling that the enveloping
algebra is at the foundation of quantum mechanics, e.g. for the representation
theory,!! its loss essentially implies the collapse, whether in a direct or indirect
way, of the totality of the original axiomatic structure and physical consistency. In
particular, models of type (4.7) have no unit at all, thus losing physically consistent
applications to real measures, contrary to popular beliefs in the field throughout
this century.

Studies on the physical inconsistencies of theories with external collision terms
have been conducted by Santilli,#(€)7(2),7(®) Jannussis and Skaltsas?’(¢) and others.

Numerous additional attempts exist in the literature of the first part of this cen-
tury at relaxing other axioms of quantum mechanics, and they all suffer of physical
shortcomings similar to the preceding ones when treated with the mathematics of
quantum theories.

4.3. Lie-admissible and Lie-isotopic deformations

In 1967 Santilli®(® (see Refs. 7(a) and 7(b) of 1978 and 1982 for detailed initial
studies, and Refs. 28 for the latest advances) introduced the first known parameter-
deformations of the Lie product according to the second notion of Lie-admissibility
(and Jordan-admissibility of Subsec. 2.2}, Eq. (2.2), which we now write

(A,B)=pxAxB—-gxBxA
=mX(AXxB-BxA)+nx(AxB+BxA4), (4.8)

where p=n-+m, ¢g=n—m and p+ q are non-null real or complex parameters (or
functions).

Subsequently, in 1978 Santilli’(®) (see Refs. 7(c) and 7(d) of 1978 and 1983 for
detailed initial studies, and Refs. 28 for recent advances) introduced the first known
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operator-deformations of the Lie product according to the third (or general) notion
of Lie-admissibility (and Jordan admissibility, see Subsec. 2.2), Eq. (2.4), which we
now write

(A,B)=AxPxB-BxQxA
=(AXMxB-BxMxA)+(AxNxB+BxNxA), (4.9)

where P = N+ M, Q@ = N—M and P+Q are nonsingular, generally non-Hermitian
operator (or real-valued, nonsingular and nonsymmetric matrices).

The motivation of the latter deformations is due to the fact that the time evo-
lution of the parameter-deformations, Egs. (2.3), is nonunitary when formulated on
a conventional Hilbert space over the conventional field of complex numbers. The
operator-deformations then follow from the parameter ones via a simple nonunitary
transform with

UxU'#1I, P=px@UxUHY, Q=¢gxUxUH1, (4.10)
as one can verify (see also the next section). ‘

Another property that does not appear to have pfopagated in the rather vast lit-
erature on deformations is that the operator broadening of parameter-deformations
emerges as tnevitable, even when not desired, under the mere time evolution of the
theory. Equivalently, all parameter-deformations are solely valid at one, single, fived
value of time.

Note that, when reached in this way, operator deformations (4.9) remain a
realization of the third notion of Lie-admissibility under any additional nouunitary
transform, as the reader can also verify (see Sec. 5 for the problem of invariance). In
particular, deformations (4.9) are characterized by the most general possible (regu-
lar, unconstrained, bilinear, single-valued) product defining an algebra (over a field
of characteristic zero). As such, they admit as particular cases all other infinitely
possible quantum deformations with a well-defined algebra in their product, as we
shall see in more details below.

Yet another aspect that does not appear to have propagated in the literature is
that deformations (4.8) or (4.9) and all their non-antisymmetric particular cases,
can only represent open nonconservative systems. This is evidently due to the fact
that, from Egs. (2.5) we have the time-rate-of-variation of the energy i dH/dt =
(H,H) = Hx(P-Q)x H # 0. By contract, numerous particular cases, such as the
g-deformations reviewed below, as often applied in the literature for conservative
cases, with evident inconsistency.

In 1978 Santilli®) (see Refs. 7(c) and 7(d) of 1978 and 1983 for detailed studies,
and Refs. 28 for recent accounts) introduced the simpler class of ax1om—preservmg
operator deformations of the Lie product, Eq. (2.7),

[A}B] = (A,B) - (B,A)=AXxB-BxA
=AxTxB-BxTxA, (4.11)
T=P—Qa

N
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which identifies the “Lie-content” of the general Lie-admissible deformations (see
Refs. 6 and 7 for the complementary Jordan content which we cannot possibly
consider here for brevity).

Note that deformations (4.11) emerge quite naturally via a nonunitary transform
of the conventional Lie product with

UxUl£I, T=UWxUH1, (4.12)

and they preserve their Lie-isotopic structure under additional arbitrary nonuni-
tary transforms, as one can also verify (see again Sec. 5 for invariance). As such,
brackets (4.11) are the most general possible (regular, unconstrained, bilinear,
single-valued) operator realization of the Lie product (on a field of characteristic
z€ero).

From time evolution (2.8) it is evident that antisymmetric deformations (4.11)
can only represent closed-isolated systems. In fact, in this case we have the conser-
vation law of the energy idH/dt = H x (T'— T) x H = 0, and the same occurs for
other total conservation laws.”(®) ,

More generally, Lie-admissible deformations (4.9) are used to characterize the
brackets of the time evolution of open, nonconservative and irreversible systems
with unrestricted external interactions, admitting as classical counterpart the his-
torical Hamilton’s equations with external terms, only re-written in the identical,
algebraically consistent form (3.6).

By comparison, Lie-isotopic deformations (4.11) where instead used for the char-
acterization of the brackets of the are evolution of closed, isolated and irreversible
systems with linear and nonlinear, local and nonlocal and potential as well as non-
potential internal interactions, possessing Birkhoff’s equations (3.2) as their classi-
cal counterpart (see Refs. 6-8 and 27-31 for details).

It should be stressed that, as better indicated in the next section, the above
Lie-admissible and Lie-isotopic operator-deformations were introduced under the
specific requirement that they are treated via new mathematics, called genomath-
ematics and isomathematics, respectively.5(®:28() Tn this section we study said
deformations with the conventional mathematics of quantum mechanics.

4.4. Additional deformations

Several years following the origination of the above deformations, numerous other
deformations appeared in the literature, although generally without the quotation
of the former, such as:

(1) the g-parameter deformations introduced in 1989 by Biedenharn'®® and
Macfarlane,'®) which were then followed by a vast literature (see, e.g.
Ref. 16), with product

(A,B)=AxB—gxBxA,; (4.13)
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(2) the so-called quantum groups!” generally consisting of parameter-dependent
deformations of the structure constants of a given Lie-algebra, while keeping
the conventional Lie product unchanged,

Xix Xj —X; x X; = Cf; x Xpo = Xi x Xj — Xj x X;
= D}(q) x Xg; (4.14)

(3) the so-called k-deformations (see, e.g. Refs. 18), which essentially are a par-
ticular relativistic form of quantum groups;
(4) the so-called star models'® with lifting of the associative product

Ax B =AxT x B = isoassociative (4.15)

(5) a particular form of nonlinear deformations introduced by Weinberg2%(® via a
nonassociative deformation of the associative enveloping algebra of quantum
mechanics,

A % B = nonassociative; (4.16)

(6) the so-called squeezed states theories (see, e.g. Refs. 21), which are character-
ized by a nonunitary image of quantum mechanical theories;

(7) the statistics by Prigogine et al.,?? which also has a nonunitary structure;

(8) noncanonical time theories;??

(9) the Ellis-Mavromatos-Nanopoulos model of black hole dynamics with San-
tilli’s Lie-admissible structure;2*

(10) supersymmetric theories;?®

(11) Kac-Moody superalgebras;20

and other models.

Another class of operator theories which are deformations of quantum mechanics
according to our definition is known under the name of grantum gravity. In fact,
it is easy to prove that, as a necessary condition to acquire curvature, all quan-
tum gravity theories are nonunitary image of conventional quantum theories when

formulated on a conventional Hilbert space over a conventional field, as studied in
detail in Refs. 28(b) and 29(h).

4.5. Lie-admissible and Lie-isotopic unification of
operator deformations

The first property which is recommendable for a systematic study of the axiomatic
consistency of the above disparate deformations is the following:

Proposition 4.1. All operator deformations of quantum mechanics which are out-
side the class of equivalence of the original theory and admit an algebra which is
(is not) totally antisymmetric, are particular cases of Santilli’s Lie-isotopic (Lie-
admissible) formulations.
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The proof is so simple that can be merely illustrated. In fact: g-deformations
as per Egs. (4.13) are an evident particular case of the (p,q)-deformations (4.8);
quantum groups are a particular case of Lie-isotopic theories because the deforma-
tion of the structure constants (e.g. of the SU(2) algebra) can only be achieved via
nonunitary transforms; k-deformations can therefore be more adequately studied
within the context of Lie-isotopic theory (as a full nonunitary image of a Lie algebra,
rather than deforming the structure constants via nonunitary maps, while pre-
serving the original vector space unchanged); star-models as per Eq. (4.15) co-
incide with Santilli’s isoassociative envelope of the Lie-isotopic theory; Weinberg
nonlinear theory as per envelope (4.16) also coincides with the very basic axiom
. of general Lie-admissibility, Eqs. (4.11), as done in reformulation®*(®) where rule
(4.11) is formulated via indices; squeezed states, Prigogine’s statistics and non-
canonical time theories have a clear nonunitary Lie structure, thus being a clear
realization of the Lie-isotopic theory; The Ellis—-Nanopoulos-Mavromatos model is
one of the few with a quoted Lie-admissible structure; in view of their mixing com-
mutators and anticommutators, supersymmetric theories are a clear particular case
of the Lie-admissible deformations (4.9) with P and @ constants; the Kac-Moody
superalgebras, which also mix commutators and anticommutators, are also a clear
particular case of the Lie-admissible theories (4.9), this time, for M =1 and N a
phase factor (see the original definition of general Lie-admissibility of Ref. 6(d) in
which the quantities M and N depend on the generators); and similar occurrences
hold for other deformations, as the reader is encouraged to verify.

It is also important to see that all historical generalizations of quantum me-
chanics recalled in Subsec. 4.2 can also be identically reformulated in terms of the
Lie-isotopic or Lie-admissible theories. Besides providing a unification of evident
value for axiomatic studies, the reformulation produces a consistent algebra when
it does not exist in the conventional formulation.

For instance, all nonlinear theories (4.5) can be identically rewritten in terms of
the Lie-isotopic theory via the rules

H(t,r,p,¢) x |¢) = Ho(t,r,p) x T(¢) X |¢) = E x [¢) . (4.17)

Similarly, nonpotential models treated via “imaginary potentials,” Eqgs. (4.6),

. admit the following identical reformulation in terms of Lie-admissible equa-
tions (4.9),

(AJHHY=AxH' —HxA=AXxPxHy—HyxQx A, (418)

, 4.18

H=HyxQ, Hy=H), P=gQ.

Along similar lines, models with external collision terms (4.7) can also be identically
rewritten via Lie-admissible theories (4.9) according to the rules

[, Hl+C=pxH—Hxp+C=pxPxH—-HxQ@Qxp,

(4.19)
P=1, Q=1+H1xCxpt.
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Similar identical reformulations exist for other generalized models, such as for
string theories, theories with discrete space and time structures, and others.”(f) As
we shall see in the next section, the above reformulations are not mere mathematical
curiosities because they permit a resolution of the problematic aspects of the original
versions.

The unified treatment of all possible deformations via Lie-isotopic or the broader
Lie-admissible formulations permits the unified study of the axiomatic constituency
of operator deformations at large, which should otherwise be conducted on an
individual basis.

4.6. Nonunitary character of operator deformations

Ironically, by the time of the appearance of papers'® by Biedenharn and Macfarlane,
Santilli®” had already abandoned this line of inquiry because of insurmountable
problematic aspects of physical character reported in Refs. 27 and 28(b), whose
study can be initiated with the following:

Lemma 4.1. The general Lie-admissible time evolution (2.5) and its Lie-isotopic
particularization (2.8) are nonunitary when formulated on a conventional Hilbert
space H over the conventional field of complex numbers C for all nontrivial (i.e.
operator) realizations of P, Q, T.

Proof . Heisenberg’s time evolution in finite form has a bimodular Lie structure,
in the sense of being characterized by an action to the right, here denoted U~ =
exp{iH x t)} and an action to the left, here denoted <U = exp{—it x H},

A(t) = U x A(0) x U = 1%t x A(0) x e™*H (4.20)

The unitarity of the time evolution follows from the familiar conjugation
U= U>)'. (4.21)
The familiar condition of unitarity, Eq. (4.4), then acquires the more detailed forms

UxUT=UxU=U>x<U=<UxU>=U>x U

=UNNxU>=<Ux (=) x<U=1I. (4.22)
The general Lie-admissible law (2.5) violates, first, condition (4.21) and then
each condition (4.22) because of the lack of commutativity of P and Q with H. The
Lie-isotopic time evolution (2.8) verifies condition (4.21), but violates conditions
(4.22), again, because of the lack of general commutativity of T and H. Therefore,
time evolutions (2.5) and (2.8) are nonunitarity. The same occurs for all particular

cases, such as ¢- or k-deformations, supersymmetric models, Kac-Moody algebras,
etc. q.e.d.

The above occurrence was evidently expected from its classical counterpart,
namely, the noncanonical character of the transformation theory of the Birkhoffian
and Birkhoffian-admissible mechanics.”
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4.7. Problematic aspects of operator deformations

The nonunitary structure of operator deformations (as defined in this section) has
devastating implications for the axiomatic and physical consistencies of the theories.
In fact, we have the following

Proof of Theorem 1.1 (operator profile). Consider the case of the regular repre-
sentation of the rotational symmetry on Euclidean space over the reals. The space
unit I = Diag(1,1,1) of quantum mechanics is the unit of the enveloping associa-
tive operator algebra & with generic elements A, B, ... and conventional associative
product A x B, Egs. (4.1). It is well known that, by definition, the above unit is
invariant under unitary transformations, I — I’ = U x I x U = I, thus recovering
the known axiomatic consistency of the theory.

By comparison, from their very definition, nonunitary transforms do not pre-
serve the unit,

I-I'=UxIxU'£T. (4.23)

The same unit is not preserved under the time evolution of all nonunitary defor-
mations, e.g.

%:(I,H):IXPXH—HXQXI?éO, (4.24a)
idl .
—(—Zi—z{I,H]:IxTxH—HxTnyéO. (4.24b)

Thus, all nonunitary deformations lose the invariance of the unit with respect to
both the transformation theory as well as the dynamical equations, and this proves
Theorem 1.1 for all possible the operator profiles. q.e.d.

As a result, ¢-, k-, quantum-, supersymmetric, Kac-Moody, Lie-isotopic, Lie-
admissible and all other operator deformations with nonunitary structure cannot be
unambiguously applied to measurements, because, e.g. it is not possible to measure
distances with a (stationary) meter of length varying in time.

Corollary 4.1. Nonunitary deformations do not preserve hermiticity when defined
on conventional Hilbert spaces over conventional fields.

Proof. Under a nonunitary transform, the familiar associative modular action
of the Schrddinger’s representation H x |¢), where H is an operator Hermitian at
the initial time ¢ = 0, becomes

UxHx|Y)=UxHxU'x (UxUNxU x|y)
= H x T x|4), (4.25a)
UxUV£I, T=UxUYHY, | =Uxy), (4.25b)
A=UxHxU'. (4.25¢)
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By noting that T is Hermitian, the initial condition of hermiticity of H on H,
(| x {H x )} = {{p| x HT} x |2}, when applied to the Hilbert space #{ with states
%), |@), ete. requires the action of the transformed operator on a conventional inner
product, resulting in the loss of hermiticity at subsequent times, a property first
studied by Lopez?”®) and known as Lopez’s Lemma,

@l x {H x T x )} = {(@| x T x H x |4)),
ie.
H =T 'xHxT+#H. (4.26)

In fact, hermiticity is not generally preserved because of the lack of general
commutativity of T"and H. q.e.d.

The problematic aspect of Corollary 4.1 is rather serious because it implies that
all nonunitary deformations, as conventionally treated, do not possess physically
acceptable observables.

Corollary 4.2. Nonunitary deformations on conventional Hilbert spaces over con-
ventional fields do not possess unique and invariant numerical predictions.

Proof . The lack of uniqueness is a well-known problematic aspect in the literature,6
and can be seen from the lack of uniqueness of g- or k-special functions such as the
exponentiation. The lack of invariance can be seen from the fact that the Lie-
isotopic and Lie-admissible equations are not form-invariant under their own time
evolutions when formulated on H over C.
Specifically, for the case of Lie-isotopic equations (2.8) we have
. . I
A X TxH-HxTxA— 44
dt dt

=AxT' xH —H xT' x A'. (4.27)

The lack of conservation of the numerical value of T' then implies the evident lack
of invariance of the numerical predictions. An even more general lack of invariance
occurs for Lie-admissible equations (2.5). q.e.d.

As is well known, the numerical predictions of quantum mechanics are the result
of data elaboration via special functions and transforms, e.g. partial wave analysis
based on Legendre polynomials. These numerical predictions are then unique and
invariant because of the uniqueness and invariance of the special functions and
transforms.

The problematic aspect of Corollary 4.2 is also serious because it implies the
lack of physical meaning of the numerical predictions of nonunitary deformations.
In fact, the numerical predictions of operator deformations are also elaborated via
special functions and transforms, the so-called g-, k-, and other special functions
and transforms. But these special functions are not invariant under nonunitary time
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evolutions (because, e.g. the g-parameter becomes the Q operator as per rule (4.10).
The lack of invariance of the numerical predictions then follows.

The above occurrence also implies the following problematic aspect (where the
definition on H over C is hereon ignored):

Corollary 4.3. Nonunitary deformations do not possess unique and invariant phys-
ical laws.

It is then easy to prove the following:
Corollary 4.4. Nonunitary deformations do not possess invariant probabilities.

Recall that the causality of quantum mechanics follows from the unitarity of its
time evolution. We therefore have the additional:

Corollary 4.5. Nonunitary deformations violate causality.

Besides all the preceding problematic aspects, that considered by this author
most serious, is the following one of evident derivation from Theorem 1.1:

Corollary 4.6. Nonunitary deformations violate the axioms of Galileo’s and Fin-
stein’s special relativities.

The above occurrence can be easily illustrated by noting that, e.g. the &-
deformed Minkowski spaces of Refs. 18 are not compatible with the Lorentz
transforms, or that the k-deformed Poincaré symmetry is not isomorphic to the
conventional symmetry.

Corollary 4.6 then implies the rather difficult problems of identifying new rela-
tivities, proving their axiomatic and physical consistencies, and establishing them
experimentally.

Theorem 1.1 and all its Corollaries also apply to the contemporary theories
on gquantum gravity which, when formulated on a conventional Hilbert space over a
conventional field, have a nonunitary structure, thus lacking invariant units of space,
time, etc. losing the original hermiticity-observability under the time evolution, and
having other serious physical problematic aspects studied in details in Refs. 28(b)
and 29(h).

We complete this section with a review of Okubo’s No Quantization Theo-
rem?7(® which prohibits the use of nonassociative envelopes because they imply
the lack of equivalence between the Heisenberg-type and Schridinger-type represen-
tations.

More specifically, the Schrodinger representation is based on the right, modular,
associative action of an operator H on a state |¢), H X |¢), where X is such that
A x (B x|¢)) = (A x B) x |¢). When the enveloping operator algebra is based on
a product, say, A o B for which Ao (B o C) # (A o B) o C, the Schrédinger-type
and Heisenberg-type representations cannot possibly be equivalent, as first iden-
tified by Okubo, while a “nonassociative extension of Schrodinger representation”

would have problems of physical consistency because in this case 4 o (B o |¢)) #
(40 B)o|¢). 7@
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In turn, the above nonequivalence has disastrous consequences for the physical
consistency of the theory studied in details Jannussis, Mignani and Santilli,?”(4)
such as: ’

(1) General loss of all units, let alone of their invariance, because nonassociative
algebras do not generally admit a quantity I such that o A = Aol = A
for all possible A, thus suffering from a drawback more severe than that of
Theorem 1.1.

(2) No quantity whose definition depends on the Schrédinger representation (such
as the notions of hermiticity and observability) can be even defined at any time,
thus suffering again from a drawback more serious than that of Theorem 1.1.

(3) For the same reasons there is the lack of consistent definition of exponentiation,
thus lacking finite transforms such as the Galilei or Lorentz transforms, with
consequential loss of causality, probability laws, etc.

The above shortcomings prevent the achievement of axiomatic consistency for
any deformation based on a nonassociative envelope, such as Weinberg’s nonlinear
theory.20(® Jordan?°(®) attempted a reformulation of Weinberg’s theory via the
use of our fundamental rule (2.7) although in a disguised expression in terms of
indices A;;T;1Chi. Despite that, the latter formulation of Ref. 20(b) suffers of all
the shortcomings of Theorem 1.1 because it is possesses a nonunitary structure
when defined on conventional spaces and fields.

This completes our study of the problematic aspects of classical and operator
deformations with the understanding that, by no means, the above study exhaust all
deformations existing in the literature. Interested readers can identify the problem-
atic aspects of other deformations via the techniques presented in this paper. The
author would be grateful to colleagues who care to bring to his attention additional
important deformations deserving a specific inspection.

5. Invariant Formulation of Classical and Operator Deformations
5.1. Preliminaries

The third and final objective of this paper is to outline as well as to upgrade the
efforts conducted so far for the achievement of an invariant formulation of classi-
cal and operator, Lie-isotopic and Lie-admissible deformations, and then present,
apparently for the first time, the invariant reformulation of known deformations.

These studies have been conducted under the name of hadronic me-
chanics® 827731 which includes the Lie-isotopic and Lie-admissible branches con-
sidered in this paper, plus additional branches not considered in this study for
brevity, such as the multivalued hyperstructural branch (used for multi-dimensional
cosmologies or biological structures), as well as antiautomorphic images of the pre-
ceding branches called isoduals (used for the classical and operator treatment of
antimatter).
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Therefore, by conception and construction, hadronic mechanics contains as par-
ticular cases all possible or otherwise known operator deformations. Studies for
invariance conducted within the context of hadronic mechanics are then directly
applicable to all known deformations.

The main structural difference is that hadronic mechanics achieves invariance
via new mathematics specifically conceived for each branch, while deformations are
treated via the conventional mathematics of quantum mechanics, thus suffering the
shortcomings outlined in the preceding section.

Note that all existing deformations, including g¢-, k-, star-deformations, quan-
tum groups, nonlinear nonlocal and nonunitary theories, supersymmetric and Kac- '
Moody algebras, etc. can be identically treated via the new mathematics of hadronic
mechanics, by achieving in this way the invariance needed for physical applications.

However, the reader should be aware from the outset that, even though the
dynamical equations are the same, the invariant numerical predictions are different
than the noninvariant ones, as evidently expected from the fact that their elabora-
tions are different.

To avoid excessive initial complexities, in this section we shall review first the
invariant formulation of classical and operator Lie-isotopic theories, and then pass
to the more complex invariant formulation of Lie-admissible theories. We shall then
indicate the application of the results to the invariant reformulation of deformations.

Tt should be indicated that the achievement of invariant generalized theories
resulted to be rather difficult. In fact, for reasons reviewed below, it took about
two decades to achieve an invariant formulation of Lie-isotopic theories following
their original formulation,?(®):6(¢) while it took three decades to reach an invariant
formulation of the broader Lie-admissible theories following their original proposal
in 1967.6()

The reader should therefore be aware that all studies directly or indirectly re-
lated to hadronic mechanics prior to 1996, including all studied conducted by this
author until that time, are not invariant.

Sufficient maturity in the new mathematics was only reached in the recent
memoir?®8(® and papers.3? Sufficient maturity in the physical formulation of the
Lie-isotopic and Lie-admissible branches of hadronic mechanics was only reached
in the recent memoirs,28(°)28(¢) respectively. Sufficient maturity on symmetry pro-
files was reached in Refs. 29 and memoir.30(®)

In this paper we cannot possibly review all these studies and, to avoid a pro-
hibitive length, we can only outline and upgrade the main aspects and suggest the
consultation of Refs. 27-30 for technical details.

5.2. Hermitian isounit and isomathematics
i

A sound foundation of contemporary classical or operator dynamics is the assump-
tion that conventional Hamiltonians can represent the totality of interactions which
are linear (in the wave functions), local-differential and derivable from a potential.
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As a consequence, all deformations aim at the representation of effects, character-
istics or interactions which are non-Hamiltonian by conception.

The main issue here addressed is therefore how to represent non-Hamiltonian
terms in an invariant way, that is, in a way capable of recovering the same axiomatic
consistency of Hamiltonian formulations.

The solution submitted by Santilli in 197857 is to represent all non-Hamiltonian
terms via a generalization of the basic unit of the theory. The main motivation for
this solution is the well known property that the unit is the fundamental invariant
of all theories. The embedding of non-Hamiltonian terms in generalized units can
therefore be safely assumed as a sound basis for the achievement of the desired
invariance.

Other solutions are evidently possible, and their study is here encouraged,
provided that they achieve an invariance at least equivalent to that offered by
the unit.

The fundamental assumption for the invariant representation of Lie-isotopic
deformations is then the lifting of the conventional n-dimensional unit I =
Diag(1,1,...,1) of classical or quantum theories into an (n x n)-dimensional matrix
I which is nonsingular, Hermitian and positive-definite, but otherwise possesses an
unrestricted functional dependence on time ¢, coordinates r, velocities dr/dt, wave
functions ¢ and their derivatives d¢/0r (for the operator case), and any other
needed quantity%2®

o¢

. s 2 dr 1
I-—Dlag(l,l,...,l)—>I_(Ij)-I<t,r, dt,qS, 5‘1""”> =F- (5.1)

An invariant formulation of the deformations then follows when the totality of
the original mathematics is reconstructed in such a way to admit I , rather than I,
as the correct left and right new unit.

This requires the lifting of all conventional associative products A x B among
generic quantities A, B (e.g. numbers, vector fields, operators, etc.) into the form
[loc. cit.)

AxB - AXB=AxTxB, T =fixed, (5.2)
under which I is indeed the correct left and right unit
I%A=AxI=A, (5.3)

for all possible quantities A.

The emerging new theories were called isotopic®@) in the Greek meaning of
being “axiom-preserving.” In fact, by assumption, I, A x B, etc. preserve all original
axiomatic properties. Under these conditions (only), I is called the isounit, T is
called the isotopic element, A X B is called an isoassociative product (or isoproduct
for short), and the prefix “iso” is used in similar cases.

For consistency, liftings (5.1)—(5.3) must be applied to the totality of the original
mathematics, with no exception unwon to this author. In fact, it is now well known
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to experts in isotopies that any exception in this basic rule (essentially implying a
mixture of conventional and generalized settings), does not imply invariance.

The implementation of the above basic rule mandates the construction of a
new mathematics, specifically (and solely) applicable to the Lie-isotopic branch of
hadronic mechanics, constructed under the name of isomathematics,(@),7(e),8,27-31
which includes: new isonumbers # = n x I; new isogeometries such as the iso-
Euclidean geometry with isometric § = T x § and isointerval r? = (rt x &j x 77y x
I ; iso-Hilbert spaces; isoalgebras, isotopologies, isospecial functions and isotrans-
forms, ete.

Regrettably, we cannot possibly review this new mathematics for brevity. Its
technical knowledge is however essential for a technical understanding of this sec-
tion. For instance, all operations depending on multiplications must be lifted for
consistency. This evidently includes all quotients which have to be lifted into the
isoquotient. But the lattér assume the simple form a]b = (a/b) x I. As a result, the
isoproduct of an isoquotient and a generic quantity coincides with the conventional
product (a]b) % A = (a/b) x A. The latter scripture will be used mainly for the
reader’s convenience with the understanding that invariance occurs only for the
former.

Despite the use of the new isomathematics, the dynamical equations of all
Lie-isotopic theories formulated prior to 1996 were still noninvariant for reasons
that escaped identifications for about two decades. It was finally discovered in the
memoir?8(®) that the origin of the noninvariance was where one would expect it the
least: in the ordinary differential calculus.

In essence, all treatises on differential calculus are silent on its dependence on
the unit because the (tacitly assumed) conventional unit, the number I = +1, has a
trivially null differential, dI = 0. This is 'no longer the case when the assumed unit
I = I(t,r,...) depends on the local variables, for which di # 0. The memoir?8(®
identified this occurrence and constructed, apparently for the first time, the iso-
topies of the differential calculus (or isodifferential calculus for short) via the basic
expressions

It = I, x dt, Jrszfixdri, (5.4a)
o 4 0 8 R

T=T - —Akzz — 4
t t X 0t7 Br E X ori”’ (5 b)

where I, is evidently a scalar.

Note that the new calculus is an isotopic image of the old one and as such,
it preserves all original axioms on isospace over isofields (although not necessarily
in its projection on conventional spaces over conventional fields), including the
commutativity of the derivatives. Note in particular that dr¢/drf = gt.

The lack of invariance of all isotheories prior to Ref. 28(a) is now clear. In fact,
it occurred in the most vital part of any physical theory, its fundamental dynam-
ical equations, because all dynamical equations of isotheories prior to Ref. 28(a)
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were expressed in terms of the conventional differential calculus, thus being non-
invariant.

The isodifferential calculus completed all isotopies that could possibly be con-
structed and permitted the achievement of an invariant formulation of Lie-isotopic
theories which was first reached in the memoir?8(®) of 1997, and whose results are
evidently extendable to all possible deformations with an antisymmetric product in
the time evolution.

In the following we shall assume the notation generally used in isotopies accord-
ing to which all quantities with a “hat” are computed on isospaces over isofields
(i.e. with respect to generalized units), while all quantities without the “hat” are
the projections of the former on conventional spaces over conventional fields (ie.
are computed with respect to conventional units).

We shall also assume that all repeated indices in isospaces imply sum with
respect to the isometric § =T x 6, and all repeated indices between isounits Ior
isotopic elements T and other indices are computed with respect to the conventional
metric 4.

While conventional theories and all their deformations have a unique forrmu-
lation, the usual one, all isotopic theories have instead two formulations, one on
isospaces over isofield and the other on conventional spaces over conventional
fields.

Invariance is achieved by identically reformulating the latter in the former
context.

5.3. Classical iso-Hamiltonian mechanics

The achievement of invariant formulation of classical deformations was not a mere
mathematical detail, inasmuch as it implied the birth of a basically novel mechan-
ics presented for the first time in the memoir?8(® under the name of the iso-
Hamiltonian mechanics. In particular, the novelty occurred in the physical most
important aspects, the equations of motion.

In fact, the mem01r28(a) first introduced the iso- Newton equations

i, B _ OV (5.5)
dt ork

where 7 = m x I, x; = xTyx, O = ci’f'k/dt =T x d(T,i(t,r,v, ...) X r;/dt), and
v 1brk = T x av/or.

The memoir?®®) then proved that the above isoequations are “directly univer-
sal” (Sec. 1) for all infinitely possible, unconstrained, well-behaved systems of par-
ticles which are extended, nonspherical and deformable under linear and nonlinear,
local and nonlocal and potential as well as nonpotential forces.

As one can verify, these representations are permitted by realizations of the
space isotopic element of the class

i 111
7 = Diag ( R ) < T(t,r,v,...), (5.6)
”1 n3 ”3
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where the factor Diag(1/n?,1/n2,1/n2) represents the extended, nonspherical and
deformable shapes of the particles (here assumed to be a spheroidal ellipsoid), while
the factor I'(t,r,v,...) represents all nonlinear, nonlocal and nonpotential forces.

The time isotopic element T, is generally redundant in iso-Newtonian mechanics
and can be assumed to be the value +1 (not so for relativistic mechanics where the
value T} = c2/n? permits a representation of the locally varying speed of light
¢ = cg/ns — see the memoir?®® for brevity).

Note that Egs. (5.5) constitute a generalization of Newton’s equations in New-
tonian mechanics (thus prior to any relativistic gravitational or constrained exten-
sion). In particular, Egs. (5.5) signal the transition from the Galilean-Newtonian
representation of “massive points” to extended, nonspherical and deformable
bodies.

The latter extension was made possible by the underlying novel iso-Fuclidean
geometry (see the monograph?(®) and the latest presentation?®® for the relativistic
case) and related isotopology specifically constructed for the task (see Refs. 28(a),
30(b) and 30(d) for brevity). ,

Note the mechanism of invariance under non-Newtonian characteristics. It con-
sists in embedding all non-Newtonian terms in the isotopic elements in such a way
that the iso-Newton equations on iso-Euclidean space coincide with the conventional
Newton equation for conservative systems.

The memoir?®(®) then proved that all possible Egs. (5.5) are derivable from the

new isoaction principle?® @)
t2 r Tk
A= dt pkxdT —|—H(t,r,p)}
t L dt
[P r . drt
= dt pkxlf(t,r,v,a,...)x——-—i—H(t,'r,p)}
£ ) dt
I P
= [ dt|Ro(b) x = +H(t,b)}
i L dt
T L dv
= dt|Rou(b) x IF x v + H(t,b)] , (5.7a)
tl L
7 1

(I#) = Diag(1,T), I=(})==
T (5.7b)
Ro=(p,0), b=(r*pr), p=12,...,6, k=1,2,3.

The “direct universality” of the above variational principle is evident due to the
arbitrariness of the functional dependence of the isounit I. Note also that, as part
of this direct universality, action functionals of arbitrary order (i.e. dependent on
accelerations or higher derivatives) can always be rewritten in the identical first-
order isotopic form {i.e. dependent at most on the velocities).
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Note again the achievement of invariance via the reconstruction on isospace over
isofields of the conventional canonical action A = fttf dt[py, x dr®/dt + H(¢,7,p))
which, to our best knowledge at this writing, is solely permitted by the isodifferential
calculus.

The invariant form of the iso-Hamilton equations?®®-2(®) (also called
Hamilton-Santilli isoequations®3%3!) as characterized by the above isoaction prin-
ciple, is given in the infinitesimal and finite forms by

o ) .
a5 QHEE) _ OH(E:D)
dt Bbv v
o QH(tD)
= wH*’ x 5 X _.87)9—— 5 (58&)
bi(t) = (27 % B %3 )0 (0), (5.8b)

where one should keep in mind that the summation in the symplectic structure
w = dr® A dpy, is now generalized (because on iso-Euclidean spaces).
The fundamental algebraic brackets of the theory can then be written
= ?X X QMY X ?Y =§£xw“”x (?Y,

Ob# obv  Obk obv
which, as such, formally coincide with the conventional canonical Lie brackets, thus
assuring the preservation of the Lie axioms in isospace (but generally not in their
projection on conventional spaces).

Therefore, iso-Hamiltonian mechanics constitutes the classical realization of the
Lie-Santilli isotheory.

We finally mention the invariant form of the isotopic Hamilton-Jacobi equa-
tions?8(2:28(b) (also called Hamilton—Jacobi-Santilli isoequations®??)

%é—i—H(t,r,p):O, g:}t—pk:O, g;ik:

Note that, while the conventional Hamiltonian mechanics in general, and
Hamilton’s equations in particular, can only represent in the fixed frame of the
experimenter a rather small class of Newtonian systems,”® the Hamilton—Santilli
isomechanics is directly universal for all possible iso-Newtonian systems possessing
a conserved Hamiltonian. In particular, the above universality includes all possible
(well-behaved) nonlocal and nonpotential forces, as desired.

Moreover, the construction of Hamiltonian representations (when they exist)
of given local-differential Newtonian systems is quite complex, because it requires
the solution of nonlinear partial differential’ equations (these are the conditions of
variational selfadjoininess of the inverse Newtonian problem”(®)). On the contrary,
the construction of the iso-Hamilton representations from given nonlocal systems is
quite simple because it requires the solution of generally overdetermined algebraic
equations (see the memoir?*® for brevity).

[X7Y]

(5.9)

0. (5.10)

'
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The reader should bé aware that the construction of the iso-Hamiltonian
mechanics was possible because of the prior construction, not only of the iso-
Euclidean geometry indicated earlier, but also of the isosymplectic geometry we
cannot possibly review here.?8(®)

5.4. Lie-isotopic branch of hadronic mechanics

Following simple, yet unique and unambiguous isotopies of the naive or sym-
plectic quantization,?8(2):28(b) the operator image of the Hamilton—-Jacobi—Santilli
isoequations (5.10) characterize the following iso-Schrédinger equations formulated
via the isodifferential calculus for the first time in Ref. 28(a) (see Ref. 7(f) for
literature on the earlier formulations)

iby|¢) = iTy x 8¢ = H X |$)
= H(t,r,p) x T(t,7,p,6,...) x |¢)

=Ex|§)=E x|$), (5.11a)
%|@) = pp x T x |§) = —idk|p) = —iT§ x 3i| ), (5.11b)

(b3 b“]%[ Py =" x T x b b x T x b*) x T x |¢)
= M X |P) = iwh x |, (5.11c)

which are now formulated on iso-Hilbert spaces. H with isoinner product (¢31 x T x
1) x I and isonormalization (@] xT'x|¢) x I = I defined over the field of isocomplez
numbers C(&,+, X) with elements ¢ = ¢ X I, conventional sum + and isoproduct
% = xTx.

The corresponding invariant form of the iso- Heisenberg equations, first proposed
by Santilli®(®) in 1978 and first formulated in terms of the isodifferential calculus in
Ref. 28(a), is given in the infinitesimal and finite forms by

ix%‘:m;m:,@ SH-B%A

= A x T(trp,qﬁ,a ) H(t,r,p)

— H(t,7,p) xT“(t,r,p,qs,g?,...) x A, (5.12a)

At) = U % A(0) x UT = &%t 5 A(0) % e~ A
— eiﬁxi“xt ~ A(O) > e—z’thxH, (5.12b)

and they can be easily proved to be equivalent to the iso-Schrédinger form.

Note that we have used in Egs. (5.12b) the isoezponentiation, which is the lifting
of the conventional exponentiation on the isoenvelope (thanks to the isotopies of
the Poincaré-Birkhoff-Witt theorem first formulated in Ref. 6(d)) eX =T+X/11+
X %X+ = (X*T) x [ =TI x (eT*X).



Origin, Problematic Aspects and Invariant Formulation of ... 3191

It is evident that time evolution (5.12) characterizes the operator realization
of the Lie-Santilli isotheory,5~8273! with the finite form characterizing a one-
parameter isogroup of isounitary transforms on H over C,

st =0tx0=1. (5.13)

The effects of isomathematics in the operator formulation now begin to be
visible. In fact, the above operator theory is directly universal as its classical origin,
although this time for all infinitely possible, well-behaved, nonlinear, nonlocal and
nonpotential interactions with a conserved Hamiltonian (owing to the unrestricted
functional dependence of the isotopic element T) Yet, the eigenvalues of the fun-
damental isocommutation rules (5.11c) coincides with the conventional quantum
values iwh”.

The latter property signals the abstract identity between hadronic and quan-
tum mechanics, including the preservation of all conventional quantum axioms and
physical laws under said unrestricted non-Hamiltonian interactions. As an example,
the preservation of Heisenberg’s uncertainties can be easily proved from the preser-
vation of the conventional eigenvalue of the isotopic commutator [r*ip] = 5;-, and
similar occurrences hold for the preservation of all other quantum principles, such
as Pauli’s exclusion principle.28(®)

Besides preserving all characteristics of quantum mechanics, as assured by the
very nature of the isotopies, isohermiticity coincides with conventional hermiticity
as the reader is encouraged to verify (see Ref. 28(b) for details). This implies that
all quantities that are observable for quantum mechanics remain observables for the
isotopic branch of hadronic mechanics, thus including the real-valuedness of the
eigenvalues.

In actuality, all observables of quantum mechanics are preserved identically in
hadronic mechanics, and are merely rewritten on isospaces over isofields. This occur-
rence can be first seen from the preservation completely unchanged of the con-
ventional Hamiltonian as representing the total energy. Non-Hamiltonian effects
are represented via different operations, because physical quantities such as linear
momentum, angular momentum, energy, etc. cannot possibly be changed by the
interactions. :I

The above occurrence is technically established by the Lie-Santilli isotheory
in which conventional space-time and internal symmetries are subjected to iso-
topies while preserving identically the original generators (see, for brevity, Refs. 29
and 30(c)).

The abstract identity of hadronic and quantum mechanics can be best illustrated
by the property that the isoezpectation values of the isounit recover the conven-
tional unit?®(®) :

b1, = (5.14)
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Despite the above property, the reader should keep in mind that the same
operator H has different eigenvalues in quantum and hadronic mechanics, evi-
dently because of the different eigenvalue equations H x |¢) = FEo x [¢) and
HxTx|)=Ex|§), E # Eo.

As a result, hadronic mechanics is a “completion” of quantum mechanics accord-
ing to the historical argument by Einstein, Podolsky and Rosen 32(2) (see the title
of the memoir28(®) and paper??®). In fact, the isoeigenvalue equations H X !qf))
E(T ) |¢) constitute an ezplicit and concrete realization of the theory of hidden
variables, evidently with A = 7T'. In reality, hadronic mechanics provided an explicit
and concrete operator realization of the theory of hidden variables.

Note that von Neumann’s theorem32(®®) and Bell’s inequality®2(®) are not appli-
cable to hadronic mechanics, evidently because of its nonunitary structure. In fact,
the isotopies of Bell’s inequality do indeed admit classical counterparts,?®(® thus
confirming the achievement of a “completion” of quantum mechanics according to
the historical EPR argument.

We finally note that hadronic méchanics is permitted by the following novel
degree of freedom of Hilbert spaces first identified in the memoir?(®) (here expressed
for an isotopic element independent from the integration variables)

(@ x [ x T= (] x T x |op) x T™" = (¢l % |9) x I. (5.15)

The reader should not be surprised that the above degree of freedom of Hilbert

spaces has remained unknown throughout this century, because its identification
required the prior discovery of new numbers, those with arbitrary units.

5.5. Simple construction of Lie-isotopic theories

To complete our outline and upgrade of the antisymmetric branch of hadronic
mechanics, the reader may be interested in knowing the existence of simple, yet
unique and unambiguous means for the explicit construction of the above classical
and operator isotheories.

As recalled earlier, the fundamental requirement of all classical (operator) defor-
mations is that of being noncanonical (nonunitary) images of the original Hamilto-
nian theory. Another fundamental assumption of the isotheories is the identification
of the isounit precisely with said noncanonical (nonunitary) transforms, according
to the rule

UxUt=1+1I, (5.16)

where t represents transpose for the classical case and Hermitian conjugation for
the operator counterpart.

The entire classical (operator) Lie-isotopic theory can then be constructed in
its invariant form via the systematic application of the above noncanonical (non-
unitary) transform, provided that it is applied to the fotality of the original for-
malism. Again, any exception implies a mixture of conventional and generalized
mathematics, with consequential inconsistencies.
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In this way we have: the lifting of conventional real or complex numbers into
the isonumbers, n — 7 = U x n x Ul = n x (U x U') = n x I; the lifting
of the conventional associative product into the isoproduct n x m — AXm =
Ux(nxm)xUt=axTxm, T = (U x U1 =1, under which I is the correct
left and right unit of the theory; the lifting of the Hilbert product into the isoinner
product (¢] x [1) = U x (¢| x 1) x Ut = ()| x T x |§) x £, |§) = U x |¢); and the
same occurs for all other aspects, as the reader is encouraged to verify.

The above simple construction has resulted to have particular value for applica-
tions. As one illustrations among the several applications currently available,28(P)
we mention that the first achievement of an explicitly attractive interactions be-
tween the identical electrons of the Cooper pair in superconductivity was reached
precisely via a judicious yet simple selection of a nonumtary transform of the con-
ventional Coulomb theory.

Note that, once achieved via a noncanonical (nonunitary) transform, isotheories
are not invariant under additional noncanonical (nonunitary) transforms.

5.6. Resolution of the problematic aspects of Theorem 1.1 for
antisymmetric products

The above classical and operator isotopies resolve all known problematic aspects
of conventional deformations with antisymmetric brackets in the time evolution, as
studied in details in Refs. 7(e), 7(f) and 28(b). Evidently these studies can only be
outlined here for brevity.

First, Lie-isotopic theories reconstruct linearity, locality and canonicity on iso-
spaces over isofields. This resolves all problematic aspects of conventional nonlinear,
nonlocal and nonpotential theories with an antisymmetric algebra (Subsec. 4.2).

Secondly, isotopic theories are invariant under noncanonical (or nonunitary)
transforms provided that they are treated via the isomathematics. This requires
their reformulation in the isocanonical (or isounitary) form

U=UxTYV?, UxUl=0x0'=U'xU=1. (5.17)

In fact, it is easy to see that, at the classical level, isocanonical transforms
preserve the isocanonical tensor, i.e. UX @ X Ut = & (see the memoir?®® for a
proof). Equivalently, the algebraic tensor of Hamilton—Santilli isomechanics is the
canonical Lie tensor, just multiplied by the isounit, @ = w x I. The invariance of
the isotheory is then ensured.

The invariance of the operator theory under isounitary transforms is then
consequential. In fact we have: the numerical invariance of the isounit I =
' = UxI%0t = I, the invariance of the isoassociative product Ax B —
Ux(AxB)xUt = A’ x T'x B' = A’ X B, with consequential invariance of the
Lie-Santilli isoproduct; and similar invariances hold for all other aspects. The in-
variance of the fundamental dynamical equations (5.11) and (5.12) then follows, as
guaranteed by the correct application of the isotopies.
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The above features assure: the invariance of the basic units of time, space,
energy, etc. thus permitting unambiguous applications to measurements; the preser-
vation of the original hermiticity at all times, thus permitting physically acceptable
observables; the uniqueness and invariance of special functions and transforms, with
consequential uniqueness and invariance of the numerical predictions; the validity
of causality and probability laws; and the validity of all conventional axiomatic
properties.

Finally, the exact reconstruction of the axioms of the special relativity holds
because (unlike the case of k and other deformations) the isotopic images of the
Minkowski space and of the Poincaré symmetry are isomorphic to the conventional
forms.?° This property is not a mere mathematical curiosity, because it establishes
that, contrary to a popular belief throughout this century, the speczal relativity
remains ezactly valid under nonlinear, nonlocal and nonpotential interactions, as
well as for arbitrary local speeds of light, of course, when treated with the adequate
mathematics (see Refs. 7(e) and 7(f) and the latest memoir®®®™).

The isotopies also permit the axiomatically consistent inclusion of gravitation
in unified gauge theories of electroweal interactions®*() and other applications in
various fields too numerous to mention here.

A list of experimental verifications and predictions as of early 1997 is available
in the memoir.28(P)

5.7. Lie-isotopic reformulation of antisymmetric deformations

The identical invariant reformulation of all possible, generalized classical theories
with antisymmetric brackets in the time evolution can be readily done via the rules
here expressed for Birkhoff’s equations (3.2)

W _ e OO BHED)

dt obv o
namely, by: (1) factorizing the conventional canonical Lie tensor in Birkhoff’s
(contravariant) tensor, Q4 = wH? x T;’ (2) by assuming the factor 1" as the inverse
of the isounit; and (3) by embedding said factor in the differential calculus.

In this way, when formulated on isospaces over isofields (that is, when referred to
the isounit J ), the theory becomes purely Hamiltonian, thus assuring the recovering
of the original invariance. Non-Hamiltonian terms only emerge in the projection of
the theory on conventional spaces over conventional fields (that is, when referred
to the unit I).

The identical invariant isotopic reformulation of operator deformations with
antisymmetric brackets is equally straightforward.

First, we recall Okubo’s No-Quantization Theorem?”(®) which prevents the
equivalence of the Heisenberg-type and Schrodinger-type representations, as re-
viewed in Subsec. 4.7. This mandates the preservation of the associative character
of the envelope, thus leaving its isoassociative realization as the only viable alter-
native.

(5.18)
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In turn, the only known invariant formulation of isoassociative envelopes is that
on isospaces over isofields, thus mandating the use of the isotopic branch of hadronic
mechanics as the only invariant operator theory known to this author at this time.

Once these foundations are understood, the reformulation of operator deforma-
tions with antisymmetric products is straightforward. In fact, we have:

(A) Star deformations!® remain completely unchanged in hadronic mechanics, and
are merely reformulated on isospaces over isofields which then assure their
invariance.

(B) Nonlinear theories'? are also identically reformulated in hadronic mechanics
via the mere embedding of all nonlinear terms in the isotopic element as per
Eqgs. (4.17). In this case the regaining of linearity on isospace over isofield
guarantees the regaining of the superposition principle with consequential
applicability of nonlinear theories to composite systems, as well as the re-
gaining of the necessary topology to apply the imprimitivity theorem.”(®

(C) Prigogine’s nonunitary statistics?? is also identically reformulated in hadronic
mechanics, and merely expressed on isospaces over isofields which also
guarantee its invariance.

(D) Squeezed states theories
ones.

(E) Quantum groups require a redefinition for their formulation as invariant
realizations of the Lie-Santilli isotheory consisting of: first, the identification
of the generally nonunitery map from the quantum mechanical structure con-
stants C'{”] to the new, g-parameter dependent structure constants Dfa (¢), and
the application of the same nonunitary map to the totality of the original
theory, beginning with the generators and then including numbers. associative
product, functional analysis, etc. As recalled in Sec. 4, in their current formu-
lations, quantum groups are generally unitary, thus escaping the drawbacks of
Theorem 1.1. However, their physical relevance is obscure due to the fact that
they are a mixture of structure constants outside the class of equivalence of
quantum mechanical symmetries with purely quantum mechanical generators
and pro@uct.

21 are also identically reformulated as the preceding

Similar reformulation are possible for all other deformations with antisymmetric
brackets in the time evolution, such as the axiomatically consistent treatrient of
string theories or nonlocal interactions, which is achieved via their embedding in
the isounit of all nonlinear and nonlocal terms.

The reader should however be aware that, even though the above isotopic re-
formulations are identical, the numerical predictions are generally altered. The
best illustration is given by squeezed states theories which have been constructed
to reach deviations from Heisenberg’s uncertainties via nonunitary transforms.
However, once identically reformulated in terms of the isotopies, squeezed states
theories verify Heisenberg’s uncertainties in their entirely, as established by hadronic
mechanics.28(b)
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Particularly simple is the invariant Lie-isotopic reformulation of Riemannian
theories of gravitation. In fact, the Riemannian metric in 3 + 1 dimensions g(z)
is precisely a noncanonical image of the Minkowski metric m. The invariant iso-
Minkowskian reformulation of the Riemannian geometry is then simply given by
factoring the Minkowski metric in any given Riemannian metric, g(z) = T(z) x
m, and by assuming T as the inverse of the new unit. The identical, invariant
reformulation of gravity is then given by the reconstruction of the conventional
Minkowskian geometry via the new isounit I =1/T (see Refs. 28(b) and 29(h) for
details).

5.8. Non-Hermitian genounits and genomathematics

The fundamental assumption of the Lie-admissible branch of hadronic mechanics
is the relaxation of the hermiticity of the basic unit, It + I , while preserving its
nonsingularity and the other conditions. This implies the existence of two different
generalized units denoted and interconnected as follows:

1

<f = X, f> = X, ! (519&)
p . Q
P =cht. ‘ (5.19b)

In turn, a theory with two different units necessarily requires the following,
corresponding ordering of the products,

A<B=AxPxB, A>B=AxQxDB, (5.20)
for which I> and <7 are indeed left and right units
PesA=A>"=A, <I<A=A<<I=A. (5.21)

Under these conditions (only), the new units are called genounits while the
related products are called genoproducts, where the prefix “geno” indicates the
genotopies first introduced by Santilli®(® in 1978 in the Greek meaning of “inducing
covering theories.” In fact, the isotopic theories are recovered identically for Hermi-
tian generalized units, while conventional quantum theories are recovered identically
when the Hermitian unit is the trivial value I.

The assumption of an ordering in the product then necessarily requires the
construction, this time, of two isomathematics interconnected by Hermitian conju-
gation. The emerging dual isomathematics has the structure of an isobimodule and
it is called genomathematics (see the latest account in the memoir?8(®)).

In this way, we have: genonumbersn” = nx 1>, <n = <Ixn with corresponding
genoproducts (5.20), genofields F> (3>, +,>) and <F(<f,+,<) and bigenofields
{<ﬁ’,13‘>}; geno-Hilbert spaces %>, <H on corresponding genocomplex numbers
with genoinner product <f x (@] x P x |¢) and (B] x Q x |y x I>, and their
combination into the bigeno-Hilbert spaces {<H,#>}; the genodifferential calculus
with main rules d>rF = [7* x dri, §> /8>r% = Qi x 8/8r%, etc. (see Ref. 28(a) for
details).
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5.9. Classical geno-Hamiltonian mechanics

Genotopic theories were originally proposed for the aziomatic treatment of the
origin of irreversibility. In fact, they are structurally irreversible, i.e. irreversible
also for reversible Lagrangians or Hamiltonians.

The ordered product > (<) with corresponding unit [> (<I) and related for-
malism is generally assumed to characterize the forward (backward) motion in time
with interconnection characterized by transpose. Irreversibility is then reduced to
the most primitive possible setting, the difference of the two units and related
products.

The physical foundations are the historical teaching by Lagrange and Hamil-
ton. In fact, all known action-at-a-distance interactions are time-reversal invariant.
The teaching by Lagrange and Hamilton is to represent irreversibility via the ex-
ternal terms in their equations. Genotopic theories merely represent this historical
teaching in the only invariant way known at this writing, that via real-valued non-
symmetric generalized units. '

As it was the case for the iso-Hamiltonian mechanics, the invariant reformulation
of the Hamilton- and Birkhoff-admissibles mechanics of Sec. 3 implied a structurally
novel mechanics first identified in the memoir.28(®) Evidently, we can here review
only the main lines. Assume an ordering of time, say, the forward one. We then
have [loc. cit.):

(1) the geno-Newton equations

S d7o7 _ vz
i
where > =mx [, >;=xQ;x, iy = (z>f‘,?/cz>t> = Qy xd(Q> 1 {t,7,v,...) X

r7 /dt>), and §>V> /8> r>* = QL x 9V/0r>");
(2) the genoaction principle

™ > X (522)

i> = >1> ‘dh>”">k > ’
A :‘/t1> dt {pk X T + H (t,r,p)]
= > #>k dr>*
:‘/t> dt [kaIi XEF+H>(t,T,p)]
1
&3 o s >pr .
= . dt > {ROu(b ) > e +H (t,b)]
t N
B /t> dt [Rgu(b>) X I;u X 'zi‘t;“ +H>(t,b)} y (523&)
1

) R3 :(p>’0)7

(I7#) = Diag(1>,Q), P =L~ 5

(5.23b)
b> =k pr), p=12,...,6, k=1,2,3;
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(3) the geno-Hamilton equations (also called the Hamilton-Santilli genoequa-
tions®30) here written in their infinitesimal and finite forms

>or o> 5> H>(t,b)
d>t> >b>v
&5 H>(t,b) . OH>(t,b)
— LA T2 p ?
wh? x g Wt x QF x TR (5.24a)
' 3> > 5>
SUip>Y d)>cxl3> 3 H 6 >u i
boH(t7) = (e 55 pop > 5>poa b”#(0); (5.24b)
(4) the genobrackets characterized by the preceding equations
5> 3>y 5> 5>
(X3Y) = Aa X o oo Aa = ? X o x ? Y ; (5.25)
H>pou 5>p>v  Hcbpow d>pov
(5) the geno-Hamilton-Jacobi equations
5> A> S , 5 A> >" 5 A>
5>t> + H (t,r,p)-O, W—pk —0,—5?1%'—0, (526)

with corresponding backward genoequations.

The above equations are also directly universal as it is the case for the iso-
Hamiltonian particularization. The main difference is that the former constitute an
open, nonconservative and irreversible system, while the latter are still irreversible,
but are closed-isolated, i.e. they possess total conserved energy.

The reader should be aware that the construction of geno-Hamiltonian me-
chanics required the prior construction of the geno-Euclidean and genosymplectic
geometries we cannot possibly review here for brevity. For numerous examples and
additional aspects, the interested reader may consult Refs. 7(e) and 28(a).

5.10. Lie-admissible branch of hadronic mechanics

A simple genotopy of the conventional quantization, or just the relaxation of her-
miticity of the isounit in the isoquantization, yields in a unique and unambiguous
way the forward geno-Schridinger equations (see Refs. 7(f), 28(a) and 28(b) for
original contributions)

i07|67) = iQu x 8i|$”) = H” > |47)
= H(t,r,p) X Q(t,r,p,qﬁ,g—f,...) x |¢7)
=E> > |¢”)=Ex|¢), (5.27a)
by > 167) = pe x Q x |¢7) = —i87|$7) = —iQi x 8il7),  (5.27h)
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which are now defined on the forward geno-Hilbert space > with genostates |¢>)
and forward genoinner product (<¢| x Q X [h>) x I> defined over the genofield
C> (&>, +, > with genocomplex numbers ¢ = ¢ x .

The equivalent geno-Heisenberg equations, first proposed in Ref. 6(e), can be
written following the genomathematics of Ref. 28(a) in their finite and infinite-
simal form

A(t) szt > A(O) < e—ztxH

= HHXQxt o A(0) x e”“PXH, (5.28a)
1A W, x -‘fé = (A, H) = A(H - H)A
=AX f’(t,r,p,qﬁ, ng,) x H(t,r,p)
or
. 86
— H(t,r,p) x Q t,'r‘,p,¢,—-a—;,... x A, (5.28b)
(B, b)) = wH* X W, b= (r*p), (5.28c¢)

where e~ and e. are exponentiations in the corresponding genoenvelopes, W and
W, can be either the forward or the backward genotopic elements of space and time,
respectively.

Note that, while the forward (backward) geno-Schrédinger equations are definite
on spaces H> (<H), the geno-Heisenberg equations are defined instead on the
bigenomodular spaces {<#,H>}. This is due to their inclusion of both forward and
backward actions. '

Note that, as pointed out earlier, the same bimodular character exists in the
conventional and isotopic Heisenberg equations. In the latter cases the bimodular
structure can be correctly ignored because the forward and backward products
coincide.

It is an instructive exercise for the interested reader to verify that all axiomatic
properties of the Lie-isotopic branch of hadronic mechanics persist under the above
genotopies.

We should note in particular the preservation on genospaces over genofields
of conventional quantum laws, such as Heisenberg’s uncertainty, Pauli’s exclusion
principle, etc. as evident from the preservation of the conventional eigenvalues of the
genocommutator rules (5.28¢c). In particular, the Lie-admissible branch of hadronic
mechanics is also a “completion” of quantum mechanics along the celebrated argu-
ment by Einstein, Podolsky and Rosen.?9(g):32

Most intriguingly, the formalism provides the first occurrence known to this
author according to which the nonconserved Hamiltonian H is Hermitian, thus
observable. In fact, the preservation of the original hermiticity of H under geno-
topies can be easily proved, and sd does its conservation from the geno-Heisenberg
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equations for which idH /dt = H x (P x —Q) x H # 0. By comparison, in all existing
nonconservative models the Hamiltonian is not Hermitian. But then, it should not
be considered as observable.

5.11. Simple construction of Lie-admissible theories

The reader should be aware that, despite their seemingly complex mathematical
structure, classical (operator) Lie-admissible formulations can be constructed in all
their aspects via the simple application of two noncanonical (nonunitary) transforms

VxVi£I, WxWI#£T, (5.29)
to the totality of the original canonical theory, according to the rules
Vvxwt=1>, <I=wxVl, >=(ht, (5.30a)

Vx(AxB)xWI=4>B, Wx(AxB)xVi=4<HB, (5.30b)

and the same happens for all other aspects, as the reader is encouraged to verify.
Note that, after having reached a Lie-admissible structure via the above simple

method, the same structure 4s not invariant under the same transforms, e.g. because

> = [ =V x > x Wt  I>. The same noninvariance exists for other cases.

5.12. Resolution of the problematic aspects of Theorem 1.1 for
nonantisymmetric products

As it is the case for the Lie-isotopic theories, it is easy to see that classical
(operator) Lie-admissible formulations are invariant under noncanonical {(nonuni-
tary) transforms, provided that they are formulated for one fixed direction of time
and expressed in the related genomathematics.

This requires the reformulation of any noncanonical (nonunitary) transform in
the following forward genocanonical (genounitary) transform

UxUl=1>£1, U=0>xQY?, . (5.31a)

UxU =0>>0>"=0>1>0> =1, (5.31b)
with similar expressions for the backward case, where again { presents transpose
for the classical case and Hermitian conjugation for the operator case.

The classical or operator Lie-admissible theories are then invariant. In fact, each
genounit is numerically preserved by the corresponding genounitary transforms,
> o5 > = 0> > > > U> = [>; genoassociative products are invariant;
and the same occurs for genonumbers, geno-Hilbert spaces, etc. as the reader is
encouraged to verify. The invariance of the geno-Heisenberg equations follows from
their bi-modular character, thus requiring the use of both forward and backward
genotransforms for the corresponding products.

The above invariance properties, as well as the preservation of the main axiom-
atic structure and physical laws of quantum mechanics, permit the resolution of all
the shortcomings of Theorem 1.1 studied in Secs. 3 and 4. The exact reconstruction
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of the special relativity.is currently under study on bimodular genospaces over
bimodular genofields.?8(¢)

5.13. Invariant Lie-admissible reformulation of
nonantisymmetric deformations

It is easy to see that the classical noninvariant Hamilton- or Birkhoff-admissible
equations (3.6a) can be identically reformulated in terms of our geno-Hamilton
equations (5.24), according to the rules:
B g QHY) o 97 H(ED) (5.32)
dt o , 5>
which, in a way similar to the reformulation of Birkhoff’s equations, Egs. (5.18),
requires: the factorization of the conventional canonical Lie tensor in the Lie-
admissible tensor, SHY = WP x Tp>" ; the assumption of the remaining factor 7~
as the inverse of the forward genounit; and (3) the embedding of the factor 7> in
the forward genodifferential calculus.

In all earlier formulations of classical Lie-admissible theories up to 1996 the Lie-
admissible tensor was decomposed into the sum S* = w*¥ + s*¥. This permitted
the regaining of a consistent algebra in Hamilton’s historical equations, those with
external terms, but the emerging theory remained noninvariant, thus not suitable
for physical applications, because treated with the conventional mathematics of
Hamiltonian mechanics.

In reformulation (5.18) the Lie-admissible tensor must be decomposed into the
product S = w X Q, where @ is nonsymmetric. Invariance then requires the construc-
tion of the new genomathematics for the nonsymmetric unit =1 /@ without any
other alternative known to this author.

The identical reformulation of operator deformations with a nonantisym-
metric product is equally straightforward. First, it is easy to see why g¢- or (p, q)-
deformations cannot be invariant when formulated on a conventional space over a
conventional field. In fact, these deformations change the product of the enveloping
algebra Ax B — g x A X B while preserving the original unit. The lack of invariance
is then an unavoidable consequence because the old unit is no longer invariant for
the theory based on the new product. This indicates the reason why, after propos-
ing these deformations back in 1967, Santilli®(®) had abandoned their conventional
study by the time of the appearance of the simpler versions by Biedenharn'®®) and
Macfarlane.'5()

The Lie-admissible reformulation of (p,g)-deformations requires that, jointly
with the liftings of the products of the envelope, the units are lifted by an amount
which is the inverse as that of the deformations,

AxBopxAxB, I—-<[=-Z, (5.33a)

AxBoqxAxB, I—f>= (5.33b)

R = S e
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The above reformulation assures the invariance of the basic units and of the related
theory ab initio, provided that, again, the transformation theory is reconstructed
with respect to the above new genounits.

It should be noted that the emerging Lie-admissible theory is mathematically
invariant, yet still with physical shortcomings because of the general violation of
the crucial conjugation I> = (<I)! which is necessary for a physically consis-
tent conjugation under time reversal (see also the concluding remarks of the next
subsection). The latter condition is manifestly violated by the q—deformations’; and
restricts the (p, ¢)-deformations to only those with complez parameters p and g such
that p = 4.

Moreover, the p and g parameters are lifted into matrices under the time evolu-
tion of the theory on conventional spaces over conventional fields, and this explains
the reason for passing from the (p,g)-parameter deformations®® to the (P,Q)-
operator deformations®® under the conjugation P = Q.

All other deformations with nonantisymmetric brackets are reformulated along
similar lines. For instance, supersymmetric theories?® have brackets which are a
particular case of the (p, ¢)-deformations, according to the rules

(A,B)=ax (AxB—BxA)
+bx (Ax B+ B x A)

(5.34)
=pxAXB-gxBxA,

p=a+b, g=a—0>.

Exactly the same occurrence holds for Kac-Moody superalgebras,?” although
with different values of the parameters.

Note that the identical Lie-admissible reformulation of the supersymmetric,
Kac-Moody and other parameter deformations permits the achievement of their
invariant. Nevertheless, the same theories remain insufficient for physical appli-
cations for the reasons indicated above, namely, the insufficiency of the mixture
of commutator and anticommutators via parameters in favor of their mixture via
operators, as well as the need of a conjugation for physical consistency under time
reversal.

The interested reader can easily work out additional reformulations.

5.14. Origin of Lie-isotopic and Lie-admissible formulations

To understand the Lie-isotopic and Lie-admissible formulations to a sufficient
depth, it may be recommendable to recall that they originate from the very struc-
ture of Lie’s theory (see the forthcoming English translation of Lie’s celebrated
thesis®3). !

In fact, as identified in the original proposal®(@):8() and recalled earlier in this
paper, a unitary Lie group has precisely the structure of a bi-module with an
action from the left U> = >t and an action from the right <U = e #*H
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interconnected by Hermitian conjugation, and such a structure exists in both the
finite and infinitesimal forms

A(t) = U> > A(0) < <U =%t > A(0) < e™#*H (5.35a)
%?:A<H—H>A, (5.35b)
<U = (U)". (5.35¢)

In this case both products A < B and A > B are evidently conventional asso-
ciative products, A < B = A > B = A x B. The point is that axiomatic structure
(5.35) does not require that such products have necessarily to be conventionally
associative, because they can also be isoassociative, thus yielding the Lie-isotopic
formulations. Moreover, axioms (5.35) do not require that the forward and back-
ward isoassociative products have to be necessarily the same, because they can also
be different, provided that conjugation (5.35) is met, in which case they yield the
Lie-admissible formulations. '

It then follows that the abstract axioms of Lie’s theory and Santilli’s Lie-isotopic
and Lie-admissible theories coincide, the latter merely being broader realizations of
the former. The basic property is the preservation of the abstract unity which holds
to such an extent that we could have presented both the Lie-isotopic and the Lie-
admissible formulations with the same abstract symbols used for Lie’s theory.

The axiomatic consistency and invariance of the Lie-isotopic and Lie-admissible
theories can then be derived from that of the Lie’s theory, of course, when treated
with the appropriate mathematics, that is, the mathematics leaving invariant the
applicable units. The only applicable mathematics are then the iso- and geno-
mathematics.

The identity of the abstract axioms of the Lie and Lie-admissible theories is con-
firmed by the property that, contrary to a widespread impression, the Lie-admissible
brackets (A,B) = A < B — B > A are indeed antisymmetric and they do indeed
verify the Lie axioms on genospaces over genofields. In fact, these brackets are
neither antisymmetry nor symmetric when computed on conventional spaces over
conventional fields. The same brackets become antisymmetric when the products
A<B=AxPxBand A> B = A x Q x B are computed with respect to units
which are the inverse of the underlying deformations, I> = 1/Q and <f=1/P,
respectively.

Alternatively, one can see that the classical counterparts of the Lie-admissible
brackets, Eqgs. (5.25), are indeed transparently antisymmetric and fully Lie on
genospaces over genofields, and acquire their non-Lie/Lie-admissible form only in
their projection on conventional spaces over conventional fields (see Ref. 28(c) for
details).

The conclusion reached by this author after some thirty years of investigations
of the topics treated in this paper is that the sole known invariant formulations
of classical and. operator deformations are those capable of preserving the abstract
azioms. (5.35) of Lie’s theory.3
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