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Abstract

The largest class of hyperstructures,called Hv-structures, is the
one which satisfy the weak properties. In this paper we deal with
the Lie-admissible hyperstrucuttures and we present a construction
of the hyperstructures used in the Lie-Santilli admissible theory on
square matrices of type An using the P-hyperstructures.
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1 Introduction

The main object of this paper is the class of hyperstructures called Hv-
structures introduced in 1990 [15], which satisfy the weak axioms where the
non-empty intersection replaces the equality. Some basic definitions are the
following:

Algebraic hyperstructure is called any set H equipped with at least one
hyperoperation (abbreviation: hyperoperation=hope) · : H ×H → P (H)−
{∅} . We abbreviate by WASS the weak associativity : (xy)z ∩ x(yz) 6=
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∅,∀x, y, z ∈ H and by COW the weak commutativity : xy∩yx 6= ∅,∀x, y ∈
H. The hyperstructure (H, ·) is called Hv-semigroup if it is WASS, it is
called Hv-group if it is reproductive Hv-semigroup, i.e., xH = Hx = H,
∀x ∈ H.
Motivation. In the classical theory the quotient of a group with respect
to an invariant subgroup is a group. F. Marty from 1934, states that, the
quotient of a group with respect to any subgroup is a hypergroup. Finally,
the quotient of a group with respect to any partition (or equivalently to any
equivalence relation) is an Hv-group. This is the motivation to introduce
the Hv-structures [15], [16].

In an Hv-semigroup the powers of an element h ∈ H are defined as
follows: h1 = {h}, h2 = h · h, ..., hn = h ◦ h ◦ ... ◦ h, where (◦) denotes
the n-ary circle hope, i.e. take the union of hyperproducts, n times, with
all possible patterns of parentheses put on them. An Hv-semigroup (H, ·)
is called cyclic of period s, if there exists an element h, called generator,
and a natural number s, the minimum one, such that H = h1 ∪ h2... ∪ hs.
Analogously the cyclicity for the infinite period is defined [16]. If there is
an element h and a natural number s, the minimum one, such that H = hs,
then (H, ·) is called single-power cyclic of period s.

In an a similar way more complicated hyperstructures can be defined:
(R,+, ·) is called Hv-ring if (+) and (·) are WASS, the reproduction

axiom is valid for (+) and (·) is weak distributive with respect to (+):

x(y + z) ∩ (xy + xz) 6= ∅, (x+ y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

Let (R,+, ·) be an Hv-ring, (M,+) be a COW Hv-group and there exists
an external hope

· : R×M → P (M) : (a, x)→ ax

such that ∀a, b ∈ R and ∀x, y ∈M we have

a(x+ y) ∩ (ax+ ay) 6= ∅, (a+ b)x ∩ (ax+ bx) 6= ∅, (ab)x ∩ a(bx) 6= ∅,

then M is called an Hv-module over F. In the case of an Hv-field F, which is
defined later, instead of an Hv-ring R, then the Hv-vector space is defined.

For more definitions and applications on Hv-structures one can see the
books [1], [2], [16].
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Let (H, ·), (H, ∗) be Hv-semigroups defined on the same set H. The hope
(·) is called smaller than the hope (∗), and (∗) greater than (·), iff there
exists an

f ∈ Aut(H, ∗) such that xy ⊂ f(x ∗ y), ∀x, y ∈ H.

Then we write · ≤ ∗ and we say that (H, ∗) contains (H, ·). If (H, ·) is a
structure then it is called basic structure and (H, ∗) is called Hb−structure.

Theorem 1.1. (The Little Theorem). Greater hopes than the ones which
are WASS or COW, are also WASS or COW, respectively.

This Theorem leads to a partial order on Hv-structures and mainly to
a correspondence between hyperstructures and posets.Therefore we can ob-
tain an extreme large number of Hv-structures just putting more elements
on any result. Using the partial ordering with the fundamental relations
one can give several definitions to obtain constructions used in several ap-
plications [17]:

Let (H, ·) be hypergroupoid. We remove h ∈ H, if we consider the
restriction of (·) in the set H − {h}. h ∈ H absorbs h ∈ H if we replace h
by h and h does not appear in the structure. h ∈ H merges with h ∈ H, if
we take as product of any x ∈ H by h, the union of the results of x with
both h, h, and consider h and h as one class with representative h.

The main tool to study hyperstructures is the fundamental relation. In
1970 M. Koscas defined in hypergroups the relation β and its transitive clo-
sure β*. This relation connects the hyperstructures with the corresponding
classical structures and is defined in Hv-groups as well. T. Vougiouklis [15],
[16] introduced the γ* and ε* relations, which are defined, in Hv-rings and
Hv-vector spaces, respectively. He also named all these relations β*, γ* and
ε*, Fundamental Relations because they play very important role to the
study of hyperstructures especially in the representation theory of them.
For similar relations see [16], [17].

Definition 1.1. The fundamental relations β*, γ* and ε*, are defined,
in Hv-groups, Hv-rings and Hv-vector space, respectively, as the smallest
equivalences so that the quotient would be group, ring and vector space,
respectively.
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Specifying the above motivation we remark the following: Let (G, ·)
be a group and R be an equivalence relation (or a partition) in G, then
(G/R, ·) is an Hv-group, therefore we have the quotient (G/R, ·)/β* which is
a group, the fundamental one. Remark that the classes of the fundamental
group (G/R, ·)/β* are a union of some of the R-classes. Otherwise, the
(G/R, ·)/β* has elements classes of G where they form a partition which
classes are larger than the classes of the original partition R.

Definition 1.2. [14], [16] Let (G, ·) be a groupoid then for every P ⊂ G,
P 6= ∅, we define the following hopes called P-hopes: for all x, y ∈ G

P : xPy = (xP )y ∪ x(Py),

P r : xP ry = (xy)P ∪ x(yP ), P l : xP ly = (Px)y ∪ P (xy).

The (G,P ),(G,P r) and (G,P l) are called P-hyperstructures. The most
usual case is if (G, ·) is semigroup, then xPy = (xP )y ∪ x(Py) = xPy and
(G,P ) is a semihypergroup but we do not know about (G,P r) and (G,P l).
In some cases, depending on the choice of P, the (G,P r) and (G,P l) can
be associative or WASS.

A generalization of P-hopes is the following [4]:

Construction 1.1. Let (G, ·) be an abelian group and P any subset of G
with more than one elements. We define the hope ×P as follows:

x×P y =

{
x · P · y = {x · h · y|h ∈ P} if x 6= e and c 6= e

x · y if x = e and y = e

we call this hope Pe-hope. The hyperstructure (G,×p) is an abelian Hv-
group. For the proof one can see in [4].

2 Hv-matrices and representations

Hv-structures are used in Representation Theory of Hv-groups which
can be achieved either by generalized permutations or by Hv-matrices [13],
[16], [17]. Representations by generalized permutations can be faced by
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translations. Hv-matrix is called a matrix if has entries from an Hv-ring.
The hyperproduct of Hv-matrices is defined in a usual manner. The problem
of the Hv-matrix representations is the following:

Definition 2.1. Let (H, ·) be an Hv-group, find an Hv-ring R, a set

MR = {(aij)|aij ∈ R}

and a map

T : H →MR : h 7→ T (h) such that T (h1h2)∩T (h1)T (h2) 6= ∅,∀h1, h2 ∈ H.

Then the map T is called Hv-matrix representation.
If the T (h1h2) ⊂ T (h1)(h2),∀h1, h2 ∈ H is valid, then T is called inclusion
representation.
If T (h1h2) = T (h1)(h2) = {T (h)|h ∈ h1h2}, ∀h1, h2 ∈ H, then T is called
good representation and then an induced representation T* for the hy-
pergroup algebra is obtained.
If T is one to one and good then it is a faithful representation.

In representations of Hv-groups there are two difficulties: To find an Hv-
ring or an Hv-field and an appropriate set of Hv-matrices. However more
interesting are the small Hv-fields i.e. the results have one or few elements.
The single elements, if any exist, are playing a crucial role.

Hopes on any type of ordinary matrices can be defined [5], they are
called helix hopes. Using several classes of Hv-structures one can face several
representations. Some of those classes are as follows [11]:

Definition 2.2. Let M = Mm×n be a module of m×n matrices over a ring
R and P = {Pi : i ∈ I} ⊆M. We define, a kind of, a P-hope P on M as
follows

P : M×M→ P(M) : (A,B)→ APB = {AP t
iB : i ∈ I} ⊆M

where P t denotes the transpose of the matrix P.

The hope P, which is a bilinear map, is a generalization of Rees operation
where, instead of one sandwich matrix, a set of sandwich matrices is used.
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The hope P is strong associative and the inclusion distributivity with respect
to addition of matrices

AP (B + C) ⊆ APB + APC for all A,B,C in M

is valid. Therefore, (M,+, P ) defines a multiplicative hyperring on non-
square matrices. Multiplicative hyperring means that only the multiplica-
tion is a hope.

Definition 2.3. Let M = Mm×n be a module of m × n matrices over R
and let us take sets

S = {sk : k ∈ K} ⊆ R, Q = {Qj : j ∈ J} ⊆M, P = {Pi : i ∈ I} ⊆M.

Define three hopes as follows

S : R×M→ P(M) : (r, A)→ rSA = {(rsk)A : k ∈ K} ⊆M

Q
+

: M×M→ P(M) : (A,B)→ AQ
+
B = {A+Qj +B : j ∈ J} ⊆M

P : M×M→ P(M) : (A,B)→ APB = {AP t
iB : i ∈ I} ⊆M

Then (M, S,Q
+
, P ) is a hyperalgebra over R called general matrix P-hyperalgebra.

In a similar way a generalization of this hyperalgebra can be defined
if one considers an Hv-ring or an Hv-field instead of a ring and using Hv-
matrices.

3 Lie-hyperalgebras

Theorem 3.1. Let (M,+) be an Hv-module over the Hv-ring R. Denote
by U the set of all expressions consisting of finite hopes either on R and M
or the external hope applied on finite sets of elements R and M. We define
the relation ε in M as follows:

xεy iff {x, y} ⊂ u where u ∈ U

Then the relation ε* is the transitive closuer of the relation ε
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The general definition of an Hv-Lie algebra was given in [17] as follows:

Definition 3.1. [18] Let (L,+) be an Hv-vector space over the Hv-field
(F,+, ·), φ : F → F/γ* the canonical map and ωF = {x ∈ F : φ(x) = 0},
where 0 is the zero of the fundamental field F/γ*. Similarly, let ωL be the
core of the canonical map φ′ : L → L/ε* and denote by the same symbol 0
the zero of L/ε*. Consider the bracket (commutator) hope:

[, ] : L× L→ P (L) : (x, y)→ [x, y]

then L is an Hv-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear, i.e.
[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) 6= ∅
[x, λ1y1 + λ2y2] ∩ (λ1[x, y1] + λ2[x, y2]) 6= ∅,
∀x, x1, x2, y, y1, y2 ∈ L, λ1, λ2 ∈ F

(L2) [x, x] ∩ ωL 6= ∅, ∀x ∈ L

(L3) ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= ∅, ∀x, y ∈ L

This is a general definition thus one can use special cases in order to
face problems in applied sciences.

4 Mathematical Realisation of type An

This paper presents the mathematical Realisation of Kac-Moody Lie
Algebras of the type An [6], [12]. We present the problem and we give the
basic definitions on the topic which cover the four following cases:

Algebraic structures can be easily handled using representation theory
by matrices. This is the reason for which Lie-Santilli’s admissibility is being
studied using matrices or hypermatrices, in the case of multivalued/ hyper-
case. Lie-Santilli’s admissibility is being extended into hyperstructure case,
using the well know class of P-hyperstructures. We present the problem
through the following cases:

Construction 4.1. [11] Let R and S two sets of square matrices (or hyper-
matrices). The hyper-Lie bracket can be defined in one of the four following
ways:
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1. [x, y]RS = xRy − ySx (General Case)

2. [x, y]R = xRy − yx

3. [x, y]S = xy − ySx

4. [x, y]RR = xRy − yRx

The question is when the two following conditions of a hyper-Lie alge-
bra, the Antisymmetry and the Jacobbi identity are satisfied , for all square
matrices (or hypermatrices) x, y, z,

[x, x]RS 3 0

[x, [y, z]RS]RS + [y, [z, x]RS]RS + [z, [x, y]RS]RS 3 0

We apply this generalization on the Lie algebras of the type An.

Lie-Algebra of type An, a graded algebra refering to traceless matrices
or hypermatrices (Tr(M)=0), uses the principal realisation used in Infinite
Dimensional Kac Moody Lie Algebras introduced in 1981 by Lepowsky,
Wilson and Kac [6].

Let Eij(i, j = 1, ..., n) the n× n matrix which is 1 in the ij-entry and 0
all the other entries, and by ei = Eii−Ei+1,i+1, i = 1, ..., n− 1. This graded
algebra has n levels, 0, 1, ..., n− 1. Each level has dimension n excpet Level
0, whose dimension is n− 1, because of the limitation of zero trace.

Simple Basis elements:
Level 0 : ei, i = 1, 2, ..., n− 1
Level 1 : Ei,i+1, i = 1, 2, ..., n
Level 2 : Ei,i+2, i = 1, 2, ..., n
...
Level n-1:Ei,i+(n−1), i = 1, 2, ..., n
Denote that all the subscripts are modn. Therefore, the levels are:
Level 0 :
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
a11 0 0 . . . 0
0 a22 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . a(n−1)(n−1) 0
0 0 0 . . . b


where b = −a11 − a22 − ...− a(n−1)(n−1)
Level 1 : 

0 a12 0 . . . 0
0 0 a23 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . an−1,n

an1 0 0 . . . 0


Level 2 : 

0 0 a13 . . . 0
0 0 0 . . . a2n

. . . . . . . . . . . . . . . . . . . . . . . . . .
an−1,1 0 0 . . . 0

0 an2 0 . . . 0


. . . . . . . . . . . . . . . . .
Level n-1 : 

0 0 0 . . . a1n

a21 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0
0 0 . . . an,n−1 0


Let E be the Konstant’s Cyclic Element, as the sum of the elements

of First Level’s Simple Basis , E = E12 + E23 + E34 + ... + En−1,n + En1.
The use of this element is to shift every element of each Level L to the
next Level L+ 1, [6], [9], [12] creating an one-to-one correspondance. More
precisely, an element of a Level is being represented to a different element
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of the next Level. However, as already said, the First Level’s Basis and all
other Levels’ Basis has n elements, except zero which has n − 1 elements.
Consequently, this one to one correspondance between the Levels is being
corrupted on Level n − 1, which is being represented to Level 0, which
has less elements than the others.Therefore, in order to create a complete
correspondance, we remove from every level, but zero, all the powers of E
until n− 1 (E,E2, ..., En−1).

In this realisation we prove that the n power of the Lie bracket of En1, n
times by E, where En1 is an element of the first level, equals to a diagonal
matrix, the elements of which are the coefficients of a binomial. Denote by
:

[E,En1]
1 = E · En1 − En1 · E = A1, the first power,

[E,En1]
2 = [E,A1] = A2, the second power,

. . .
[E,En1]

n = [E,An−1] = An, the n power,
So, the following can be proved [9]:

Theorem 4.1.
[E,En1]

n =

= diag(
(
n−1
0

)
, (−1)1

(
n−1
1

)
, (−1)2

(
n−1
2

)
, ..., (−1)n−2

(
n−1
n−2

)
, (−1)n−1

(
n−1
n−1

)
)

This theorem can be used, to find the basic element of first Level’s Basis
and all the nth powers of the elements of the first Level.

Hint of the proof.
One can easily see that following the powers of E, they follow the coefficients
of Laplace Binomial. �

Theorem 4.2. Let

[E,En1]
n = diag(d1, d2, d3, ..., dn)

be the nth power by E of the last element of the base E12, E23, ..., En1 of the
first level.Then the nth power of the rest elements of the base E12, E23, ..., En−1,n
are the following:
The first element is : [E,E12]

n = diag(dn, d1, d2, d3, ..., dn−1)
The second element is: [E,E23]

n = diag(dn−1, dn, d1, d2, ..., dn−2)

.....................................................
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so the k element Ek,k+1 is:

[E,Ek,k+1]
n = diag(d1−k, d2−k, d3−k, ..., dn−k), k = 1, ..., n

Remark. [9] Based on this theory and P-hyperstructures a set P with
two elements can be used, either from zero or first level, but only with two
elements. In this case the shift is depending on the level, so if we take P from
Level-0, the result will not change, although the result will be multivalued.
In case of different level insted, the shift will be analogous to the level of P.

In the general case in Construction 4.1(1), one can notice the possible
cardinality of the result, checking the Jacoby identity is very big. Even
in the small case when |R| = |S| = |P | = 2 in the anticommutativity
xPx−xPx could have cardinality 4 and the left side of the Jacoby identity
is

(xP (yPz − zPy)− (yPz − zPy)Px) + (yP (zPx− xPz)−

−(zPx− xPz)Py) + (zP (xPy − yPx)− (xPy − yPx)Pz)

could have cardinality 218. The number is reduced in special cases.

Theorem 4.3. [3] In the case of the Lie-algebra of type An, of traceless
matrices M, we can define a hyper-Lie-Santilli-admissible bracket hope as
follows:

[xy]p = xPy − yPx

where P = {p, q}, with p,q elements of the zero level. Then we obtain a
hyper-Lie-Santilli-algebra.

We need only to proof the anticommutativity and the Jacobi identity as
in the hyperstructure case [9]. Therefore we have

(a) [xx]p = xPx − xPx = {0, xpx − xqx, xqx − xpx} 3 0, so the ”weak”
anticommutativity is valid, and

(b) [x, [y, z]p]p+ [y, [z, x]p]p+ [z, [x, y]p]p =

(xP (yPz − zPy)− (yPz − zPy)Px) + (yP (zPx− xPz)−
−(zPx− xPz)Py) + (zP (xPy − yPx)− (xPy − yPx)Pz).
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But this set contains the element

xpypz − xpzpy − ypzpx+ zpypx+ ypzpx− ypxpz−

−zpxpy + xpzpy + zpxpy − zpypx− xpypz + ypxpz = 0

So the ”weak” Jacobi identity is valid.
Thus, zero belongs to the above results, as it has to be, but there are

more elements because it is a multivalued operation.
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