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Abstract

In four previous papers of this series, we presented the foundations of a nonunitary-
isounitary generalization of the unitary relativistic scattering theory as characterized
by Santilli’s Lie-isotopic theory. The generalized theory was called isoscattering the-
ory due to the use of the underlying isomathematics. Even too time-reflection non-
invariance can be accommodated via a time-dependence of the isounit, the axioms of
the isoscattering theory have no “arrow of time” and, therefore, are essentially appli-
cable to reversible scattering events, such as Coulomb scattering without collisions.
In view of these limitations, in this paper we present, apparently for the first time,
an irreversible covering of the isoscattering their as characterized by Santilli’s Lie-
admissible covering of the Lie-isotopic theory. The latter theory is presented under
the name of genoscattering theory due to the use of the underlying genomathemat-
ics, and it is specifically intended for irreversible scattering processes, such as deep
inelastic scattering. Besides a number of divergences between the data interpreta-
tion via the genoscattering and the conventional scattering theory, a significant result
identified in this paper is that the irreversible treatment of inelastic processes among
extended particles or wavepackets implies numerical values of the masses of interme-
diate states, such as that of the Higgs boson, largely different than those predicted
by the conventional reversible scattering theory among point-like particles.
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4.3. Ô>(4, 2)× ŜU>(3) Dynamical Symmetries of the Scattering Region.
4.4. Genotopy of Lepton and Hadron Currents

5. Initial Applications
5.1 Genotopy of S-matrix and Feynman Graphs/Rules.
5.2 Deep-Inelastic e-p Scattering Experimental Results
5.3 Genotopy of Bjorken Variable and Structure Functions
5.4. Mass Genorenormalization
5.5. Concluding Remarks

Acknowledgments

References

2



1. INTRODUCTION

1.1. Brief Outline of Preceding Papers
An important property of quantum mechanics, which is at the foundation
of its physical relevance when applicable, is its invariance over time, namely,
the capability of predicting the same numerical values under the same
conditions at different times. As it is well known, this property originates
from the fact that the time evolution of quantum mechanics characterizes
a unitary transformation on a Hilbert space over a field.

However, quantum mechanics was conceived and verified for closed-
isolated systems of point particles in vacuum (exterior dynamical prob-
lems), such as the atomic structures, that are reversible over time, namely,
their time reversal images verify causality and conservation laws. This
feature is reflected in the fact that the basic mathematical and physical
axioms of quantum mechanics have no “time arrow,” namely, they are as
reversible as the systems intended for representation.

Figure 1: A view of inelastic scattering events studied in this paper to illustrate their
irreversible character.

In the first paper of this series [1], we recalled the historical legacy
by Lagrange, Hamilton and Jacobi according to which the irreversibil-
ity of natural processes originates from contact nonpotential interactions
represented with the external terms in the analytic equations (interior
dynamical systems); we recalled the No Reduction Theorems prohibiting the
reduction of macroscopic irreversible systems to a finite number of elemen-
tary particles all in reversible conditions, thus establishing the origin of
nonpotential/non-Hamiltonian forces at the most elementary level of na-
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ture; and we recalled that the covering hadronic mechanics was built for the
specific purpose of achieving an invariant representation of systems with
conventional potential Hamiltonian as well as contact non-Hamiltonian
interactions, the latter demanding a time evolution which is necessarily
nonunitary from the non-Hamiltonian character of the forces.

In the preceding Papers I, II and III of this series [1], w reviewed the
Theorems of Catastrophic Mathematical and Physical Inconsistencies of Noncanoni-
cal and Nonunitary Theories when treated with the mathematics of canonical
and unitary theories, respectively. Along these lines, we pointed out that
nonunitary time evolutions violate causality when formulated on a conven-
tional Hilbert space over a conventional field. We then reviewed Santilli
Lie-isotopic mathematics. or isomathematics for short, which provides the only
known method capable of resolving said catastrophic inconsistencies, by
regaining invariance over time and causality. In the same Papers I, II, III,
we then reviewed the Lie-isotopic branch of hadronic mechanics, or isomechanics
for short, and specialized it to the scattering problem.

It may be useful to recall that Santilli’s Lie-isotopic formulations are
achieved at both, the mathematical and the physical levels, by using a
nonunitary transformation of a generic quantum mechanical quantity Q

UU † 6= I, (1, 1a)

Q→ Q̂ = UQU †, (1.1b)

applied to the totality of quantum mechanical, mathematical and physical quanti-
ties and their operations with no known exception, thus including the isotopic
lifting of basic units, numbers, functions, differentials, etc. Invariance over
time and causality are achieved indeed, but under the condition of elabo-
rating isotopic theories with isomathematics, since elaborations of isotopic
theories with conventional mathematics, or elaborations of conventional
theories with isomathematics, are evidently inconsistent.

In Paper IV of this series [1], we then presented in operational details
the Lie-isotopic scattering theory, or isoscattering theory for short, including all
necessary foundations, such as the Dirac-Santilli equation, the Feynman-
Animalu diagrams, and related procedure. The resulting theory emerges
as a significant covering of the conventional unitary scattering theory since
it possesses an essential nonunitary structure, yet it is as invariant and
causal as the conventional theory. The nonunitary character permits sig-
nificant advances in the representation of scattering processes, such as the
representation of particles as being extended, resulting in a scattering re-
gion no longer constituted by ideal points, but consisting of a hyperdense
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medium with Hamiltonian and non-Hamiltonian internal interactions ver-
ifying the laws of hadronic mechanics, while quantum mechanics is recov-
ered uniquely identically in the exterior of the scattering region under the
limit LimUU † = I.

Despite these advances, the Lie-isotopic scattering theory remains as reversible
over time as the conventional scattering theory. This feature was expected ab ini-
tio since the formulation was constructed via the use of Santilli isotopies that
are known to be axiom-preserving by conception and technical realization.

Despite this limitation, in Paper IV we showed that the isoscattering
theory is non-trivial because it allows the inclusion of scattering processes
that are prohibited by the conventional theory due to its unitarity. As an
illustration, we provided the representation via the isoscattering theory of
the following events

e− + e+ → π0 → e− + e+ (1.2a)

e− + p→ n+ ν → p+ e− + ν + ν̄, (1.2b)

which are manifestly reversible over time, yet requiring a nonunitary scat-
tering theory because: the rest energy of the synthesized hadron is bigger
than the sum of the rest energies of the original particles; the missing
energy cannot be provided by the relative kinetic energy due to the re-
lated excessively small cross section and ensuing inability to achieve the
indicated syntheses of hadrons; and the only known consistent dynamical
equations is the Schrödinger-Santilli equation, namely, a nonunitary image of
the Schrödinger equation proposed by Santilli since his original memoir of
1978 to build hadronic mechanics [2].

1.2. The Role of the Isodual Theory for Antimatter
As it is well known, during the 20th century matter was treated at all
level of study, from Newtonian Mechanics to second quantization, while
antimatter was solely treated at the level of second quantization, due to
the lack of technical means in Einstein’s special and general relativities
to provide any distinction between neutral matter and antimatter. This
resulted in the lack of scientific democracy in the treatment of matter and
antimatter with deep implications at all levels of study.

Santilli (see general review [5] and original papers quoted therein) re-
solved the above imbalance via the construction of a new mathematics,
today known as Santilli isodual mathematics, the related isodual mechanics and
relativity and the resulting isodual theory of antimatter. The main idea of these
studies can be outlined as follows. Recall that the conventional charge con-
jugation is defined on a Hilbert space H with states ψ(x) over the field of
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complex numbers C and can be characterized by expressions of the type

C ψ(x) = − ψ†(x), (1.3)

where x is the coordinate of the representation space, such as the Minkowski
spacetine.

Santilli [28] constructed the isodual mathematics, mechanics and rela-
tivity are via an anti-Hermitean conjugation, called isoduality and denoted
with the upper index d, applied to the totality of the mathematics and
physics used for matter with no known exception to avoid catastrophic in-
consistencies when mixing conventional and isodual formulations. There-
fore, the isodual conjugation of an arbitrary classical or operator quantity
A(x, p, ....) depending on coordinates x, momenta p, and any other needed
variable is given by

A(x, p, ....) → Ad(xd, pd, ....) = A(−x†,−p†, ....). (1.4)

This conjugation characterizes the novel isodual unit 1d = −1†, isodual real,
complex or quaternionic numbers nd = −n†, isodual product nd×dmd = ns× (1d)−1×
md, isodual functional analysis, isodual differential calculus, etc. (see Ref. [2]
for brevity). In particular, the reader should keep in mind that isoduality
is the only known consistent procedure for the differentiation between
neutral as well as charged matter and antimatter at all levels of treatment.

Figure 2: An illustration of the four different directions of time and the consequential
need of the isodual conjugation in addition to the conventional time inversion for the
representation of all four directions.

Even though charge and isodual conjugations are both anti-Hermitean,
their differences are not trivial. From a physical viewpoint, charge con-
jugation conjugates states in a Hilbert space, but does not conjugate the
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local coordinates x. This implies that, for 20th century theories, antimat-
ter exists in the same spacetime of matter. At any rate, the relegation of
antimatter at the level of second quantization, e.g., via Dirac’s “hole the-
ory,” leaves the Minkowski spacetime unique, thus entirely characterized
by the fundamental Poincaré symmetry and special relativity.

By contrast, the isodual conjugation additionally maps spacetime coor-
dinates x into the novel isodual coordinates xd = −x† that are defined on
the Minkowski-Santilli isodual spacetime Md(xd, ηd, 1d), where η is the usual
Minkowski metric. Therefore, under isoduality, the Poincaré-Santilli isodual
symmetry, and the isodual special relativity, antimatter is predicted to exist in
a new spacetime which is distinct from, yet coexisting with our spacetime.
In particular, the differences of conventional and isodual spacetimes are
not trivial. e.g., because the isodual conjugation of coordinates is different
than inversions [2].

It should be stressed to prevent possible scientific misrepresentations
that the isodual theory verifies all available experimental data on antimatter at both
the classical and operator levels. In fact, the Newton-Santilli isodual equations for
antiparticles verifies all available data for charged particles and antiparti-
cles, while isoduality is equivalent to charge conjugation at the operator
level by conception and construction, as recalled via Eqs. (1) and (2) (see
Ref. [2] for details).

As expected, the isodual theory of antimatter suggested a re-interpretation of
Dirac’s equation with deep implications for the scattering theory. Recall that Dirac
was forced to voice the “hole theory” for the consistent representation of
antiparticles due to the unphysical character of negative energy solutions.

The isodual theory of antimatter resolved the latter issue since nega-
tive energies are referred to negative units, thus being as causal as pos-
itive energies referred to positive units. In any case, the isodual theory
of antimatter achieves a consistent representation of antiparticles at the
Newtonian level, let alone that in first quantization. Consequently, the
conventional Dirac equation

[γµ × (pµ − e× Aµ/c) + i×m]×Ψ(x) = 0, (1.6a)

γk =

(
0 −σk
σk 0

)
, γ4 = i×

(
I2×2 0,

0 −I2×2

)
, (1.6bb)

{γµ, γ̃ν} = 2×ηµν , Ψ = i×
(

Φ
−Φ†

)
(1.6c)

has been subjected to the following re-interpretation solely permitted by
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the isodual theory [5]

[γ̃µ × (pµ − e× Aµ/c) + i×m]× Ψ̃(x) = 0, (1.7a)

γ̃k =

(
0 σdk
σk 0

)
, γ̃4 = i

(
I2×2 0,

0 Id2×2

)
, (1.7b)

{γ̃µ, γ̃ν} = 2d×dηdµν , Ψ̃ = −γ̃4 ×Ψ = i×
(

Φ
Φd

)
(1.7c)

in which the electron and the positron are both treated in first quantization
without any need for the “hole theory.”

The main conclusion of re-interpretation (1.xxx) is that the Dirac equa-
tion directly represents the Kronecker product of an electron and its antiparticle. This
conclusion is equally reached, rather forcefully, on algebraic grounds. San-
tilli [28] first noted that there exists no irreducible four-dimensional repre-
sentation of the SU(2) symmetry for spin 1/2, and there exists no reducible
four-dimensional representation of SU(2) with the structure of Dirac’s
gamma matrices. Therefore, the sole known algebraically consistent mean-
ing of the gamma matrices is that they characterize an irreducible represen-
tation for spin 1/2 of the Kronecker product SU(2) × SU(2)d, thus repre-
senting a Kronecker product of an electron and its antiparticle as indicated
above.

Since Feynman’s diagrams for electrons and positrons are centrally de-
pendent on Dirac’s equation, it is evident that the above reformulation of
the latter equation requires a necessary re-inspection of the former. In
fact, the annihilation process in Feynman’s diagrams

e− + e+ → 2 γ, (1.8)

exhibits a number of asymmetries, such as: the l.h.s. is isoselfdual (in-
variant under isoduality), but the r.h.s is not; the annihilation process is
assumed to occur via the exchange of a particle (an electron or a pho-
ton)which is not isoselfdual; and others.

One of the major implications of the isodual conjugation which is not
possible for charge conjugation is the prediction that antimatter emits a
new light with experimentally verifiable physical differences with the ordinary light
emitted by matter. In fact, charge conjugation is evidently inapplicable to
the photon, while isoduality predicts the isodual photon γd with energy
Ed = ~d ×d νd = −E referred to the unit MeV d = −MeV which is predicted
as being repelled by the gravitational field of matter, thus being physically
distinguishable from the ordinary photon γ with g energy E = ~×ν referred
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Figure 3: A view of the electron-positron annihilation according to Dirac-Feynman
theories (l.h.s) and the same annihilation as predicted by Santilli’s isodual theories
(r.h.s). Note the verification for the latter of all isodual laws, as well as the absence of
the isoselfduality violating exchange of the former, since annihilation requires actual
physical contact of particles antiparticles that cannot be triggered by particle exchanges
at a distance as represented by the Feynman-Animalu diagrams.

to the unit MeV . Consequently, the isodual theory requires the following
re-interpretation of Feynman’s diagram for annihilation ()1.8) [5]

e+ ed ≡ (e+ ed)d → γ + γd ≡ (γ + γd)d, e = e−, ed = e+, (1.9)

that provides an evident resolution of all ambiguities and asymmetries of
annihilation (1.8). Moreover, in the latter case, there is no exchange of
particles, since annihilation is predicted to occur under actual physical
contact or mutual penetration of the wavepackets of particles and antipar-
ticles in accordance with Feynman-Animalu diagrams (see Fig. 3).

The insidious character of the lack of full democracy in the treatment
of matter and antimatter is illustrated by comparing reactions (1.8) and
(1.9). Reaction (1.8) is rather universally treated in first quantization,
resulting in clear inconsistencies since, at that level, the electron and the
photons can indeed be fully treated, yet the positron has negative energy in
first quantization, thus prohibiting such a treatment for the sole consistent
treatment in second quantization. by comparison, Reaction (1.9) can be
consistently treated at the level of first quantization, its treatment at the
level of second quantization being under study by V. de Haan (private
communication).
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Needless to say, there exists a large number of experiments in electron-
positron annihilation and the emitted two photons. However, a deep in-
spection reveals that available experiments have provided no consideration
on the possible differences between the two emitted photons, trivially, be-
cause no such difference was provided by the uses basic theories. Specific
experiments for the resolution whether the two photons of reaction (1.9)
are identical or physically different has been proposed in Ref. [29].

All in all, it is hoped the reader can see that a reinspection of the 20th
century scattering theory is necessary for the sole advances in antimatter, let alone
because of its reversible structure compared to the general irreversibility of scattering
events.

1.3. Main Objectives of this Paper
In this paper, we present, apparently for the first time, the foundation of
the Lie-admissible scattering theory as a covering of the conventional or the
isoscattering theory for the specific purpose of representing deep inelastic
scattering processes involving particles and antiparticles that are notoriously irre-
versible over time (see Fig. 1). In fact, in the latter processes, we have
the lack of rigorous applicability of the conventional scattering theory due
to its reversibility since the selection of the appropriate scattering theory
for irreversible scattering events is indeed open to scientific debates, but
not its need.

The main difficulties of this paper are numerous. First, it is essential
to achieve a formulation which is truly irreversible in both its mathemat-
ical and physical formulations. This objective is implemented via Santilli’s
forward and backward maps characterized by two nonunitary transformations
of each quantum mechanical quantity Q

ZZ† 6= I WW † 6= I, ZW † 6= I, (1.10a)

Q→ Q̂> = ZQW †, Q→< Q̂ = WQZ†. (1.10b)

The above liftings essentially set the “time arrow” in all mathematical and
physical structures and their operations. Irreversibility is then assured by
the inequivalence of the forward and backward processes.

The second major difficulty is in the achievement of invariance over
time not only for nonunitary theories, but also of their realization in an
irreversible form. This task cannot any longer be achieved via the iso-
mathematics, thus mandating the use of a yet broader Santilli Lie-admissible
mathematics, also known asgenomathematics, the resulting scattering theory
being also proposed under the shorter name of genoscattering theory.
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The final difficulty is the verification that the ensuing Lie-admissible
scattering theory is indeed physically valid and carries nontrivial impli-
cations in the data elaboration of deep inelastic scattering events. By
remembering that the conventional scattering theory was established only
following about half a century of research, the authors hope that this ini-
tiating paper will essentially set up the foundation of the new scattering
theory for irreversible scattering process for a collegial future finalization.

The results of this paper are largely dependent on Santilli’s lifelong
studies on Lie-admissible algebras with particular reference to the latest
memoir [4], as well as on Animalu’s first isotopies of Feynman’s diagrams
[30].

2. SANTILLI LIE-ADMISSIBLE GENOMATHEMATICS

2.1 Genounits, Genoproducts and their Isoduals
The most fundamental notion of Santilli’s genomathematics from which
the entire formulation is build via compatibility arguments, is a dual gen-
eralization of the basic unit of quantum mechanics ~ = 1 into two non-
Hemitean (nonsingular) generalized units, called genounits, one used to
represent motion forward in time and the other for motion backward in
time, but having a nonsingular, but otherwise arbitrary dependence on
time t, coordinates r, the density µ of the region considered (e.g. the
scattering region), wavefunctions ψ, their derivatives ∂ψ, etc. [3]

Î>(t, r, µ, ψ, ∂ψ, ...) = 1/T̂>, <Î(t, r, µ, ψ, ∂ψ, ...) = 1/<T̂ , (2.1a)

Î> 6=< Î , Î>(t, ...) 6=> (−t, ...), <Î(t, ...) 6=< Î(−t, ...(, Î> = (<Î)†, (2.1b)

with two additional isodual genounits for the description of antimatter

(Î>)d = −(Î>)
†

= −<Î = −1/<T̂ , (<Î)d = −Î> = −1/T̂>. (2.2)

Santilli selected since the original memoirs [2] of 1978 the “genotopic”
from the Greek meaning of “inducing new structures and to have a dif-
ferentiation with the word “isotopic” used in the preceding papers that
stands for preserving the original; structures.

Jointly, all conventional and/or isotopic products A×̂B among generic
quantities (numbers, vector fields, operators, etc.) are lifted in such a form
to admit the genounits as the correct left and right units at all levels, i.e.,

A > B = A× T̂> ×B, A > Î> = Î> > A = A, (2.3a)
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A < B = A×< T̂ ×B, A << Î =< Î < A = A, (2.3b)

A >d B = A× T̂>d ×B, A >d Î>d = Î>d >d A = A, (2.3c)

A <d B = A×< T̂ d ×B, A <d <Îd = <Îd <d A = A, (2.3d)

for all elements A, B of the set considered.
In different words, the central idea in the Lie-admissible representation

of irreversible processes is to lift the conventional associative product of
quantum mechanics A × B into two products, one for the product to the
right A > B and one for the product to the left A < B. Irreversibility is
then solely guaranteed under the condition of their nonequivalent, that
is, A > B 6= A < B. In turn, this inequivalence is impossible under
the conventional associative product A × B, thus mandating inequivalent
genotopies A > B = A× T̂>×B and A < B = A×< T̂ ×B. In the next section
we shall then show that the quantity T̂> precisely represents the external
forces of Lagrange and Hamilton equations for motion forward in time and
<T̂ represents the inequivalent time reversal image.

The assumption of all ordered product to the right > permits the repre-
sentation of matter systems moving forward in time, the assumption of
all ordered products to the left < can represent matter systems in the scat-
tering region moving backward in time, with corresponding antimatter
systems represented by the respective isodual ordered products >d= − >†

and <d= − <†. Irreversibility is represented ab initio by the inequality
A > B 6= A < B for matter and >d 6=<d for antimatter.

We recall here that the simpler isotopic subclass are given by Î> =< Î =
Î = Î† > 0 for matter and Î>d =< Îd = Îd = Îd† < 0 for antimatter.

The reader should be aware (by looking at Fig. 2) that Santilli’s geno-
mathematics consists of four branches, namely the forward and backward genomath-
ematics for matter and their isoduals for antimatter, each pair being intercon-
nected by time reversal, and the two pairs being interconnected by isodual
map

Q(t, r, ψ, ∂ψ, ...)→ Qd(td, rd, ψd, ∂dψd, ...)

= −Q†(−t†,−r†,−ψ†,−∂†(−ψ†), ...) (2.4)

that, as it is well known [5], is equivalent to charge conjugation.

2.2. Genonumbers, Genofunctional Analysis and their Isoduals
Genomathematics began with Santilli’s discovery in paper [3] of 1993,

that the axioms of a field still hold under the ordering of all products to the right
or, independently, to the left. This property permitted the formulation of new
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numbers that can be best introduced as a generalization of the isonumbers,
although they can also be independently presented as follows:

DEFINITION : Let F = F (a,+,×) be a field of characteristic zero. Santilli’s

forward genofields are rings F̂> = F̂ (â>, +̂
>
, ×̂>) with: elements

â> = a× Î>, (2.5)

where a ∈ F , Î> = 1/T̂> is a non singular non-Hermitean quantity (number, matrix
or operator) generally outside F and × is the ordinary product of F ; the genosum +̂

>

coincides with the ordinary sum +,

â>+̂
>
b̂> ≡ â> + b̂>, ∀â>, b̂> ∈ F̂>, (2.6)

consequently, the additive forward genounit 0̂> ∈ F̂ coincides with the ordinary 0 ∈ F ;
and the forward genoproduct > is such that Î> is the right and left isounit of F̂>,

Î>×̂â> = â> > Î> ≡ â>, ∀â> ∈ F̂>. (2.7)

Santilli’s forward genofields verify the following properties:
1) For each element â> ∈ F̂> there is an element â>−1̂

>
, called forward genoin-

verse, for which

â> > â>−Î
>

= Î>, ∀â> ∈ F̂>; (2.8)

2) The genosum is commutative

â>+̂
>
b̂> = b̂>+̂

>
â>, (2.9)

and associative

(â>+̂
>
b̂>) +> ĉ> = â>+̂

>
(b̂>+̂

>
ĉ>), ∀â, b̂, ĉ ∈ F̂ ; (2.10)

3) The forward genoproduct is associative

â> > (b̂> > ĉ>) = (â> > b̂>) > ĉ>, ∀â>, b̂>, ĉ> ∈ F̂>; (2.11)

but not necessarily commutative

â> > b̂> 6= b̂> > â>, (2.12)

4) The set F̂> is closed under the genosum,

â>+̂
>
b̂> = ĉ> ∈ F̂>, (2.13)
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the forward genoproduct,
â> > b̂> = ĉ> ∈ F̂>, (2.14)

and right and left genodistributive compositions,

â> > (b̂>+̂
>
ĉ>) = d̂> ∈ F̂>, (2.15a)

(â>+̂
>
b̂>) > ĉ> = d̂> ∈ F̂> ∀â>, b̂>, ĉ>, d̂> ∈ F̂>; (2.15b)

5) The set F̂> verifies the right and left genodistributive law

â> > (b̂>+̂
>
ĉ>) = (â>+̂

>
b̂>) > ĉ> = d̂>, ∀â>, b̂>, ĉ>,∈ F̂>. (2.16)

In this way we have the forward genoreal numbers R̂>, the forward genocom-
plex numbers Ĉ> and the forward genoquaternionic numbers Q̂C> while the forward
genooctonions Ô> can indeed be formulated but they do not constitute genofields [6].

The backward genofields and the isodual forward and backward genofields are de-
fined accordingly. Santilli’s genofields are called of the first (second) kind when the
genounit is (is not) an element of F.

The basic axiom-preserving character of genofields is illustrated by the
following:

LEMMA: Genofields of first and second kind are fields (namely, they verify all
axioms of a field).

Note that the conventional product “2 multiplied by 3” is not necessar-
ily equal to 6 because, for isodual numbers with unit −1 it is given by −6.
The same product “2 multiplied by 3” is not necessarily equal to +6 or −6
because, for the case of isonumbers, it can also be equal to an arbitrary
number, or a matrix or an integrodifferential operator depending on the
assumed isounit [3].

In this section we point out that “2 multiplied by 3” can be ordered to
the right or to the left, and the result is not only arbitrary, but yielding
different numerical results for different orderings, 2 > 3 6= 2 < 3, all this by
continuing to verify the axioms of a field per each order [3].

Once the forward and backward genofields have been identified, the
various branches of genomathematics can be constructed via simple com-
patibility arguments.

For specific applications to irreversible processes there is first the need
to construct the genofunctional analysis, studied in Refs. [6,7] that we shall
not review here for brevity. It should, however, be clear to the reader
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that any elaboration of irreversible processes via Lie-admissible formula-
tions based on conventional or isotopic functional analysis leads to catas-
trophic inconsistencies because it would be the same as elaborating quan-
tum mechanical calculations with genomathematics. Recall the theorem
of catastrophic inconsistencies[8] which states that:

All theories with a non-unitary time evolution, W (t)W+(t) 6= I when formulated
with mathematical methods of unitary theories (conventional fields, spaces, functional
analysis, differential calculus, etc) do not preserve the said mathematical methods over
time thus being afflicted by catastrophic mathematical inconsistencies and do not pre-
serve over time the basic units of measurements, Hermiticity-observability, numerical
predictions and causality, thus suffering catastrophic physical inconsistencies.

And observe that this theorem is activated unless one uses the ordinary
differential calculus is lifted, for ordinary motion in time of matter, into
the following forward genodifferentials and genoderivatives

d̂>x = T̂>x × dx,
∂̂>

∂̂>x
= Î>x ×

∂

∂x
, etc. (2.16)

with corresponding backward and isodual expressions here ignored,
Similarly, all conventional functions and isofunctions, such as isosinus,

isocosinus, isolog, etc., have to be lifted in the genoform

f̂>(x>) = f(x̂>)× Î>, (2.17)

where one should note the necessity of the multiplication by the genounit
as a condition for the result to be in R̂>, Ĉ>, or Ô>.

2.3. Genogeometries and Their Isoduals
Particularly intriguing are Santilli’s genogeometries which are characterized
by a step-by-step genotopy of isogeometries, Consider the Minkowski isospace-
time (see Paper III [1])

M̂(ĉ, η̂, Î) : x̂ = xÎ, η̂ = T̂ (x, ...)× η, Î(x, ...) = Î†(x, ...) = 1/T̂ > 0, (2.18)

and introduce two nonunitary four-dimensional matrices C,D. Then the
Minkowski-Santilli genospacetime is given by [4]

M̂>(x̂>, η̂>, Î>) : x̂> = C × x̂×D† = x× Î >, (2.19a)

η̂> = C × η̂ ×D†,= T̂> × η, η = Diag.(1, 1, 1,−1), (19b)

I> = CD† = 1/T>, CC† 6= I, DD† 6= I, CD† 6= I. (2.19c)
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Genospaces and related geogeometries can also be independently de-
fined, based on one of the fundamental axiomatic principles of hadronic
mechanics, namely, that irreversibility is directly represented with the background
geometry and, more specifically, with its nonsymmetric metric.

In fact, a central feature of genospacetime p2.19) is that its geometric
η̂> is nonsymmetric by conception and construction. Alternatively, it is
easy to prove that a geometry with a symmetric metric cannot possible
characterize irreversible processes. In this way, Santilli has initiated a
new chapter in geometry, the first known to the authors with a realistic
capability of achieving the much needed compatibility of geometries and
thermodynamical laws, the latter being strictly irreversible over time.

Since the Minkowski-Santilli genospacetime is the ultimate and funda-
mental method for our relativistic representation of high energy inelastic
scattering events, a simple illustration appears recommendable. Consider
the following realization of the C,D matrices

C =


1 0 0 0
0 1 0 0
0 0 1 0
p 0 0 1

 ; D =


1 0 0 0
0 1 0 0
q 0 1 0
0 0 0 1

 , (2.20)

where p 6= q are non-null real numbers, under which we have the following
forward and backward genotopy of the Minkowskian line element

x2 → x>
2>

= Cx2D† = C(xtηx)D† =

= (CtxtDt†)(CD†)−1(CηD†)(CD†)−1(CxD†) =

= (xtI>)T>η>T>(I>x) = xµη>µνx
ν =

= (x1x1 + x1qx3 + x2x2 + x3x3 + x1px4 − x4x4), (2.21a)

Dx2C† = D(xtηx)C† =

= (xt
<

I)<T
<
η<T (<Ix) = xµ

<

ηµνx
ν =

= (x1x1 + x1px3 + x2x2 + x3x3 + x1qx4 − x4x4), (2.21b)

resulting in the forward and backward nonsymmetric genometrics

η> = T>ηT> =


1 0 q 0
0 1 0 0
0 0 1 0
p 0 0 −1

 , <η =< Tη<T =


1 0 0 p
0 1 0 0
q 0 1 0
0 0 0 −1

 , (2.22)
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exactly as desired. That is, the first expression of the genoinvariant is on
genospaces while the second is its projection in our spacetime.

Note that irreversibility selects a mutation of the line elements along a
pre-selected direction of space and time.

Note also that the quantities p and q can be functions of the local
spacetime variables, in which case the resulting Minkowskian genogeometry
can be equipped by a suitable lifting of the machinery of the Rieman-
nian geometry (see Ref. [7] for the isotopic case). Moreover, because
Minkowski-Santilli genospace has such an explicit dependence on space-
time coordinates, it is equipped with the entire formalism of the con-
ventional Riemannian spaces covariant derivative, Christoffel’s symbols,
Bianchi identity, etc. only lifted from the isotopic form into the genotopic
form.

The central property of genospaces, their lack of symmetric character,
is evidently expressed by

η̂>µν 6= η̂>νµ. (2.23)

Consequently, genotopies permit the lifting of conventional symmetric metrics
into nonsymmetric forms,

ηMinkow.
Symm → η̂>Minkow.−Sant.

NonSymm (2.24)

We note in particular the following invariance under genotopy

(xµ × ηµν × xν)× I ≡ [xµ × (T̂> × ηµν)× xν ]× T>−1 ≡

≡ (xµ × η̂>µν × xν)× Î>, (2.25)

that evidently occurs for the particular case in which T̂> is a complex
number, with the understanding that such an invariance does not hold in
general.

2.4. Santilli Lie-Admissible Theory and its Isodual
As it is well known, the methodological pillar of the entire 20th century
physics is Lie’s theory. In full awareness of this feature, Santilli first in-
troduced in the original memoirs [2] of 1978 in rather large details the
Lie-isotopic theory which is at the foundation of the isoscattering theory of
the preceding Paper IV [1]. In the same original memoirs [2], Santilli
introduced the yet broader Lie-admissible theory for the specific intent of
characterizing open irreversible systems, and the latter theory is at the
foundation of the genoscattering theory of this paper.

It should be noted that, except for the achievement of invariance, that
was achieved only in the late 2000 (and studied in the next section), the
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Santilli’s Lie-admissible theory, also called Lie-Santilli genotheory, has re-
mained essentially that of the original formulation [2]. The main advances
has been the formulation of the theory on genospaces over genofields.

In accordance with the original proposal of 1978, the lie-admissible
theory is characterized by the structural broadening of the following main
branches of Lie’s theory widely used in physics (See monographs [7] for
the most general formulation to date):

GENOTOPIES OF ENVELOPING ALGEBRAS: They are characterized by the
forward and backward universal enveloping genoassociative algebra ξ̂>, <ξ̂, with
infinite-dimensional basis characterizing the Poincaré-Birkhoff-Witt-Santilli
genotheorem

ξ̂> : Î>, X̂i, X̂i > X̂j, X̂i > X̂j > X̂k, . . . , i ≤ j ≤ k, (2.26a)

<ξ̂ : Î , <X̂i, X̂i < X̂j, X̂i < X̂j < X̂k, . . . , i ≤ j ≤ k; (2.26b)

where the “hat” on the generators denotes their formulation on genospaces
over genofields and their Hermiticity implies that X̂> =< X̂ = X̂;

GENOTOPIES OF LIE ALGEBRAS: They are characterized by the Lie-Santilli
genoalgebras characterized by the universal, jointly Lie- and Jordan-admissible
brackets,

<L̂> : (X̂î,X̂j) = X̂i < X̂j − X̂j > X̂i = Ck
ij × X̂k, (2.27)

here formulated formulated in an invariant form (see below);

GENOTOPIES OF LIE GROUPS: They are characterized by the Lie-Santilli
genotransformation groups

<Ĝ> : Â(ŵ) = (êî×̂X̂×̂ŵ)> > Â(0̂) << (ê−î×̂ŵ×̂X̂) =

= (ei×X̂×T̂
>×w)× A(0)× (e−i×w×

<T̂×X̂), (2.28)

where ŵ> ∈ R̂> are the genoparameters; the genorepresentation theory, etc.

the most salient mathematical aspect of Santilli’s Lie-admissible theory
is that its representation requires the necessary use of a genobymodules,
referred to conventional modules whose action to the right and that to the
left remain indeed associative, but in order to be different they have to be
genoassociatives, e.g.

H > |â> >= H × T̂> × |â> >, << b̂| < H =<< b̂| ×< T̂ ×H. (2.29)

Consequently, the representation theory of Lie algebras for the conven-
tional scattering theory is done on a conventional module with the con-
ventional associative composition law. The representation theory of the
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isoscattering theory is done on an isomodule, that is a module with isoasso-
ciative composition law. Finally, the representation theory of the genoscat-
tering theory of this paper is done on a genobymodules, as indicated above,
consisting of the necessary use of a module for the product to the right and
one for the product to the left whose composition law is still associative,
but it is characterized by two different isotopic elements as a necessary
condition to represent irreversibility./

3. ELEMENTS OF LIE-ADMISSIBLE HADRONIC MECHANICS

3.1. Basic Dynamical Equations
The Lie-admissible branch of hadronic mechanics comprises four different for-
mulations, the forward and backward genomechanics for matter and their isoduals
for antimatter [4.7].The forward genomechanics for matter is characterized
by the following main structures:

1) The nowhere singular (thus everywhere invertible) non-Hermitean
forward genounit for the representation of all effects causing irreversibility,
such as contact nonpotential interactions among extended particles,

Î> = 1/T̂> 6= (Î>)†, (3.1)

with all corresponding ordered product to the right, forward genoreal R̂>

and forward genocomplex Ĉ> genofields;
2) Hilbert-Santilli forward genospace Ĥ> with forward genostates |ψ̂> >, forward

genoinner product

<< ψ̂| > |ψ̂> > ×Î> =<< ψ̂| × T̂> × |ψ̂> > ×Î> ∈ Ĉ>, (3.2)

and fundamental property

Î> > |ψ̂> >= |ψ̂> >, (3.3)

establishing that Î> is indeed the correct unit for motion forward in time,
and forward genounitary transforms

Û> > (Û>)† = (Û>)† > Û> = Î>; (3.4)

3) Santilli’s Lie-admissible equations, first proposed in the original pro-
posal [2] of 1978, formulated on genospaces and genodifferential calculus
on genofields, today known as Heisenberg-Santilli genoequations, which can be
written in the finite form

Â(t̂) = Û> > Â(0) << Û = (êî×̂Ĥ×̂t̂> ) > Â(0̂) < (<ê
−î×̂t̂×̂Ĥ) =
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= (ei×Ĥ×T̂
>×t)× A(0)× (e−i×t×

<T̂×Ĥ), (3.5)

with corresponding infinitesimal version

î×̂ d̂Â
d̂t̂

= (Â,̂Ĥ) = Â < Ĥ − Ĥ > Â =

= Â×< T̂ (t̂, r̂, p̂, ψ̂, . . . .)× Ĥ − Ĥ × T̂>(t̂, r̂, p̂, ψ̂, . . .)× Â, (3.6)

where there is no time arrow, since Heisenberg’s equations are computed
at a fixed time.

4) The equivalent Schrödinger-Santilli genoequations, can be written as

î> >
∂̂>

∂̂>t̂>
|ψ̂> >= Ĥ> > |ψ̂> >=

= Ĥ(r̂, v̂)× T̂>(t̂, r̂, p̂, ψ̂, ∂̂ψ̂ . . .)× |ψ̂> >= E> > |ψ> >, (3.7)

where the time orderings in the second term are ignored for simplicity of
notation;

5) The forward genomomentum

p̂>k > |ψ̂> >= −î> > ∂̂>k |ψ̂> >= −i× Î>ik × ∂i|ψ̂> >, (3.8)

6) The fundamental genocommutation rules

(r̂i ,̂ p̂j) = i× δij × Î>, (r̂i ,̂ r̂j) = (p̂i ,̂ p̂j) = 0, (3.9)

7) The genoexpectation values of an observable for the forward motion Â>

<< ψ̂| > Â> > |ψ̂> >
<< ψ̂| > |ψ̂> >

× Î> ∈ Ĉ>, (3.10)

under which the genoexpectation values of the genounit recovers the con-
ventional Planck’s unit as in the isotopic case,

< ψ̂| > Î> > |ψ̂ >
< ψ̂| > |ψ̂ >

= I. (3.11)

Note that, unlike conventional quantum mechanics, physical quantities
are generally nonconserved, as it must be the case for the energy,

î> >
d̂>Ĥ>

d̂>t̂>
= Ĥ × (<T̂ − T̂>)× Ĥ 6= 0. (3.12)
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Therefore, the genotopic branch of hadronic mechanics is the only known oper-
ator formulation permitting nonconserved quantities to be Hermitean as a necessary
condition to be observability. Other formulations attempt to represent non-
conservation, e.g., by adding an “imaginary potential” to the Hamilto-
nian, as it is often done in nuclear physics. In this case the Hamiltonian is
non-Hermitean and, consequently, the nonconservation of the energy can-
not be an observable. Moreover, since the said “nonconservative models”
with non-Hermitean Hamiltonians are nonunitary and are formulated on
conventional spaces over conventional fields, they are plagued by all the
catastrophic inconsistencies cited earlier. However, we should stress that
the representation of irreversibility and nonconservation beginning with
the most primitive quantity, the unit and related product.Closed irreversible
systems are characterized by the Lie-isotopic subcase in which

î×̂ d̂Â
d̂t̂

= [Â,̂Ĥ] = Â× T̂ (t, . . .)× Ĥ − Ĥ × T̂ (t, . . .)× Â, 3.13a)

<T̂ (t, . . .) = T̂>(t, . . .) = T̂ (t, . . .) = T̂ †(t, . . .) 6= T̂ (−t, . . .), (3.13b)

for which the Hamiltonian is manifestly conserved. Nevertheless the sys-
tem is manifestly irreversible. Note also the first and only known observ-
ability of the Hamiltonian (due to its iso-Hermiticity) under irreversibility.

The above formulation must be completed with three additional Lie-
admissible formulations, the backward formulation for matter under time
reversal and the two additional isodual formulations for antimatter. For
brevity, their study is left to the interested reader.

3.2. Simple Construction of Lie-Admissible Theories
As it was the case for the isotopies, a simple method for the construction
of Lie-admissible (geno-) theories from any given conventional, classical or
quantum formulation consists in identifying the genounits as the product of two
different nonunitary transforms,

Î> = (<Î)† = U ×W †, <Î = W × U †, (3.15a)

U × U † 6= 1, W ×W † 6= 1, U ×W † = Î>, (3.15b)

and subjecting the totality of quantities and their operations of conven-
tional models to said dual transforms,

I → Î> = U × I ×W †, I →< Î = W × I × U †, (3.16a)

a→ â> = U × a×W † = a× Î>, (3.16b)
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a→< â = W × a× U † =< Î × a, (3.16c)

a× b→ â> > b̂> = U × (a× b)×W> =

= (U × a×W †)× (U ×W †)−1 × (U × b×W †), (3.16d)

∂/∂x→ ∂̂>/∂̂>x̂> = U × (∂/∂x)×W † = Î> × (∂/∂x), (3.16e)

< ψ| × |ψ >→<< ψ| > |ψ> >= U × (< ψ| × |ψ >)×W †, (3.16f)

H × |ψ >→ Ĥ> > |ψ> >=

= (U ×H ×W †)× (U ×W †)−1 × (U × ψ > W †), etc. (3.16g)

As a result, any given conventional, classical or quantum model can be
easily lifted into the genotopic form. Note that the above construction
implies that all conventional physical quantities acquire a well defined direction of
time. For instance, the correct genotopic formulation of energy, linear
momentum, etc., is given by

Ĥ> = U ×H ×W †, p̂> = U × p×W>, etc. (3.17)

In fact, under irreversibility, the value of a nonconserved energy at a given
time t for motion forward in time is generally different from the corre-
sponding value of the energy for −t for motion backward in past times.
This explains the reason for having represented in this section energy,
momentum and other quantities with their arrow of time >. Such an ar-
row can indeed be omitted for notational simplicity, but only after the
understanding of its existence.

Note finally that a conventional, one dimensional, unitary Lie transfor-
mation group with Hermitean generator X and parameter w can be trans-
formed into a covering Lie-admissible group via the following nonunitary
transform [4]

Q(w)×Q†(w) = Q†(w)×Q(w) = I, w ∈ R, (3.18a)

U × U † 6= I, W ×W † 6= 1, (3.18b)

A(w) = Q(w)× A(0)×Q†(w) = eX×w×i × A(0)× e−i×w×X →

→ U × (eX×w×i × A(0)× e−i×w×X)× U † =

≡ [U × (eX×w×i)×W † × (U ×W †)−1 × A× A(0)×

×U † × (W × U †)−1 × [W × (e−i×w×X)× U †] =

= (ei×X×X)> > A(0) << (e−1×w×X) = Û> > A(0) << Û , (3.18c)
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which equations confirm the property that under the necessary mathe-
matics the Lie-admissible theory is indeed admitted by the abstract Lie axioms, and
it is a realization of the latter being broader than the isotopic form.

3.3. Invariance of Lie-Admissible Theories
It is easy to see that Lie-admissible formulations are not invariant under
noniunitary transformations, in which case they verify the Theorems of
catastrophic Inconsistencies of Nonunitary. Theores reviewed in Paper I
[1]. The crucial invariance permitting the prediction of the same numbers
under the same conditions at different times was first achieved by Santilli
in Ref. [28] of 1997 and can be reviewed as follows.

Invariance of Lie-admissible formualtions is provided by reformulating
any given nonunitary transform in the genounitary form

U = Û × T̂>1/2,W = Ŵ × T̂>1/2, (3.19a)

U ×W † = Û > Ŵ † = Ŵ † > Û = Î> = 1/T̂>, (3.19b)

and then showing that genounits, genoproducts, genoexponentiation, etc.,
are indeed invariant under the above genounitary transform in exactly
the same way as conventional units, products, exponentiations, etc., are
invariant under unitary transforms,

Î> → Î>
′
= Û > Î> > Ŵ † = Î>, (3.20a)

Â > B̂ → Û > (A > B) > Ŵ † =

= (Û × T̂> × A× T> × Ŵ †)× (T̂> ×W †)−1 × T̂>×

×(Û × T̂>)−1 × (Û × T> × Â× T> × Ŵ>) =

= Â′ × (Û × Ŵ †)−1 × B̂ = Â′ × T̂> ×B′ = Â′ > B̂′, etc. (3.20b)

from which all remaining invariances follow, thus resolving the catastrophic
inconsistencies.

Note that the numerical invariances of the genounit Î> → Î>
′ ≡ Î>, of the

genotopic element T̂> → T̂>
′ ≡ T̂>, and of the genoproduct >→>′≡> are necessary

to have invariant numerical predictions.

3.4. Genotopy of Pauli-Santilli Isomatrices
We now proceed to define the genotopy of the Pauli spin matrices and of
the Dirac equation, which will be required for constructing genoscattering
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theory in Sec. 4. We begin by defining the Pauli-Santilli iso-spin matrices,
without spin mutation (see Papers II and III):

σ̂1 =

(
0 n1 × n2

n1 × n2 0

)
, σ̂2 =

(
0 −i× n1 × n2

i× n1 × n2 0

)
,

σ̂3 =

(
n2
1 0

0 n2
2

)
, T̂ =

(
n−21 0
0 n−22

)
(3.21a)

where n−2k = b2k(k = 1, 2, 3), (b21 × b22 × b23) = 1 for an ellipsoidal deformation of
a spherical scattering region; and, with spin mutation:

σ̂1 =

(
0 n2

1

n2
2 0

)
, σ̂2 =

(
0 −i× n2

1

i× n2
2 0

)
, σ̂3 =

(
w × n2

1 0
0 w × n2

2

)
(3.21b)

Consequently, the isotopies provide five additional quantities [the four (
bk, k = 1, ...4) for spacetime mutation and one (w ) for the spin] for the
representation of experimentally measureable features of the scattering
region in isoscattering theory, such as shape, deformation, scaling, den-
sity, anisotropy, etc . The construction of the genotopies is most conve-
niently done by subjecting the conventional Pauli’s matrices to two dif-
ferent nonunitary transforms. To avoid un-necessary complexity, one may
select the following two matrices

A =

(
1 0
a 1

)
, B =

(
1 0
b 1

)
, AA† 6= I, ] BB† 6= I, (3.22)

where a and b are non-null real numbers, and observe that if Q,P are
idempotent (creation and annihilation) matrices, then one may write A =
I + aQ ≡ exp(a × Q), B = I + bP ≡ exp(b × P ). Accordingly, one has the
following forward and backward genounits and related genotopic elements

I> = AB† =

(
1 b
a 1

)
, T> =

1

(1− ab)

(
1 −b
−a 1

)
, (3.23a)

<I = BA† =

(
1 a
b 1

)
, <T =

1

(1− ab

(
1 −a
−b 1

)
, (3.23b)

The forward and backward Pauli-Santilli genomatrices are then given respec-
tively by

σ>1 = Aσ1B
† =

(
0 1
1 (a+ b)

)
, σ>2 = Aσ2B

† =

(
0 −i
i (a+ b)

)
, (3.24a)
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σ>3 = Aσ3B
† =

(
1 b
a −1

)
, <σ1 = Bσ1A

† =

(
0 1
1 (a+ b)

)
, , (3.24b)

<σ2 = Bσ2A
† =

(
0 −i
i (a+ b)

)
, <σ3 = Aσ3B

† =

(
1 a
b −1

)
, (3.24c)

in which the direction of time is embedded in the structure of the matrices.
It is an instructive exercise for any interested reader to verify that

conventional commutation rules and eigenvalues of Pauli’s matrices are preserved
under forward and backward genotopies,

σ>i > σ>j − σ>j > σ>i = 2iεijkσ
>
k (3.25a)

σ>3 > | >= ±1| >, σ>
2>
> | >= 2(2 + 1)| >, (3.25b)

<σi >
< σj −< σj >< σi = 2iε<ijkσk (3.25c)

< | << σ3 =< | ± 1, ;< | << σ2> =< |(2(2 + 1). (3.25d)

We can, therefore, conclude by stating that Pauli’s matrices can indeed
be lifted in such an irreversible form to represent the direction of time in their very
structure.

3.5. Genotopy of Dirac-Santilli isoequation
The Dirac-Santilli isomatrices (γ̂µ) are defined as follows (see Papers II
and III):

γ̂k = bk ×
(

0 σ̂k
−σ̂k 0

)
, γ̂4 = i× bk ×

(
I2×2 0

0 −I2×2

)
(3.26a)

[γ̂µ̂,γ̂ν ] ≡ γ̂µ × T × γ̂ν + γ̂ν × T × γ̂µ = 2× η̂µν .

To construct the simplest possible genotopy of Dirac’s equation via the
genotopies of the Pauli-spin matrices and space-time structure, we shall
use Dirac’s equation in its isodual re-interpretation representing a direct
product of one electron and one positron, the latter without any need of
second quantization. We note, however, that the latter re-interpretation
requires the use of the isodual transform A → Ad = −A†) as being distinct
from Hermitean conjugation. Under this clarifications, the forward Dirac
genoequation can be written

(η>µνγ>µ T
>p>ν − im)T>|ψ> >= 0 (3.27a)

p>ν T
>|ψ> >= −i ∂>

∂>x>ν
|ψ> >= −iI> ∂

∂x>
|ψ> >, (3.27b)
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with forward genogamma matrices

γ>4 =

(
A 0
0 Bd

)(
I2×2 0

0 −I2×2

)(
Ad 0
0 B

)
=

(
AAd 0

0 −BdB

)
(3.28a)

γ>k =

(
A 0
0 Bd

)(
0 σk
σdk 0

)(
Ad 0
0 B

)
= (3.28b)

=

(
0 AσkB

†

BσdkA
d 0

)(
0 σk
σdk 0

)
=

(
0 σ>k

<σdk 0

)
. (3.28c)

{γ>µ ,̂γ>ν } = γ>µ T
>γ>ν + γ>ν T

>γ>µ = 2η>µν , (3.28d)

where η>µν is given by the same genotopy of Eqs. (3.26a). The backward
genoequation may be constructed similarly.

For additional insight into the mathematical structure of the genotopy
of the spin matrices, it should be noted, at this juncture, that in terms
of the larger group O(4,2), considered as a set of linear transformations
in a six-dimensional linear vector space which leave the quadratic form,
gIJX

IXJ with I, J = 1, 2, 3, 4, 0 = 5, 6; gIJ = (− − − − ++) invariant, it is well
known that the O(4,2) group generators can be explicitly written in terms
of creation and annihilation operators of a spin-1

2
field as follows:

Lij = Lk =
1

2
[a+σka+ b+σkb];L44 = Ai = −1

2
[a+σia− b+σib];

Li5 = Mi = −1

2
[a+σiCb

+ − aCσib];Li6 = Γi = − i
2

[a+Cb+ − aCb];

L45 = T = − i
2

[a+Cb+ − aCb];L46 = S =
1

2
[a+Cb+ + aCb];

L56 = Γ5 =
1

2
[a+a+ b+b+ 2] (3.29)

where i, j, k = 1, 2, 3

a =

(
a1
a2

)
; b =

(
b1
b2

)
;

and C = iσ2, where the matrices σ1, σ2, σ3 are the Pauli spin matrices.
The group operators given in Eq.(2.29) are readily shown to satisfy the
commutation relation for the 15 generators of the group considered as an
antisymmetric tensor LIJ = −LJI

[LIJ , LKL] = −i[gIKLJL − gJLLIK − gJKLIL − gILLJK ] (3.30)
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One can then see in this way the implicvations of the transition from the
conventional to the genotopic scattering theory.

4. LIE-ADMISSIBLE INVARIANT GENOSCATTERING THEORY

4.1. The Fundamental Lie-Admissible Scattering Matrix
As it is well known, the conventional (relativistic scattering theory is based
on the scattering matrix S for the connection of initial (i) and final (f)states

S = (Sif ), (4.1)

whose central feature is that of being unitary on the base Hilbert space H
over the field of complex numbers C,

S × S† = S† × S = I. (4.2)

The latter feature then assures the verification of causality, the predictions
of the same numerical values under the same conditions at different times
(invariance), and the remaining axiomatic features of relativistic quantum
mechanics, including the characterization of symmetries via the funda-
mental Lie theory.

Despite historical advances, the above conception of the scattering ma-
trix has the same insufficiencies as those of the underlying disciplines,
namely, the theory is based on the necessary reduction of scattering pro-
cesses to dimensionless points. As indicated in the preceding Papers I-IV
[1], this abstraction of reality is effective for a number of scattering events,
such as Coulomb scattering without collisions, but it is manifestly insuf-
ficient for the characterization of high energy scattering processes, e.g.,
because of the inability to characterize the hyperdense scattering region
and the consequential expected non-hamiltonian internal effects.

To initiate the process toward a more accurate description of high en-
ergy scattering processes, in Paper IV [1] we have reviewed and expanded
the notion of the isoscattering matrix

Ŝ = (Ŝif ), (4.3)

whose primary feature is that of being nonunitary when formulated on H
over C,

Ŝ × Ŝ† 6= I, (4.4)

but of being unitary, namely, of verifying the conditions of unitarity on the
Hilbert-Myung-Santilli isospace Ĥ over Santilli isofield Ĉ

Ŝ×̂Ŝ† = Ŝ × T̂ × Ŝ† = Ŝ†×̂Ŝ = Ŝ† × T̂ × Ŝ ≡ Î1/T̂ > 0, (4.5)
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which property resolves the historical inconsistencies of nonunitary scat-
tering theories by achieving full causality and invariance when properly
elaborated, that is, treated over Ĥ over Ĉ, by allowing the use of the
axiomatically consistent formulations of the isotopic branch of hadronic
mechanics, including the fundamental use of the Lie-Santilli isotheory for all
symmetry needs.

The main advantage of the transition from the scattering to the isoscat-
tering theory is that of achieving a more realistic representation of the
scattering region at distances of 1 fm, while recovering the conventional
scattering matrix at bigger distances. This is possible because the isounit Î
and, therefore, the isoscattering matrix Ŝ, have a completely unrestricted
functional dependence on all needed variables and quantities, including lo-
cal coordinates x, momenta p, density d, wavefunctions ψ, their derivatives
∂ψ, etc.

Ŝ = Ŝ(x, p, d, ψ, ∂ψ, ...). (4.6a)

Limr > 1 fmŜ ≡ S. (4.6b)

The above feature permits, for the first time in the field, a quantitative,
causal and invariant representation of nonlinear, nonlocal and nonpotential
effects that are inevitable in the scattering of particles at high energy.

Despite the above advances, the isoscattering theory has “no arrow of
time” in its axioms and technical realization, thus being solely applicable to
high energy reversible scattering processes requiring a nonunitary-isounitary structure
as indicated in Section 1.

The latter insufficiency has mandated the studies presented in this pa-
per, that are centered in the notion of forward and backward genoscattering
matrices

Ŝ> = (Ŝ>if ), (4.7a)

<Ŝ = (<Ŝif ), (4.7b)

whose primary feature is that of being nonunitary as well as non-isounitary,
yet being genounitary, namely, verifying the conditions of unitarity on the
forward and backward genospaces over genofields, respectively,

Ŝ>×̂Ŝ>† = Ŝ> × T̂> × Ŝ>† =

= Ŝ>†×̂>Ŝ> = Ŝ>† × T̂> × Ŝ> ≡ Î>1/T̂> > 0, (4.8a)

<Ŝ<×̂<†Ŝ =< Ŝ ×< T̂ ×<† Ŝ =<† Ŝ<×̂<Ŝ =

=< Ŝ† ×< T̂ ×< Ŝ ≡ <Î1/<T̂ > 0, (4.8b)
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which can be constructed from the isoscattering or conventional scattering
theory via the rule (1.10) formulated on genospaces over genofields under
the crucial condition of preserving limit (4.6b)

ZZ† 6= I WW † 6= I, ZW † 6= I, (1.9a)

Ŝ → Ŝ> = Z ×Q×W †, (4.9b)

Limr > 1 fmŜ
> ≡ S. (4.9c)

Ŝ →< Ŝ = WŜZ†. (4.9d)

Lim<
r > 1 fmŜ ≡ S. (4.9e)

Under the latter conditions the forward and backward genoscattering
matrices recover, individually, unitarity, invariance and the other features
of the genotopic branch of hadronic mechanics, including its fundamental
treatment via Santilli Lie-admissible theory.

Note that the forward and backward genoscattering matrices are individually
causal, because they are necessary for the consistency of the theory as
well as for the treatment of antimatter requiring a backward treatment.
Nevertheless, the Lie-admissible scattering theory is indeed irreversible over time
because of the strict inequivalence between the forward and backward scattering matrix.

We shall now pass to a more detailed the formulation of the Lie-
admissible scattering theory, by restricting our attention for simplicity
to the forward scattering matrix.

4.2. Genotopy of the Isoscattering Formalism
As is well known[2], the usual Feynman propagator in conventional QED
of spin-1

2
particles can be characterized as follows in the O(3,1) carrier

space of a relativistic quantum mechanics:

SF (x) = (γµpµ + im)∆F (x),∆F (x) =

∫
d4p

(2π)4
e−ipx

p2 −m2 + iε
(4.10)

with corresponding expression in momentum 4-vector space:

SF (p) = (γµpµ + im)∆F (p),∆F (p) =
γµpµ + im

p2 −m2 + iε
(4.11)

In terms of the ”isounit” (Î)and isotopic element (T̂ = Î−1)defined in
Sec.2.1, and represented as Îst and Tst,the generalized Feynman (which may
be called iso-Feynman) propagator in the Ô(3, 1) carrier space of hadronic
mechanics is given by the corresponding expressions as follows

ŜF (x̂) = (η̂µνst × γ̂µ × p̂µ + i× m̂)× T̂st × ∆̂F (x̂),
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∆̂F (x̂) =

∫
d4p

(2π)4
e−ip×T̂st×x

p̂2̂ − m̂2̂ + i× ε̂
(4.12)

with corresponding expression in iso-momentum 4-vector space

ŜF (p̂) = (η̂µνst × γ̂µ × p̂µ + i× m̂)× T̂st × ∆̂F (p̂),

∆̂F (p̂ =
(η̂µνst × γ̂µ × p̂µ + i× m̂)× T̂st

p̂2̂ − m̂2̂ + i× ε̂
(4.13)

In terms of the ”genounits” (Î>, <Î) genotopic elements (T̂> = 1/Î>, <T̂ =
1/<Î) defined in Sec. 3.4 and represented as (Î>st ,

< Îst) and (T>st
<Tst), the

generalized Feynman (which may be called geno-Feynman) propagator in
the (Ô>(3, 1), <Ô(3, 1) carrier genospaces of the Lie-admissible branch of
hadronic mechanics is given by the corresponding expressions as follows

Ŝ>F (x̂) = ((η̂>st)
µν × γ̂>µ × p̂µ + i× m̂)× T̂>st × ∆̂>

F (x̂),

∆̂>
F (x̂) =

∫
d4p

(2π)4
e−ip×T̂

>
st×x

p̂2̂ − m̂2̂ + i× ε̂
(4.14a)

<ŜF (x̂) = (<η̂µνst ×< γ̂µ × p̂µ + i× m̂)×< T̂st ×< ∆̂F (x̂),

<∆̂F (x̂) =

∫
d4p

(2π)4
e−ip×

<T̂st×x

p̂2̂ − m̂2̂ + i× ε̂
(4.14b)

with corresponding expression in geno-momentum 4-vector space

Ŝ>F (p̂) = ((η̂>st)
µν × γ̂>µ × p̂µ + i× m̂)× T̂>st × ∆̂>

F (p̂),

∆̂>
F (p̂2) =

((η̂>st)
µν × γ̂>µ × p̂µ + i× m̂)× T̂>st

p̂2̂ − m̂2̂ + i× ε̂
(4.14c)

<ŜF (p̂) = (<η̂µνst ×< γ̂µ × p̂µ + i× m̂)×< T̂st ×< ∆̂F (p̂),

<∆̂F (p̂2) =
(<η̂µνst ×< γ̂µ × p̂µ + i× m̂)×< T̂st

p̂2̂ − m̂2̂ + i× ε̂
(4.14d)

In the presence of an external electromagnetic field, the solution of the
(regular) Dirac-Santilli isoequation takes the form

Ψ̂ = ψ̂(x̂) + ê×̂
∫̂
d̂4x̂′×̂Ŝf (x̂− x̂′)×̂γ̂.̂Â(x̂′)×̂Ψ̂(x̂
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= ψ̂(x̂) + ê×̂
∫̂
d̂4x̂′×̂Ŝf (x̂− x̂′)×̂γ̂.̂Â(x̂′)×̂ψ̂(x̂)

+ê2̂×̂
∫̂
d̂4x̂′

∫̂
d̂4x̂”×̂Ŝf (x̂− x̂′)×̂γ̂.̂Â(x̂′)×̂Ŝf (x̂′ − x̂”)×̂γ̂.̂Â(x̂”)×̂ψ̂(x̂”) + ... (4.15)

This leads to a formal definition of the iso-Feynman propagator either as
a series

Ŝ ′f (x̂, x̂′) = Ŝf (x̂− x̂′) + ê×̂
∫̂
d̂4x̂”×̂Ŝf (x̂− x̂”)×̂γ̂.̂Â(x̂”)×̂Ŝf (x̂′ − x̂”) + ... (4.16)

or as an integral equation

Ŝ ′f (x̂, x̂′) = Ŝf (x̂− x̂′) + ê×̂
∫̂
d̂4x̂”×̂Ŝf (x̂− x̂”)×̂γ̂.̂Â(x̂”)×̂Ŝ ′f (x̂′.x̂”) (4.17)

where γ̂.̂Â(x̂′) ≡ η̂µνst × γ̂µ × Âν(x̂′) and Âν(x̂′) is the iso-electromagnetic four-
vector potential given by the corresponding iso-gauge principle[xx]. This
leads, in turn, to a formal definition of geno-Feynman propagators either
as series:

Ŝ ′
>

f (x̂, x̂′) = Ŝ>f (x̂− x̂′) + ê >

∫̂
d̂4x̂” > Ŝ>f (x̂− x̂”) > γ̂> .̂Â>(x̂”) >

Ŝ>f (x̂′ − x̂”) + ...

<Ŝ ′f (x̂, x̂′) =< Ŝf (x̂− x̂′) + ê <

∫̂
d̂4x̂” << Ŝf (x̂− x̂”) << γ̂.̂<Â(x̂”) <

<Ŝf (x̂′ − x̂”) + ... (4.18)

or as an integral equation

Ŝ ′
>

f (x̂, x̂′) = Ŝ>f (x̂− x̂′) + ê >

∫̂
d̂4x̂” > Ŝ>f (x̂− x̂”) >

γ̂> .̂Â>(x̂”) > Ŝ ′
>

f (x̂′.x̂”)

<Ŝ ′f (x̂, x̂′) =< Ŝf (x̂− x̂′) + ê <

∫̂
d̂4x̂” < Ŝ>f (x̂− x̂”) <

<γ̂.̂<Â(x̂”) << Ŝ ′f (x̂′.x̂”) (4.19)

where γ̂> .̂Â>(x̂′) ≡ (η̂>st)
µν×γ̂>µ ×Â>ν (x̂′) and Â>ν (x̂′), and similarly for <γ̂.̂<Â(x̂”)
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Note that, in the limit of unitary transformation, we recover exactly the
conventional expressions. For this reason, the primary interest of isoscat-
tering and genoscattering theories lies in the formal relationship/differentiation
of the isoscattering and genoscattering profiles (1.1) and (1.2) for interpret-
ing the existing and future scattering experimental data. As our interest
is to elaborate the basic physical concepts in terms of Feynman diagrams
for electron scattering with an electromagnetic field and electroweak neu-
tron decay, as well as remove divergences from the theory, it is useful to
characterize the differences by noting that, in 1st quantization scheme, the
generalized S-matrix for isoscattering theory is given by

Ŝf,i = limt→inf

∫̂
d̂3x̂×̂ψ̂+ŝ′

p̂ ×̂Ψ̂ŝ
p̂ (4.20)

where Ψ̂ŝ
p̂ is the exact solution given by

Ψ̂ŝ
p̂(x̂) = ψ̂ŝp̂(x̂) + ê×̂

∫̂
d̂4x̂′×̂Ŝf (x̂− x̂′)×̂γ̂.̂Â(x̂′)× Ψ̂ŝ

p̂(x̂
′) (4.21)

with the normalization∫̂
d̂3x̂×̂ψ̂+̂s

p̂ (x̂)×̂ψ̂+̂s′

p̂′
(x̂) = δ̂ŝŝ′×̂δ̂

3(p̂− p̂′) (4.22)

and similarly for the geno case. Consequently, as indicated in Fig. 2,
the correspondence principle in 1st quantization scheme involves a lifting
of the Coulomb vertex in QED into the approximate Yukawa vertex in
hadronic mechanics. In 2nd quantization scheme, one has additionally the
lifting from Bose-Einstein to Fermi-Dirac statistics, i.e., mutation of spin
under sufficiently high energies and further differences indicated in Sec 3.4
above.

The correspondence between Feynman graphs/rules and their isotopic
images for computation of contributions to the S-matrix in QED of spin-1

2

particles have been summarized in table 2 of Ref.[1, paper IV] and need
not be repeated here for brevity.

4.3. Ô>(4, 2) × ŜU>(3) × Û>(1) Dynamical Symmetries of the Scattering
Region.
We now turn to a more detailed specification of the structure of the scat-
tering region. While the isotopy of Dirac matrices characterizes the lifting
of the Lorentz group O(3, 1) → Ô(3, 1) , in terms of five additional quanti-
ties, namely the four bk(k = 1, ..., 4) for spacetime mutation and one (w )
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Figure 4: Expected Modification of QED in HM
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for the spin, in regard to analyzing experimentally measureable features
of the scattering region, such as its shape, deformation, anisotropy, etc,
we expect the genotopy to characterize, in addition, time-irreversibility
and the breaking of the associated discrete symmetry of parity by elec-
troweak forces responsible for neutron decay in the standard (V-A, i.e.
vector-axialvector) current-current interaction model.

We wish the genotopy to accommodate this feature in such a way that
correlated pairs of spin-1

2
particles,e−, ν and e−, a0 , can be subsumed and

long-range 1/r-potential between pairs of particles (p, e−) eliminated simul-
taneously in the representation of the conventional O(4,2) dynamical sym-
metry group, in terms of the most general conserved current in the O(4,2)
algebra of Dirac matrices[10] which includes not only (parity-conserving)
vector current but also axial-vector (parity non-conserving) current as well
as certain ”convective” currents proportional to the total momentum of
the particle-antiparticle system. The most important distinctive features
of the scattering region for the three profiles of e−−p (Coulomb) action-at-
a-distance between point-particles, penetration of point-like particle into
an extended wave-packet, and overlap of two extended wavepackets as
well as current-current interaction processes indicated in Fig. 3 are real-
ized as indicated in Fig. 4 in terms of the progressive lifting of the larger
dynamical group:

O(4, 2)→ Ô(4, 2)→


Ô>(4, 2)

.
>Ô(4, 2)

 (4.23)

.
To elaborate the characteristics of the isoscattering region in Figs. 3 and

4, let us examine the generalized iso-current given by the isotopic lifting
of the O(3,1) (Dirac) vector current into Ô(4, 2) vector and convective
currents:

Jµ ≡ ψ̄γµψ → ˆ̄ψ × T̂ × (γ̂µ − i× κ0 × ~̂∂µ)× T̂ × ψ̂ = Ĵµ (4.24)

The generalized wave equation that conserves Ĵµ is given by the iso-
Lagrangian density

L̂ = −1

2
ψ̄(x̂)× T̂ × (−i× γ̂µ × ~̂∂µ + κ1)× T̂ × ψ̂(x̂)−

ˆ̄ψ(x̂)× T̂ × κ0 × ~̂∂µ ~̂∂µ × T̂ × ψ̂(x̂) (4.25)
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(b) 

QM 

       HM        
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(c) 

HM     

cm13 -10  

Figure 5: A schematic view of the main assumption of (a) Lie-isotopic isoscattering
theory[1] and its generalizations (b) and (c) in Lie-admissible genoscattering theory,
namely, the exact validity of quantum mechanics (QM) everywhere in exterior con-
ditions, and the validity of hadronic mechanics (HM) for the interior conditions of
the scattering region of generally arbitrary shape, but represented as (a) spherical
”extended” particle with radius of about 10−13cm in Ô(3, 1) and (b) as a deformed
sphere in Ô(4, 2) isoscattering theories, and as (c) overlap/penetration of a cube and
its (dual) polyhedron (Wigner-Seitz unit cell) defined by the plane-coordinates repre-
senting fermion current-current interaction in genoscattering theory.
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n  
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(d) 

Figure 6: Feynman diagrams for (a) conventional e−−p long-range Coulomb interac-
tion via ”virtual” photon exchange; (b) point-electron contact/penetration into an ex-
tended proton wave packet,e−+p→ n+ν which implies n ∼ (pe−ν̄)QM → (pe−a0)QM ;
(c) mutual overlap of extended electron and extended proton wave packets, e− + p→
n+ ν + ν̄ which implies n ≡ (ê−, p̂)HM involving mutation of spin and in the similar
scattering process e+ + e− → π0 → e+ + e− which implies π0 ≡ (ê−, ê+)HM ; and (d)
electroweak decay of the neutron, n → p + W− → p + e− + ν̄ usually characterized
by vector and axial-vector currents in unified strong and electroweak current-current
interaction models.

36



as (cf Eq.(3.2) of Barut, Cordero and Ghirardi[10])

(i× γ̂µ × ~̂∂µ + κ0 × ~̂∂µ ~̂∂µ − κ1)× T × ψ̂(x̂) = 0 (4.26)

where κ0, κ1 are constants. It is of interest to note that the last term in
Eq.(4.10) (due to convective currents) gives rise to the Pauli magnetic
transitions, inasmuch as for any Dirac spinor ψ, it is easy to establish
from the relation, (∂µψ̄)(∂µψ) = (∂µψ̄)γµγν(∂νψ), a connection with the in-
trinsic Pauli-moment coupling which is tantamount to inclusion of a non-
potential term,−i∂µ(ψ̄σµν∂

ν)ψ , in the free Dirac Lagrangian density[11].

Thus even the (T̂ → 1 ) limit of Ô(4, 2) corresponding to the conventional
O(4, 2) provides a simple non-trivial profile of neutron production in (e−, p
) scattering, summarized in Fig.5(Table 1), as follows.

If one puts the leptons into a triplet l = (ν, e−, µ−) or (a0, e−, µ−) with
integral lepton number L = Diag(1, 1, 1) and charges QL = Diag(0,−1,−1)
(in units of the proton charge) and compares with the quark tripet (u, d, s)
with fractional baryon number B = 1

3
Diag(1, 1, 1) and fractional electric

charges QB = 1
3
Diag(2,−1,−1), then one finds[12] that L + QL = B + QB =

Diag(1, 0, 0) ≡ F+QF = P is idempotent (i.e.,P 2 = P ) and, therefore[13], that
quarks could be obtained from the leptons by shifting 2/3 of the lepton
number to the leptonic electric charge, i.e., B ≡ L− 2

3
L,QB ≡ QL + 2

3
L. This

motivated Barut’s[13] model of the neutron, and subsequently, its variant
as Santilli’s [14] ”etherino” model.

Indeed, according to Figure 5(table 1), if in the scattering process,
e− + p → n + ν , the proton is treated as pointlike particle described by
the conventional Dirac equation with O(3, 1) symmetry, then the electron
with an associated massless neutrino may be described by the simplest
(scale-invariant[15]) equation with O(4, 2) dynamical symmetry,

(iγµ∂µ −m−1e ∂µ∂
µ)ψe = 0 (4.27)

whose mass equation has two roots,m = 0,me, and therefore leads to
Barut’s model[13] of neutron production, n ∼ (pe−ν̄)QM (which is not com-
patible with negative binding energy). Alternatively, if one adopts San-
tilli’s ”etherino hypothesis”[14] (for compatibility with neutron decay and
negative binding energy for n = (pe−a0)QM ), the electron with an associated
massive ”etherino” may be described by the more general equation

[iγµ∂
µ − 3me − (2me)

−1∂µ∂
µ]ψ = 0, (4.28)

whose mass equation and its two non-zero roots are respectively given by:

m2 + 2mem− 6m2
e = 0, (4.29)
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Figure 7: Table 1: O(4,2) Profile of e-p scattering and neutron production; and 2-
dimensional projection of the Macdonough representation of the Rutherford-Santilli
neutron showing its relationship to Santilli’s ”etherino” model of the neutron.
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m± = me(−1±
√

7), i.e.,
m+

me

= 1, 65;
|m−|
me

= 3.6 (4.30)

Consequently, since 0.78MeV = 1.53!me , it follows by setting ma0 ≡ m+ =
1.65me that one may validly characterize a quantum mechanical bound
state of n = (p, e−, a0) system with negative binding energy: mn− (mp+me+
ma0) ≡ −0.18me .

Intriguingly, the numerical coefficients in the wave equations (4.18) and
(4.19) are uniquely related in terms of Gell-Mann SU(3) λ - generators,

λ0 =

√
2

3

 1 0 0
0 1 0
0 0 1

 , λ8 =

√
1

3

 1 0 0
0 1 0
0 0 −2

 , λ−18 =
√

3

 1 0 0
0 1 0
0 0 −1

2

 ,

(4.16)
and a triplet field

Ψ =

 ψν
ψe
ψa0

 ,

as the components of the wave equation

(iγµ∂
µ −me

√
3

2
(λ0 −

√
2λ8) + (

1

me

√
3

)λ−19 ∂µ∂
µ)Ψ = 0 (4.31a)

where

me

√
1

2
(λ0 −

√
2λ8) = (3me)

 0 0 0
0 0 0
0 0 1

 ;

(
1

me

√
3

)λ−18 ≡ (
1

3me

)

 1 0 0
0 1 0
0 0 −1

2

 . (4.31b)

As the three equations in this system are uncoupled except insofar as
there is only one characteristic mass,me , for the whole triplet, Eq.(4.17a)
implies that in the absence of convective currents, the apparent chiral
SU(3)× SU(3) symmetry of the leptonic triplet (Ψ ) is broken in the man-
ner prescribed by Gell-Mann, Oakes and Renner[16]. This observation
provides, therefore, a heuristic motivation to include both vector currents
and (parity-violating) axial-vector currents in the genotopy of lepton and
hadron currents in Ô>(4, 2) × Ŝ>(3) × Û>(1) genospace suitable for a suffi-
ciently broader genoscattering model of electroweak current-current inter-
action indicated in Fig.
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3 which we now proceed to elucidated further in Sec.4.3.

4.3 Genotopy of Lepton and Hadron Currents
In order for formal genoscattering theory involving strong and electroweak
forces to be expressible as current-current interaction, it is necessary to
construct the genotopy of the iso-current defined in Eq.(4.9) in the follow-
ing broader form:

Jµ ≡ ψ̄γµψ → ˆ̄ψT̂ (γ̂µ − iκ0 ~̂∂µ)T̂ ψ̂ ≡ Ĵµ

→


ˆ̄Ψ>
F T̂

>(γ̂>µ − i>κ>0 ~̂∂>µ )(Î> + γ̂>5 )Q̂>
F T̂

>Ψ̂>
F ≡ Ĵ>µ

or
< ˆ̄ΨF

<T̂ (<γ̂µ −< i<κ0< ~̂∂µ)(<Î +< γ̂5)
<Q̂F

<T̂<Ψ̂F ≡< Ĵµ

 (4.32)

where Q̂>
F is the Fermion (i.e. lepton (L) or baryon (B)) charge, and Ψ̂>

F is

the corresponding Fermion Ô>(4, 2)×ŜU>(3)×Û>(1) multiplet, and similarly
for <Q̂F etc.

In order to highlight the physical content of the above generalization, it
is instructive to discuss the most familiar (baryon) limit of this expression
provided by Cabibbo’s[17] representation of the relative strengths of the
vector and axial-vector currents given in the quark triplet qh = (u, d, s)
model by,

Jwkhµ = q̄hγµQ
wk
h qh (4.33)

where

Qwk
h =

1

2
cosθ(λ1 + iλ2) +

1

2
sinθ(λ4 + iλ5) =

 0 cosθ sinθ
0 0 0
0 0 0

 (4.34)

and θ ∼ 150 (empirically) is the mixing (Cabibbo) angle. The fact that the
length of the vector (0, cosθ, sinθ) is unity expresses the so-called lepton-
hadron universality in weak interactions. Similarly, for the lepton triplet
(ν, e−, µ+) first introduced in 1968 by Salam[18] where ν is a 4-component
neutrino (νe, ν̄µ), or more appropriately, the ”Santilli” triplet, ql = (a0, e−, µ+)
we have,

Jwklµ = q̄lγµQ
wk
l ql (4.35)

where

Qwk
l =

1√
2

(λ1 − iλ2) +
1√
2

(λ4 − iλ5) =

 0 0 0
cos450 0 0
sin450 0 0

 (4.36)
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Thus, Qwk
l ≡ Qwk

h
† apart from the difference in the numerical values of the

leptonic and hadronic Cabibbo angles, in which case we may regard the
hadronic Cabibbo angle θ as a ”mutation” of the leptonic Cabibbo angle
φ.

In like manner, we observe that the electric charges may be expressed
in the forms

Qγ
h ≡

1

2
(λ3 − λ8/

√
3)

=

 0 0 0
0 −1 0
0 0 +1

 = UQ̃γ
hU
−1 (4.37a)

where

Q̃γ
h =

1

3
(λ1 + λ4 + λ6) =

1

3

 0 1 1
1 0 1
1 1 0

 ;

U =

 1/
√

3 1/
√

3 1/
√

3

1/
√

3 1/
√

2 −1/
√

2

2/
√

6 −1/
√

6 −1/
√

6

 ;U−1 = U †.

T race(U) = 1/
√

3 + 1/
√

2− 1/
√

6 ≡ 2cosθ − 1 (4.37b)

and for the leptonic charge,

Qγ
l ≡

1

2
(λ3 −

√
3λ8) = V Q̃γ

l V
−1

Q̃γ
l =

1

3
√

3
(λ2 + λ5 + λ7) =

1

3
√

3

 0 −i −i
i 0 −i
i i 0

 (4.2238a)

where

V =
1√
3

 1 1 e−iφ

−1 e−iφ 1
1 −eiφ eiφ

 ;V −1 = V †, φ = 600. (4.38b)

As a result, the lepton and hadron electromagnetic currents can be added
(like Cabibbo) in terms of a single triplet,qF such that

Jγµ = q̄FγµQ̃
γ
F qF (4.39)

where

Q̃γ
F =

2

3
√

3
[cosφ(λ2 + λ5 + λ7] + sinφ[λ1 + λ4 + λ6]

41



=
2

3
√

3

 0 e−iφ e−iφ

eiφ 0 e−iφ

eiφ eiφ 0

 (4.40)

Consequently, the eigenvalues of the symmetric part of Q̃γ
F give the eigen-

values of Qγ
l while the eigenvalues of its antisymmetric part give the quark

charges Qγ
h. This is the unifying feature of genoscattering theory that

we are after, which we now proceed to use as a framework for initiating
applications of the theory to inelastic scattering involving spin-1

2
fermion

(baryon+lepton) systems.

5. INITIAL APPLICATIONS

5.1 Genotopy of the S-matrix and Feynman Graphs/Rules.
In order to familiarize the reader with the use of generalized Feynman
graphs/rules for computation of the S-matrix we recapitulate the Lie-
isotopic elaboration of Feynman graph for reversible electron-proton Coulomb
scattering shown in Fig. 6(a) which will lead to an isotopic generalization
of the familiar Mott scattering cross-section, and will enable us to identify
the characteristic features of inelastic scattering processes in Fig. 6(b)
requiring an application of the genoscattering theory.

To write down the S-matrix for the reversible scattering process shown
in Fig.6(a) using the Feynman rules, one starts in the direction of the top
left arrow to right and, at each vertex, inserts all other factors between
the incoming and outgoing arrows. If loop closes, one takes trace to get:

Ŝfi = −4iπ

∫
d4q̂

(2π)4
× [

1√
(2π)3

√
m̂ĉ

k̂′0
× ˆ̄uŜ

′
(k̂′)]×

[−i(4πe)γ̂µ′(2π)4 × δ̂4(k̂′ − k̂ + q̂)]× [
1√

(2π)3

√
m̂ĉ

k̂0
× ûŜ(k̂)]×

[−iĝµνD̂F (q̂2)]× [
1√

(2π)3

√
M̂ ĉ

P̂ ′0
× ˆ̄U λ̂′(P̂ ′)]×

[−i(4πe)γ̂µ′(2π)4 × δ̂(4)(P̂ ′ + P̂ − q̂)]× [
1√

(2π)3

√
M̂ ĉ

P̂0

× Û λ̂(P̂ )]

= −4πi

∫
d4q̂

(2π)4

√
(m̂ĉ)2(M̂ ĉ)2

k̂′0k̂0P̂
′
0P0

× ˆ̄uŜ
′
(k̂′)γ̂µûŜ(k̂)×
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Figure 8: generalized Feynman graphs for (a) electron-proton isoscattering and (b)
resonance model of deep-inelastic e− − p+ genoscattering.
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−4πiα

(4π)4
(2π)4δ̂(4)(k̂′ + P̂ ′ − k̂ − P̂ )×

[(k̂′ − k̂)2 + (mφĉ)
2 + iε̂]−2 × ˆ̄U λ̂′(P̂ ′)γ̂µÛ

λ̂(P̂ ). (5.1)

This may be rewritten in the form of generalized current-current interaction:

Ŝfi = −4iπ

∫
d4q̂

(2π)4
× ĵµ(k̂′k̂,−q̂)× 1

[q̂2 + (mφĉ)2]2
× Ĵµ(p̂′p̂; q̂) (5.2)

where

ĵµ(k̂′k̂,−q̂) = (2π)4 × δ̂(k̂′ − k̂ + q̂)]× e

(2m̂ĉ)3
×

√
(m̂ĉ)2

k̂′0k̂0
ˆ̄uS
′
(k̂′)γ̂µûS(k̂) (5.3a)

Âµ(k̂′ − k̂) =
4π

(k̂′ − k̂)2 + (mφĉ)2 + iε̂
Ĵµ(p̂′, p̂; k̂′ − k̂) (5.3b)

are, respectively, the generalized electromagnetic currentĵµ and general-
ized Moller currentĴµ associated with the generalized electromagnetic vec-

tor potential, Âµ .
The differential cross section with no polarization for initial particles

in the laboratory frame,p̂ = (Mĉ; 0) is given by

dσ̂ =
1

2

∑
ij

1

| k̂
k̂0
| 1
(2π)3

V
(2π)3

|Ŝif |2

T
d3p̂′d3k̂′ (5.4)

We observe that, in the limit T̂ → 1 this leads to the standard expression
of ”potential scattering theory” for electron-point-proton scattering (with
unpolarized initial state and no observation of final spin):

dσe−p
dΩ

=
α2E2(1− βsin2(θ/2))

4P 4sin4(θ/2)
=
α2cos2(θ/2)

E2sin4(θ/2)
≡ dσMott

dΩ
(5.5a)

β =
|P|
E
,
1

2
(P′ −P)2 = (q)2 = 2P2(1− cos(θ)) = 4P2sin2(θ/2) (5.5b)

In the isoscattering theory of reversible processes, three novel features
arise: firstly, from the generalized internal photon line D̂F (q̂2), which is no
longer divergent in the limit q̂ → 0; secondly, from the generalized Dirac
matrices γ̂µ; and thirdly, from the generalized currents,ĵµ and Ĵµ. These
features persist in genoscattering theory of irreversible processes, which
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we now proceed to explore, beginning with a review of the results of deep-
inelastic electron-positron and electron-proton scattering experiments.

5.2 Deep Inelastic e-p Scattering Experimental Results
In the resonance model [19] of the 1967 SLAC-MIT experiments [20,21]
on a program of inelastic electron-proton (e−p+ ) scattering on the 20GeV
Stanford linear accelerator to study electro-production of resonances as
a function of momentum transfer, the process is viewed as a generaliza-
tion of the Feynman graph for electron-point-proton scattering in Fig.6(a)
in which virtual space-like photon emitted by the in-coming electron vio-
lently collides with the interacting target proton and under the kinematical
condition

M2
n = M2 + 2Mν + q2, (M2 ≡ P 2, ν ≡ q.P ), (5.6)

a resonance of mass Mn is produced. Subsequently, after a short flight this
resonance decays into a multitude of stable hadrons as shown in Fig.6(b).

In their rest frame, these resonances are classified under the product
group, SU(3) × G where the unitary unimodular symmetry group SU(3)
provides the internal symmetry through quantum numbers, such as iso-
topic spin(I), hypercharge (Y), etc, and G represents a dynamical group,
frequently chosen to be SL(2,C) and SL(2) × d or O(4,2). And in order
to compare with the SLAC-MIT experimental data [19] one generalizes
Eq.(5.5) to [21]:

d2σ

dΩdE
=
dσMott

dΩ
[W2(ν, q

2) + 2W1(ν, q
2)tan2 θ

2
] (5.7a)

or in the form

d2σ

dΩdE
=
dσ̂Mott

dΩ
[W2(ν, q

2)cos2
θ

2
+ 2W1(ν, q

2)sin2 θ

2
]; (5.7b)

where the structure functions, W1(ν, q
2) and W2(ν, q

2) , depend on the prop-
erties of the target system, and σ̂Mott ≡ σMottsec

2 θ
2
. The fact that two such

functions are required because there are two (transverse and longitudinal)
polarization states of the virtual photon also lends itself to an interpreta-
tion of the scattering angle θ

2
as a Cabibbo-like ”mixing” angle envisaged

in Sec.4.3.
In models that satisfy SU(3)×SU(3)×O(3, 1) current algebra, Bjorken[22]

conjectured that, in the limit, M2 = −q2 → inf, µ = q.P → inf such that
2Mν/q2 = ω is fixed, one should expect the following dependence on only:

2MW2(ν, q
2) = F1(ω), νW2(ν, q

2) = F2(ω) (5.8a)
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He also derived a sum-rule for inelastic electron scattering∫ inf

q2/2M

dν[W p
2 (ν, q2) +W n

2 (ν, q2)] ≥ 1

2
(5.8b)

whereW p
2 (ν, q2) and W n

2 (ν, q2) are the structure functions for the proton and
neutron respectively. This scaling behavior in Eq.(3.4a) was subsequently
found experimentally [19]; and a value over the range of MIT-SLAC data
[19,20] was found for the weighted sum∫ 20 dω

ω
νW p

2 = 0.78± 0.04 (5.9)

It is intriguing that this is comparable to the dimensionless mass defect,
[mn − (mp +me−)]/(MeV ) = 0.78.

However, from the 1990 Nobel Lecture by J. Friedman[23] entitled Deep
Inelastic Scattering: Comparisons with the Quark Model, it is apparent
that theoretical and practical difficulties have arisen in the analysis of the
unavoidably limited experimental data from the infinities characterizing
the definition of the Bjorken variable, x (or ω = 1/x) and its physical inter-
pretation in Feynman’s quark-parton model[24] as the fraction of proton
momentum carried by point-like constituents of the proton (usually iden-
tified with free quarks) in the so-called infinite momentum frame (p→ inf)
. Also comparison of theory with limited experimental data has been
largely limited to sum rule predictions (requiring integration over all x or
ω ). Moreover, the replacement of the electron altogether by a presumed
space-like photon (traveling at superluminal speed V > c0 ) interacting
with the proton (travelling at subluminal speed v < c0 ) involves the sin-
gularity in the special relativity theorem of addition of velocities, V and
v, when vV = c(0)2 . It is not surprising, therefore, that, none of the ex-
isting models has satisfactorily explained the data, especially why scaling
behavior should set in at energies as low as observed.

It was argued by Jackiw[25] in his 1972 Physics Today review article
on Scale Symmetry, that the experimental results point towards approx-
imate O(3,1) scale symmetry (broken by non-vanishing divergence of the
dilatation current density due to non-zero masses in the O(3,1) kinemati-
cal group sector of the SU(3) × O(3, 1) theory). However, as subsequently
pointed out by Animalu[26] in a letter to Physics Today on Jackiw’s article,
scale symmetry breaking can be remedied by ”lifting” the SU(3)×O(3, 1) to
SU(3)×O(4, 2) current algebra involving fundamental length or mass scale.
It was from this point of view that we have characterized the scattering re-
gion in Sec.4.2 while the basically non-unitary character of scale symmetry
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and irreversibility provide the justification for the application of genoscat-
tering theory to the understanding of deep-inelastic electron-positron and
electron-proton scattering data.

5.3 Genotopy of Bjorken Variable and Structure Functions.
In order to avoid infinites in the characterization of the Bjorken limit
M2 = −q2 → inf, µ = q.P → inf such that 2Mν/q2 = ω, we may define geno-
Bjorken variables from the left genotopy of the ”point” sphere,P 2 + q2 = 0
into a torus in terms of the two Lorentz scalars,P̂ 2− q̂2 and , q̂.P̂ given by:

(q, p)

(
1 −x
x 1

)(
q
p

)
→ (q̂, P̂ )

(
−1 x̂
x̂ 1

)(
q̂

P̂

)
= 0

i.e., q2 + P 2 → −(q̂2 − P̂ 2) + 2x̂q̂.P̂ = 0 (5.10a)

where the underlying metrics are related as follows,

η ≡
(

1 −x
x 1

)
→
(
−1 x
x 1

)
≡ TCη; (5.10b)

and right genotopy given by:

(q̂, P̂ )

(
1 −ω
ω 1

)(
q̂

P̂

)
→ (q̂, P̂ )

(
−ω̂ 1
1 ω̂

)(
q̂

P̂

)
i.e., q2 + P 2 → −ω̂(q̂2 − P̂ 2) + 2q̂.P̂ = 0 (5.10c)

where the underlying metrics are related as follows,

η ≡
(

1 −x
x 1

)
→
(
−x 1
1 x

)
≡ ηDT ; (5.10d)

and

C =

(
0 1
1 0

)
≡ σ1;T =

(
0 −1
1 0

)
≡ −iσ2;D =

(
−1 0
0 1

)
≡ −σ3.

We observe that if x = 1, then TCη − ηDT = 0, with C 6= D† 6= I is a Lie-
admissible relation. From the relations on the right of Eqs.(5.10a) and
(5.10c) we obtain the geno-Bjorken variables (x̂, ω̂ ):

x̂ = ω̂−1 = (P̂ 2 − q̂2)/2q̂.P̂ (5.11)

Consequently, following Animalu and Ekuma[27], the genotopy of the
deep-inelastic structure functions, F̂1 and F̂2 , can be represented (cf
Myung[28]) by a pair of Riccati’s equations:
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dF̂1/dω̂ = x̂0F̂1 − γF̂ 2
1

dF̂2/dω̂ = −x̂0F̂2 + γF̂ 2
2 (5.9a)

subject to the boundary conditions, F̂ (0)1 = F̂10, F̂ (0)2 = F̂20 . The solu-
tions[23]

F̂ (ω̂)1 =
x̂0/γ

1− (x̂0/γF̂10 − 1)e+x̂0ω̂

F̂ (ω̂)2 =
x̂0/γ

1− (x̂0/γF̂20 − 1)e−x̂0ω̂
(5.9b)

have the features shown for F̂1(0) > x̂0/γ and F̂2(0) < x̂0/γ in Fig.7 where
they are also compared with experimental data. The agreement between
theory and experiment is quite good. In terms of the reciprocal Bjorken
variable ω̂ , the corresponding curve for F̂2(x̂0) turns out to be an image of
F̂2(ω̂) and has the form

F̂2(x̂) =
ω̂0/ξ

[1 + (ω̂0/ξF̂20 − 1)e+x̂ω̂0 ]
(5.10)

whose feature is as shown for F̂20 > ω̂0/ξ in Figs. 8(a) and 8(b), where it
is also compared with experimental data for νW2 ≡ F2(x). The agreement
between theory and experiment is again quite good.

5.4. Mass Genorenormalization
In the preceding sections of this paper, we have established that an

irreversible scattering theory implies rather serious differences in the data
elaboration of the same inelastic scattering compared to the elaboration
done with the conventional reversible scattering theory.

To complete the understanding of the implications, it is important to
out;line the additional implication according to which irreversible nonlinear,
nonlocal and nonpotential effects in the interior of the scattering region cause an
alteration of the numerical value of internal masses.

This new occurrence can be seen by recalling from Paper II that non-
linear, nonlocal and nonpotential effects are representable with a general
symmetric metric here expressed for simplicity in (1 + 1)-dimensions with
the light genocone [7b]

r2

n2>
r

− t2 c
2

n2>
4

= 0, (5.11)
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Figure 9: Comparison of F̂1(ω̂) F̂2(ω̂) for F̂20 < x̂0/γ with 2MW1 = F1(ω) and
νW2 = F2(ω) where ω = 2Mν/q2, for proton; W > 2.6GeV, q2 > 1(GeV/c20 and
R=0.18. Data from G. Miller et al Phys. Rev.D5, 528 (1972)[19].
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x = q2/2Mν for the proton for W > 2.0GeV, q2 > 2(GeV/c20 Data from ref.[20] :
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Rev. D20, 1471 (1979) . (b) Early Gargamelle measurements of F νN

2 compared
with(18/5)F eN

2 calculated from the MIT-SLAC results ) and with HM model F̂ νN
2 (x̂)

. (Source of data J.I. Friedman Nobel Lecture 1990, Physics 1990 p. 715 ref.[23].
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where the arrow in the characteristic quantities oi the interior medium
indicates their lack of time-reversal invariance and the selection of their
value for the forward motion. The preceding light genocone then charac-
terizes the following maximal causal genospeed

V >
max = c

n>r
n>4

. (5.12)

The second order Casimir invariant of the Lorentz-Poincaré symmetry
is then lifted from the conventional expression p2−m2c2 = 0 characterizing
the mass m into the genotopic form

p2 −m2V 2>
max = 0 (5.13)

The identification from the outside of the numerical value of a mass
in the interior of the scattering region, such as the mass of an exchange
particle, requires the projection of the above expression in our spacetime,
resulting in the mass renormalization

m → m> = m
n>r
n>4

(5.14)

As a concrete illustration, the mass of the hypothetical;l Higgs boson is
estimated as being between 115 and 185 GeV/c2 although it is admitted
as being a model-dependent upper bound. Our genoscattering theory
establishes that, for highly irreversible processes such as those of Figure
1, such a numerical prediction is additionally dependent on the energy
of the scattering particles, the geometry of their collision and numerous
additional features, to such a extent that the “search for the Higgs boson”
is experimentally meaningless as current stated.

As illustrated in Ref., [31], the above potentially large variation of the
value of the masses of extended particles is rather general and essentially
due to the fact that the value c can be safely assumed as being the max-
imal causal speed solely for point-like particles. When considering extended
particles, the value of the mass depends on the maximal causal speed in
its interior that is expected to vary dependent on the density and other
features, thus increasing with the mass (since hadrons have essentially the
same charge distribution).

The necessity for a new renormalization of the masses for interior prob-
lems, caused by nonlinear, nonlocal and non-Lagrangian/non-Hamiltonian
internal effects, was first established by Santilli in Ref. [2b] as being nec-
essary for a quantitative representation of the synthesis of the πo meson
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from an electron and a positron, e+ + e− → πo. In this case, the total rest
energy of the final state (134 MeV ) is much bigger than the sum of the rest
energies of the two original states (1 MeV ), under which conditions the
Schrödinger equation became inconsistent (due to the need of a “positive”
binding energy which is anathema in quantum, mechanics).

Santilli (see Section 5 of paper [2b]) then established the sole known
methods to achieve a quantitative representation of the considered synthe-
sis is that of subjecting the inconsistent Schrödinger equation to a nonuni-
tary transform. In this case, consistency of the equation is achieved via a
novel renormalization of the masses of the original constituents of unitary,
thus of non-Lagrangian and non-Ham,Hamiltonian type with numerical
value

me = 0.5 MeV → mê ≈ 75 MeV, (5.15)

which yields indeed the final value mπo = 134!MeV in view of the mass
defect caused by the Coulomb attraction between the electron and the
positron.

The above novel renormalization was subsequently confirmed, also by
Santilli [32], via the representation of all characteristics of the neutron
in its synthesis inside stars from a proton and an electron inside a star,
p+ + e− → !n+?, that also required a nonunitary lifting of the Schrödinger
equation (since the rest energy of the neutron is bigger than the sum of the
rest energies of the proton and the electron). This representation was first
achieved in 1990 [32a] at the nonrelativistic level and then in 1993 [32b]
at the relativistic level (see Kadeisvili [33] for a comprehensive review).

Numerous additional data have independently confirmed the need for
they isorenormalization of internal masses for the case of reversible interior
problems and of the broader renormalization for the case of irreversible
processes (see the experimental lectures in www.world-lecture-series.org).

5.5. Concluding Remarks
In this series of papers, we have shown that the so-called “experimental
results” obtained in the data elaboration of inelastic scattering experi-
ments via the conventional, quantum mechanical, scattering theory, are
mere personal opinions by the issuing experimentalists, rather than in-
controvertible experimental truth.

On mathematical ground, the above conclusion can be seen from the
very axiomatic structure of quantum mechanics which is notoriously local-
differential, thus solely capable of characterizing a finite number of point-like
particles without collisions (in any case, collisions are meaningless for point
particles). Consequently, we can expect that the relativistic scattering
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theory can indeed provide an exact representation of scattering events
without collisions, as it is the case for the Coulomb scattering. However,
the local-differential mathematical foundations of the relativistic scatter-
ing theory prevents even a consistent definition of collision, let alone its
quantitative treatment, under which conditions any expectation of exact
results is ascientific.

On physical grounds, the very notion of collision requires the repre-
sentation of particles as extended. But then, the scattering/collision of
extended particles implies the presence of conventionalize Hamiltonian as
well as contact, zero-range, nonlinear, nonlocal-integral and nonpotential/non-
Hamiltonian interactions. The insufficiency of the conventional linear,
local-differential, and potential/Hamiltonian scattering theory is then be-
yond scientific or otherwise credible doubts.

To state it in a nutshell, the papers of this series confirm the expectation
expressed in the first lines of the first paper, namely, that time-reversal in-
variant theories, such as Einstein’s special relativity and relativistic quan-
tum mechanics, cannot possibly or otherwise credibly be assumed as being
exactly valid for irreversible scattering events.

By looking in retrospect, the above conclusions have been known to the
authors for decades. The resolution of the technical difficulties for their
quantitative treatment has requested decades of research by Santilli be-
cause of the prior need to develop the new Lie-isotopic and Lie-admissible
formulations for the invariant representation of the extended character of
particles and/or of their wavepackets, and their most general known inter-
actions, after which Animalu’s broadening of Feynman’s diagrams could
be subjected to proper treatment and development.
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