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Abstract

A nonunitary extension of the conventional, unitary scattering theory has been
advocated by various authors as an effective way to incorporate nonpotential effects
expected in dissipative nuclear events, deep mutual penetrations of the wavepackets of
scattering particles, and other events. Nevertheless, these efforts had to be abandoned
because of the violation of causality, lack of conservation of probabilities, and other
problems emerging under nonunitary time evolutions. We show that the reformula-
tion of a nonunitary scattering theory permitted by the isotopic branch of hadronic
mechanics and its underlying Lie-isotopic theory, here presented under the name of
isoscattering theory, reconstructs unitarity on iso-Hilbert spaces over isofields, a prop-
erty known as isounitarity, thus resolving said problematic aspects, while having no
divergencies an initio, and providing a significant broadening of the quantum scatter-
ing theory, although the Lie-isotopicv theory is expected as being solely applicable to
reversible scattering events. This first paper is devoted to the conceptual and math-
ematical foundations of the Lie-isotopic scattering theory, including the resolution
of the inconsistencies of nonunitary theories. The physical foundations, the absence
of divergencies from primitive axioms, and initial comparisons of the elaboration of
measured quantities (cross sections, scattering angles, etc.) via the Lie and the Lie-
isotopic scattering theories for reversible scattering events are studied in subsequent
papers. Deep inelastic events are irreversible over time, thus requiring the further
Lie-admissible broadening of the formalism studied in subsequent papers. ..
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1. Introduction
As it is well known, the conventional, quantum mechanical, scattering theory (see,
e.g., Ref. [1] and literature quoted therein), has permitted historical advances in the
20th century particle physics. Nevertheless, physics is a discipline that will never
admit final theories because all theories are a mere approximation of the complexities
of nature. No matter how accurate a given theory may be perceived, its broadening
for a more accurate representation of nature is only a question of time.

In fact, numerous authoritative doubts on the final character of the conventional
quantum scattering theory have been expressed, such as:

1) P. A. M. Dirac (see, e.g., Ref. [2]) expressed in 1981 serious concerns for the
infinities in scattering theories and indicated the need for a revised theory avoiding
divergences ab initio, rather than via ad hoc procedures of unknown physical origin;

2) B. Davies (see Ref. [3] and papers quoted therein) voiced in 1981 the need to
extend the scattering theory into a nonunitary form so as to incorporate imaginary
potentials as used in dissipative nuclear effects and other events;

3) W. Heisenberg (see the review in Ref. [5])voiced the need for for a nonlinear
extension of quantum mechanics, due to the known nonlinear character of nature;

4) Einstein, Podolsky and Rosen expressed their celebrated dout on the ”lack of
completion” of quantum mechanics (ee later on for comments);

5) R. M. Santilli [4,5] suggested in 1978 the construction of a nonunitary covering
of quantum mechanics under the name of hadronic mechanics in order to lift the
quantum assumption of point-like particles into a form admitting a representation
of the actual extended, thus generally nonspherical and deformable character of the
wavepackets and/or charge distributions of particles, a representation of contact non-
Hamiltonian interactions expected in deep overlapping of scattering particles, and
other effects beyond the representational capabilities of quantum mechanics.

The above initial efforts subsequently resulted as being afflicted, in their original
formulation, by fundamental inconsistencies. In essence, a theory along the above
lines generally requires non-Hamiltonian effects (i.e., effects not representable with a
Hermitean Hamiltonian), a feature causing the time evolution of the theory as being
no longer unitary. In turn, the loss of unitarity implies: the loss of Hermiticity, thus
observability, over time (an occurrence known as Lopez lemma [6]); the violation of
causality; the lack of conservation of probabilities; the inability to predict the same
numerical values under the same conditions at different times; and other basic prob-
lematic aspects known under the name of Theorems of Catastrophic Inconsistencies
of Nonunitary Theories [6-11] (see also the review in Ref. [16a]).

A resolution of the above inconsistencies required the construction of a new mathe-
matics, today known as isomathematics, based on the isotopic (i.e., axiom-preserving)
lifting of the basic unit ~ = 1 of quantum mechanics into the most general pos-
sible, positive-definite, integro-differential operator with an explicit dependence on
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any desired local quantity Î(t, r, p, ψ, ...) = 1/T̂ (t, r, p, ψ, ...) > 0 known as isounit;
its inverse T̂ being known as the isotopic element. The isotopic lifting of the ba-
sic (left and right) unity ~ → Î(t, r, p, ψ, ...) then required corresponding compatible
isotopies of the entire mathematics of quantum mechanics, including the isotopic lift-
ing of fields, spaces, functional analysis, differential calculus, topology, geometries,
algebras, groups, symmetries, representation theory, etc. [12-25].

While quantum systems are entirely represented by the sole knowledge of the
Hamiltonian H(r, p) = p2/2m+ V (r), the representation with hadronic mechanics of
extended particles at short mutual distances requires the knowledge of two quantities,
the usual Hamiltonian H(r, p) = p2/2m+ V (r) for the representation of action-at-a-
distance, potential interactions, plus the isounit Î(t, r, p, ψ, ...) for the representation
of the actual size, shape and density of particles, their contact nonpotential interac-
tions and other features beyond any hope of representation via a Hamiltonian. Note
that, being an operator by assumption, the isounit does not commute with the Hamil-
tonian and, therefore, it is not generally a constant (although it is at times averaged
into a constant).

By remembering that the unit is the basic invariant of any theory, the represen-
tation of non-Hamiltonian features and interactions via the isounit is the only form
known to the authors permitting nonunitary theories to achieve the crucial invariance
over time as possessed by the majestic axiomatic consistency of unitary quantum the-
ories. The resolution of the remaining inconsistencies of early nonunitary theories was
achieved via the reconstruction of unitarity over iso-Hilbert spaces over isofields, a
property known as isounitarity (see the revioew below).

Mathematical maturity was achieved with: the discovery in 1993 that the con-
ventional axioms of numerical fields admit basically new realizations of real, complex
and quaternionic numbers with arbitrary (left and right, positive-definite) units, thus
resulting in basically new numbers [12]; the discovery in 1995 of the dependence by
the conventional differential calculus on the assumed basic unit with the consequen-
tial emergence of new calculi [13]; the isotopies in 1998 of the fundamental SU(2)
spin and isospin symmetries with consequential revision of Bell’s inequality and all
that [14]; and other advances identified later on. The achievement of physical ma-
turity was then consequential, and so were numerous applications and experimental
verifications (see monographs [15] of 1995, updates [16] of 2008, books [17-24] and
vast literatuire quoted therein).

In these papers, we present the reformulation of nonunitary scattering theories
permitted by the isotopic branch of hadronic mechanics that is based on the Lie-
Santilli isotheory and related isomathematics [4,14-23]. Since all isounits assumed
in these papers are Hermitean from their positive-definiteness, Î = Î† > 0, such a
reformulation is primarily intended for scattering processes that are reversible over
time, hereon called isoscattering theory, whose prefix ”iso” is intended to indicate
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the preservation of the abstract axioms of the quantum scattering theory and merely
present a broader realization.

Hence, the reader should be aware from these introductory lines that a main effort
of these initial papers on isotopies is that of preserving the abstract axioms of special
relativity, quantum mechanics and the conventional scattering theory, and studying
their broader realization permitted by the novel mathematics. The non triviality of
these isotopic liftings will then be illustrated by showing that the scattering theory: 1)
Resolves the inconsistencies of nonunitary theories; 2) Avoids divergences ab initial;
and 3) Broadens the representational capability of the conventional scattering theory
with the representation of conventional potential interactions represented by the con-
ventional Hamiltonian H, plus nonpotential interactions represented by the isotonic Î
caused by the deep mutual penetration of particles as customary in high energy scat-
tering events, and the direct geometric representation of the size, shape and density
of the scattering region. The issue as to whether the numerical values characterized
by the scattering theory are different than those characterized by the conventional
theory for the same measured quantities, can only be addressed subsequently.

It should be stressed that the extension of the formalism to irreversible processes
requires a yet broader irreversible mathematics, known as Lie-admissible mathematics,
which is characterized by two non-symmetric units, Î>,< Î for motions forward and
backward in time, respectively. In turn, such basic assumptions require a step-by-step
Lie-admissible lifting of the entire isotopic formalism [4,15]. Due to its complexity,
this broader formulation cannot possibly be presented in these first papers, and will
be presented at some later time (see monographs [15] and the latest memoir [25].

Hence, the reversible scattering theory presented in these papers is a mandatory
intermediate step prior to the construction of the irreversible Lie-admissible scattering
theory and related new mathematics known under the names of scattering theory and
mathematics where the prefix “geno” was suggested since the original proposal of
1978 [4.5] to indicate from its Greek meaning that, this time, the axioms oi special
relativity, quantum mechanic s and the scattering theory are abandoned in view of
their notorious reversible character (see next section) in favor of new, structurally
broader, irreversible axioms.

It should be indicated that in these papers we present, apparently for the first time,
the axiomatic foundations of the isoscattering theory, although the main elements of
the new theory have been known for some time, but often ignored by physicists dealing
with scattering processes to their peril. In fact, the following basic results have been
available in the scientific literature for some time:

1) Convergent perturbation theory. Recall that quantum mechanics is based on
the well known Lie product [A,B] = AB−BA between generic matrices or operators
A,B, while the isotopic branch of hadronic mechanics is based on the Lie-Santilli
isoproduct [A,̂B] = AT̂B−BT̂A, first presented in Ref. [4] of 1978 and then studied
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by the authors in various works (see the review in Refs. [15,16]), where T is the
inverse of the isounit. It was then easy to see since the original proposal to build
hadronic mechanics [5] that any divergent (or weakly convergent) canonical series
A(w) = A(0) +w(AH −HA)/1! + ...→∞ can be turned into a strongly convergent
form under the lifting A(w) = A(0)+w(AT̂H−HT̂A)/1!+... for all isotopic element T̂
sufficiently smaller (in absolute value) than w, a feature naturally verified by actual
models, as we shall see. This feature was then studied by A. Jannussis and other
authors (for brevity, see Chapter 11 of monograph [15b] for review and references).

2) Conservation of probability. As it is well known, the quantum S-matrix is
unitary as a condition to preserve probabilities [1]. Hence, it was popularly believed
that nonunitary theories violate the conservation of probabilities. The recovering
of the conservation of probability under an isounitary reformulation of nonunitary
theory was well established by 1995 [15b].

3) Absence of divergencies. Recall that divergencies in quantum scattering theories
mainly originate from Dirac’s delta function δ(x− x0) since the latter is divergent at
x = x0 [1]. The absence of divergencies in the scattering theory of hadronic mechanics
was identified in 1982 by Myung and Santilli [26] with the introduction of the isotopic
covering of the Dirac delta function called by Nishioka [27] the Dirac-Myung-Santilli
isodelta function and denoted δ̂(x−x0) = δ[T̂ (x−xo)] which, as one can see, removes
the divergency of the delta function at x = x0 under a judicious choice of the isotopic
element T , as reviewed later on in Section 3.8.

4) Nonpotential scattering theory. The extension of the quantum scattering theory
to incorporate interactions not entirely represented with a Hamiltonian, as expected
in deed inelastic scattering, was sufficiently voiced in the original proposal [5], and
subsequently studied by R. Mignani [28] and others. Additional more recent studies
on nonpotential scattering theory have been conducted by A. K. Aringazin et al [29]
(again for brevity, see Chapter 12 of monograph [15b] for reviews and additional
references).

5) Inequivalence of Hamiltonian and non-Hamiltonian data elaborations. It is
popularly believed that, since cross sections, scattering angles and other quantities
are measured, the numerical values produced by data elaborations via unitary scat-
tering theories have a final experimental character. In reality, nature is not as simple
as all of us tend to believe. Santilli showed in 1989 (see the review in Chapter 12
of monograph [15b]) that the elaboration of measured quantities via quantum and
hadronic scattering theories are generally inequivalent, thus warranting serious com-
parative studies. This is due to the fact known since 1978 [5] that, if the Hamiltonian
H pof a given scattering theory has the eigenvalue E, H|ψ >= E|ψ >, the same
Hamiltonian H has a generaly different eigenvalue E ′ for the isoscattering theory,
HT |ψ′ >= E ′|ψ > E ′ 6= E, trivially, in view of the general lackj of cpommutativity
between H and T (see Section 3.6 for details). Irrespective of all preceding aspects,

6



the latter occurrence, alone, warrants a reinspection of the conventional, reversible,
Hamiltonian, unitary scattering theory.

The reader should be aware from these introductory lines of the existence of
preliminary, yet rather vast experimental support of deviations from conventional Lie
theories in virtually all quantitative sciences when dealing with the main assumption
of the scattering theory, that is, extended particles and electromagnetic waves moving
within physical media. Among these experimental data,z we mention:

1) The need for contact non-Hamiltonian interactions to achieve an actual at-
tractive force between the identical electrons in molecular valence couplings since,
as expected to be known although rarely voiced, identical electrons repel each other
according to quantum mechanics and chemistry [32];

2) Deviations from the geometry of spacetime have been, again preliminarily, yet
directly measured in the experimental verification of the isoredshift, [31]. We are
here referring to a shift toward the red of the frequency of light propagating within
a transparent physical medium without any relative motion between the source, the
medium and the detector, the shift being merely due to the loss of energy E = hν
by light to the medium due to inevitable interactions, with consequential evident
reduction of frequency.

3) The elaboration of numerous particle physics experiments dealing with the hy-
perdense interior of hadrons, when elaborated without ad hoc parameters or arbitrary
functions of unknown physical origin, show the clear presence of non-Hamiltonian ef-
fects [16d]. This is typically the case of the two-point amplitude of the Bose-Einstein
correlation whose quantum fit of experimental data requires four arbitrary parameters
(the so-called “chaoticity parameters”), while vacuum expectation values admit at
best two parameters. These effects can be fully representable via a four-dimensional
isounit of which the three space components represent the actual , very elongated
shape of the proton-anti proton fireball, and the forth components represents its den-
sity, in remarkable agreement with experimental data [loc. cit.].

In any case, as part of the ongoing efforts to appraise the experimental claims
based on the conventional scattering theory, a rather significant experimental effort
in under way at this writing (Spring 2010) to repeat within physical media the his-
torical experiments that have established the validity of special relativity, all done in
vacuum, as well known. This significant experimental effort on the disciplines actually
holding within physical media at large, and within the scattering region in particu-
lar, combined with the theoretical efforts herein considered, will eventually provide
the necessary elements for the resolution of fundamental open issues in scattering
experiments, of course, in due time.

Above all, the reader should keep in mind that special relativity and quantum me-
chanics are reversible theories, thus having manifest limitation for all energy releasing
processes, due to their strict irreversibility. Therefore, the conception, quantitative
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treatment and experimental verification of much needed new clean energies, such as
the novel Intermediate Controlled Nuclear Fusions (ICNF) [37] are crucially depen-
dent on the covering formulations treated in these paper.Their possible confirmation
in particle accelerators via the covering isoscattering theory would then acquire a
primary significant for the resolution of alarming environmental problems.

For additional historical data and a comprehensive literature in the field, interested
colleagues may inspect Refs. [16], particularly the General Bibliography of Hadronicx
Mechanics in Volume [16a].

In closing these introductory lines, we should recall that the conventional scat-
tering theory achieved maturity only following decades of collegial studies presented
in a large number of refereed publications. Consequently, it is hoped the reader is
not expecting a final resolution of the scattering problem in these initial papers, but
merely the initiation of the studies leading to a future collegial resolution following a
predictable large number of additional papers.

2. Basic Physical Assumptions
2.1. Exterior and Interior Dynamical Problems. Until the earlier part of
the 20th century, there was a clear distinction between (see Refs. [30] for technical
characterizations):

1) exterior dynamical problems, referred to systems of point-particles and electro-
magnetic waves propagating in empty space; and

2) interior dynamical problems, referred to extended particles and electromagnetic
waves propagating within physical media.

As a historical note, we recall that Schwartzschild wrote two papers, the first
on the exterior gravitational problem containing his celebrated solution, and a sec-
ond, virtually ignored paper on the interior gravitational problem (for review and
references, see Ref. [15a]).

The primary difference between exterior and interior problems is that the former
verify the integrability conditions for the existence of a Lagrangian or a Hamilto-
nian (the so-cal;led conditions of variational selfadjointness), while the latter systems
(called variationally nonselfadjoint) violate these conditions due to the presence of
contact, nonconservative and nonpotential interactions, thus not being representable
with Lagrangian or Hamiltonian mechanics [30].

With the advent of special and general relativities, the distinction between exterior
and interior dynamical problems was eliminated via the reduction of interior problems
to a finite number of point-particles that, as such, move in vacuum, thus recovering
the conditions of exterior problems.

2.2. No Reduction Theorems. In the second half of the 20th century, it became
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known that interior dynamical problems cannot be consistently reduced to exterior
problems, an occurrence known under the name of No reduction Theorems, such as:

NO REDUCTION THEOREM 2.1 [5,25]: A macroscopic system in nonconser-
vative and irreversible conditions cannot be consistently reduced to a finite collection
of point-like particles all in conservative and reversible conditions and, vice versa, the
latter system cannot consistently reconstruct the former under the correspondence or
other principles.

A number of additional No Reduction Theorems were also proved based on the
violation of thermodynamical laws due to the evident loss of entropy when passing
from a real physical system to an ideal collection of point-particles moving in empty
space all in conservative conditions, as necessary to verify special relativity, quantum
mechanics and the conventional scattering theory.

An additional popular belief disproved by the No Reduction Theorems is that total
conservation laws for an isolated system are solely verified by a system of particles
in conservative conditions. In fact, it was proved in Ref. [30b] that, since they have
no potential energy, nonconservative forces are in essence exchange forces, as a result
of which they cancel each other when the system is isolated, resulting in the full
verification of the conventional total conservation laws.

Figure 1: A suggestive view from NASA of a spaceship during reentry in our atmo-
sphere. Recent No reduction Theorems have established that the nonlinear, nonlocal-
integral and nonpotential non-Hamiltonian forces experienced by the spaceship origi-
nate at the ultimate elementary level of nature, thus being also present in the interior
of the scattering region at high energies.

Yet another popular belief dispelled by the above No reduction Theorems is that
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the nonlinear, nonlocal-integral and nonpotential forces of our macroscopic environ-
ment ”disappear” in the reduction of an interior system to its elementary constituents.
As a matter of fact, No Reduction Theorem 2.1 establishes that the nonlinear, non-
local and nonpotential forces experienced, for instance, by a spaceship during reentry
in our atmosphere originate at the most primitive possible level, that of elementary
particles, and are evidently due to the interactions of the electron orbitals of the pe-
ripheral atoms constituting the spaceship with the electron orbitals of the resistive
medium (see Figure 1).

The particular type of non-Hamiltonian interactions here referred to deals with
the deep overlapping of the wave packets of and/or the charge distribution of particles
and are referred to as nonlocal-integral interactions (or merely nonlocal for brevity)
in the sense that they occur over a surface or volume integral. As such, the nonlocal
interactions at the basis of the scattering theory cannot be reduced, by conception,
to a finite set of isolated points.

Note that we are including nonlocal interactions experienced by electrons, namely,
by particles with a notorious point-like charge. Nevertheless, electrons do not have a
“point-like wavepacket,” thus experiencing indeed nonlinear, nonlocal and nonpoten-
tial interactions when in conditions of deep mutual penetration, as it is the case for
valence electron coupling in molecular structures [32].

The studies reported in Refs. [30] have also established that the time evolution
of systems with nonlinear, nonlocal and nonpotential interaction are necessarily non-
canonical at the classical level and nonunitary at the operator level. We are now
minimally equipped to formulate the following:

ASSUMPTION 2.1: The scattering region is an interior dynamical system, thus
characterized by a nonlinear (in the wavefunction), nonlocal (integral) and nonpoten-
tial (nonunitary) time evolution.

Note that the No Reduction Theorems prohibit the exact reduction of the scat-
tering region to a finite set of isolated points, which is considered a mere first ap-
proximation of a rather complex reality. The same theorems identify the evident
need for covering formulations. Note finally that the No Reduction Theorems are
not bypassed by the reduction of the scattering particles to point-like quarks, since
elementary constituents with a point-like wavepacket do not exist.

2.3. Insufficiencies of the Lorentz-Poincaré Symmetry. The breaking of the
Lorentz-Poincaré (LP) symmetry for interior dynamical problems at large, and par-
ticularly for the interior of the scattering region, is rather plausible and should be
studied seriously because no scattering theory can claim final results until the ba-
sic spacetime symmetry is established beyond scientific doubt. Among a number of
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symmetry breaking aspects, we quote [15,16]:
1) The axiomatic foundations of the Lorentz-Poincaré symmetry requires the

equivalence of all inertial reference frames. This feature is certainly valid in empty
space, but it is unresolved for the interior of the scattering region because of the
impossibility of even defining inertial reference frames in interior conditions. Inertial
reference frames are indeed used in quantum scattering theories, but they constitute
an exterior treatment, thus reducing an interior to an exterior problem. Additionally,
in vacuum there is no known experimental way to detect a privileged reference frame,
as well known (Michelson-Morley experiment). By contrast, the sole reference frame
that can be consistently defined for the scattering region is the privileged reference
frame at rest with the interior region itself, since other frames would require motion
of a hypothetical observer within a hyperdense medium.

2) The Lorentz-Poincaré symmetry is exactly valid for Keplerian systems, that is,
systems of point-particles moving in vacuum around a heavier particle known as the
Keplerian nucleus. By contract, the scattering region has no Keplerian nucleus. This
aspect alone may cause a breaking of the Lorentz-Poincaré symmetry.

3) There are serious reasons to expect that the historical experiments that have
established the validity of special relativity in vacuum are invalid in interior conditions
[31]. For instance, it is easy to see that., in the event the known Fizeau experiment
is repeated entirely underwater, there are contributions for the travel of light in
water outside the traditional pipes with opposite water velocities that violate Lorentz-
transformations. By contrast, the repetition of the Michelson-Morley experiment
under complete underwater conditions is expected to retain the original result, this
time confirming the constancy of the speed of light with respect to the privileged
reference frame at rest with the water, by therefore no longer confirming the Lorentz
symmetry. Needless to say, a problem of such a fundamental character cannot be
resolved in a few sentences one way or another, and requires the systematic repetition
in interior conditions of all historical experiments that have established the validity
of the Lorentz-Poincaré symmetry in vacuum [31].

The reader should be aware that a rather vast effort has been conducted over
decades for the construction of a covering spacetime symmetry applicable to interior
problems at large, and the scattering region in particular. These efforts required
first the construction of the covering Lie-Santilli isotheory [4,15,16,18-34] capable of
reducing nonlinear, nonlocal and noncanonical (or nonunitary) interior problems to
equivalent isolinear, isolocal and isocanonical (or isounitary) forms (see next section
for details). Only following the achievement of the Lie-Santilli isotheory, the efforts
could be concentrated in the construction of a covering of the Lorentz-Poincaré sym-
metry applicable to interior conditions [33-43] which is known today as the Lorentz-
Poincaré-Santilli (LPS) isosymmetry. We reach in this way the following:
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ASSUMPTION 2.2: The scattering region is characterized by the Lorentz-Poincarś-
Santilli isosymmetry.

The noninitiated reader should know that, by conception and construction, the
LPS isosymmetry is locally isomorphic to the conventional LP symmetry. This feature
may have deep implications for the scattering problem because, in the final analysis,
it may imply that the data elaboration of existing high energy experiments with
the conventional and the isotopic scattering theory yields the same numerical value.
Rather than being a drawback, if established by future collegial works, this possible
outcome alone warrants this study, e.g., because it would established the validity of
special relativity for interior conditions nowadays considered inapplicable.

In any case, as shown in paper III of this series, even assuming that the elaboration
of past experiments via the conventional and isotopic scattering theory yields the same
numerical results, the broader representational capabilities of the isotopic theory are
beyond doubt, thus offering the possible prediction and representation of scattering
events beyond the capability of the conventional theory; It is only hoped the reader
does not expect the final resolutions of these complex issues in these initial papers.

2.4. Insufficiencies of Quantum Mechanics. Following the historical successes
of quantum mechanics for the structure of the hydrogen atoms and numerous other
systems, quantum mechanics has been applied to all possible particle conditions ex-
isting in the universe, thus including interior conditions, as typically occurring in the
scattering region as well as in the structure of hadrons, nuclei and stars.

Despite the achievement of historical results, serious doubts have emerged in re-
gard to the exact character of quantum mechanics for interior problems, such as
[15,16]:

1) Quantum mechanics has permitted the achievement of a numerically exact
representation from first principles of all experimental data of exterior dynamical
problems, By contrast, when passing to interior problems, quantum mechanics has
only permitted an approximate representation of experimental data, an occurrence
that, per se, is a direct indication of the merely approximate character of quantum
mechanics for interior conditions. For instance, quantum mechanics has provided an
exact representation of the structure of the hydrogen atoms, while it misses 2% of the
binding energy of the hydrogen molecule from unadulterated quantum principles [32].
In nuclear physics, quantum mechanics misses an exact representation of the simplest
possible nucleus, the deutneriom, since there are insufficiencies in the representation of
its spin, magnetic moment, stability and other features, with dramatic insufficiencies
for heavy nuclei such as the zirconium [16].

2) The No Reduction Theorems establish that the nonlinear, nonlocal and nonpo-
tential character of our macroscopic systems originate at the ultimate level of elemen-
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tary particles, thus requiring a covering of quantum mechanics. As an example, the
approximate character of quantum mechanics for the hydrogen molecule originates
from the conditions of deep mutual penetration of the wavepackets of the two valence
electrons by characterizing interactions dramatically beyond a possible representation
by quantum mechanics. Similar occurrences hold for other interior problems.

3) The representation of interior conditions via quantum mechanics is generally
done with the use of completely arbitrary parameters or functions of unknown physical
origin that are fitted from the data, and quantum mechanics is then claimed as
being exactly valid. As an example, an exact representation of the binding energy of
the hydrogen molecule is achieved via the so-called ”screened Coulomb potentials,”
that is, the multiplication of the Coulomb potential by an arbitrary function such
as V (r) = f(r)e2/r, and then the fitting of the arbitrary function (f(r) from the
experimental data. However, it is known that ”screened Coulomb potentials” do not
admit quantized levels and, therefore, the very name ”quantum chemistry” becomes
questionable [32]. In particle physics, the use of ad hoc parameters and functions
for interior conditions has reached at time paradoxical characters. For instance, the
experimental data of the two-points function of the Bose-Einstein correlation are fitted
via the use of four arbitrary parameters (called the ”chaoticity parameters”) and
then the claim that relativistic quantum mechanics is exact. However, the quantum
axioms for the expectation value of a two-dimensional Hermitean operator may admit,
under debatable assumptions, a maximum of two arbitrary parameters, the use of
four parameters being excluded by the very axioms of quantum mechanics [16a]. A
deeper inspection has shown that the missing two parameters must originate from
off-diagonal elements in the vacuum expectation values thus casting shadow on the
consistent representation of observables.

In view of the above and numerous other insufficiencies [16a,24], a vast effort has
been conducted by numerous scientists over decades for the construction of a nonlin-
ear, nonlocal and nonpotential covering of classical and quantum mechanics known
under the name of hadronic mechanics with the following main results [15,16,32,33]:

A) The construction of the so-called iso-, geno-, and hyper mathematics for
the representation of variationally nonselfadjoint interior systems of matter that are
single-valued reversible, single valued irreversible, and multi-valued irreversible, re-
spectively, and their isoduals for antimatter, these new mathematics being character-
ized by different generalized units as outlined in Section 3;

B) The construction of corresponding new classical mechanics, known as iso-,
geno- and hyper-Lagrangian or Hamiltonian mechanics for matter, and their isoduals
for antimatter, achieving the representation of interior dynamical systems via an
action principle, as outlined in paper II; and

C) The isotopic, genotopic and hyperstructural branches of hadronic mechanics
for the operator representation of the above identified interior systems of matter,
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and their isoduals for antimatter, possessing progressively increasing complexity and
methodological needs, as also outlined in paper II.

The above formulations have indeed allowed exact representations of interior prob-
lems from unadulterated first axioms, such as an exact representation of the binding
energy and other features of the hydrogen molecule from first principles without ar-
bitrary functions [32], an exact representation of the experimental data of the Bose-
Einstein correlation from first principles without arbitrary parameters, and other
interior problems in classical physics, particle physics, nuclear physics, supercondiuc-
tivity, chemistry, astrophysics and cosmology (see Vol. [16d] and Chapter 5 of Ref.
[24] for a review).

We are now equipped to formulate the following:

ASSUMPTION 2.3: Quantum mechanics is assumed as being exactly valid every-
where in the exterior of the scattering region, while the covering hadronic mechanics
is assumed as being exactly valid in the interior region.

Figure 2: A schematic view of the main assumptions of these papers, the validity of
conventional quantum mechanics everywhere in exterior conditions, and the validity
of the covering hadronic mechanics for interior conditions.

The smooth transition from the interior (hadronic mechanics) to the exterior
(quantum mechanics) is simply achieved via realizations of the generalzied unit of
the type

Limr>1fmÎ(t, t, r, p, ψ, ...) = ~. (2.1)

As we shall see in paper II, the above condition is quite naturally verified by all
meaningful realizations of the generalized unit.
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In view of the general inequivalence of Î(t, r, p, ψ, ...) and I, the evident lack of
general commutativity of Î(t, r, p, ψ, ...) and H(r, p), and other aspects, the isoscat-
tering theory requires a reinspection of the data elaboration of experimental data
achieved with the conventional scattering theory to ascertain whether said data elab-
orations persist under nonlinear, nonlocal and nonpotential internal effects, or the
final numerical values themselves need a revision.

2.5. Restrictions for Irreversibility and Antimatter. Recall that the formalism
of the covering scattering theory includes that of quantum mechanics, plus three cov-
ering formalisms of hadronic mechanics with progressively increasing complexity, and
all their isoduals for antimatter. To avoid the initiation of the study with excessive
complexities, in these three papers we shall restrict our formulations to isomathemat-
ics and isomechanics, resulting in the suggested name of isoscattering theory, where
the reader should keep in mind that the prefix ”iso” indicates the preservation of the
axioms of the conventional theory, and merely the use of broader realizations.

This restriction implies that, by conception and construction, the isoscattering
theory does not generally represent irreversible processes, unless under certain condi-
tions, as we shall see, such as isounits that are Hermitean but time noninvariant

Î(t, r, p, ψ, ...) 6= Î(−t, r, p, ψ, ...). (2.2)

In other words, we shall essentially study scattering processes in the way they are
treated by quantum mechanics, without a quantitative representation of their irre-
versibility, and shall address the latter issue in a subsequent paper based on Lie-
admissible genomathematics and genomechanics [25]. In any case, the construction
of the Lie-isotopic isoscattering theory is a recommendable pre-requisite for the much
broader Lie-admissible irreversible genoscattering theory.

Additionally, the isoscattering theory of these first papers does not include an-
tiparticles also to avoid excessive complexities at start up. This additional restriction
is due to recent advances in antimatter that have achieved full scientific democracy
between matter and antimatter at all levels of study, from Newtonian mechanics
to second quantization, thus ending the scientific imbalance of the 20th century of
treating antimatter at the sole quantum or quantum field theoretical levels [33].

These advances have been stimulated by E. C. G. Stueckelberg conception of
antimatter with a negative time, but the achievement of consistency required the use
of a conjugation of all physical and mathematical quantities, thus leading to negative
time, energy, and other physical quantities referred to corresponding negative units,
that are as causal as conventional positive time, energy and other physical quantities
referred to corresponding positive units.

The treatment of this new setting required the construction of the new isodual
mathematics that is anti-isomorphic to conventional mathematics in all its parts and
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operations. In turn, these advances have identified a new symmetry, called isoselfd-
uality, essentially given by invariance under anti-Hermiticity trivially verified by the
imaginary unit i = −i†, but less trivially verified by the Dirac equation and related
gamma matrices (see Ref. [33] for details)

γµ ≡ −γ†µ, (2.3)

and other cases.
Physically, isoselfduality has emerged as representing systems of particles and

their anti[particles, thus permitting a new interpretation of the Dirac equation as
providing a direct quantujm representation of an electron and its antiparticle (the
positron) without any need for the ”hole theory,” since the the isodual theory applies
at the classical, let alone purely quantum level, where it reaches equivalence with the
conventional charge conjugation [33].

Therefore, the inclusion of antiparticles in our study of scattering processes re-
quires a reinspection of the very structure of the conventional Feynman’s diagrams so
as to achieve a full democracy of treatment between particles and antiparticles, thus
suggesting a separate treatment to avoid excessive complexities at start up.

It should be noted, as we shall see in paper II., that the invariance under isoselfd-
uality is generally violated by quantum scattering treatments inclusive of particles and
antiparticles. This occurrence alone mandates a reinspection ab initio of scattering
theories in general, let alone when including particles and antiparticles.

In these papers, we shall use the terms ”quantum mathematics,” ”quantum scat-
tering theory,” etc. to denote aspects pertaining to quantum mechanics and use the
terms ”hadronic mathematics,” ”hadronic scattering theory,” etc. to denote their
corresponding coverings as characterized by hadronic mechanics.

A number of divergent terminologies exist in the literature of this paper as com-
pared to that of the quantum scattering theory. For instance, the term ”potential”
is used in the literature of hadronic mechanics as a synonym of ”Hamiltonian” or,
more technically, referring to the verification of all integrability conditions for the
existence of a Hamiltonian [30], while systems of that class are not necessarily called
”potential” in the quantum literature.

This is the case for the interaction term H1 = J ∗ A that is generally considered
as being of nonpotential character in the quantum literature, while it verifies the
conditions of variational self-adjointness (see monographs [30]), thus being of a true
potential for the hadronic literature, as confirmed in any case by the fact that said
interaction term is fully ”Hamiltonian” and additive to the kinetic term and other
potentials, e. g., H = H0 +H1.

By comparison, the terms ”nonpotential” is used in the hadronic literature to
stress the impossibility of representing the novel ”nonpotential” interactions with a
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Hamiltonian, technically referring to the violation of the conditions of variational
self-adjointness in the frame of the experimenter, thus requiring new vistas.

3. Elements of Santilli Isomathematics.
3.1. Introduction. As indicated in Sections 1 and 2, numerous aspects warrant the
broadening of the scattering theory to incorporate non-Hamiltonian effects, that is,
effects that cannot be represented via the conventional Hamiltonian. Any meaningful
broadening of the conventional scattering theory requires the existing from the class
of unitary equivalence of quantum mechanics. However, the ensuring nonunitary
theories are afflicted by a litany of problems known under the name of Theorems of
Catastrophic Inconsistencies of Nonunitary Theories [6-12]. Consequently, the central
objective of this section is to identify an equivalent formulation of nonunitary theories
resolving the inconsistency problems.

Following decades of research, the solution of the above problem required the
construction by various authors of a new mathematics, known as isomathgematics,
originally proposed by Santilli [4] in 1978, subsequently studied by the same author in
disparate works, as well as by numerous pure and applied mathematicians, including
(in chronological order of contributions) R. M. Santilli, S. Okubo, H. C. Myung, M. L.
Tomber, Gr. T. Tsagas, D. S. Sourlas, J. V. Kadeisvili, A. K. Aringazin, A. Kirhukin,
R. H. Ohemke, G. F. Wene, G. M. Benkart, J. M. Osborn, D. J. Britten, J. Lohmus,
E. Paal, L. Sorgsepp, D. B. Lin, J. V. Voujouklis, P. Broadbridge, P. R. Chernooff,
J. Sniatycku, S. Guiasu, E. Prugovecki, A. A. Sagle, C.-X. Jiang, R. M. Falcon Gan-
fornina, J. Nunez Valdes, A. Davvaz, and others (see the comprehesnive bibliography
at the end of Ref. [16a]). To illustrate the complexity of the problems to be ad-
dressed, following the original proposal of 1978, initial mathematical maturity was
solely achieved in memoir [13] of 1996, thus warranting this review and specialization
to the scattering region so as to avoid possible insidious misinterpretations.

For the benefit of experimentalists we indicated that, as a result of the above
efforts, the new mathematics can be constructed via the systematic application of
axiom-preserving liftings, called isotopies, of the totality of the mathematics of quan-
tum mechanics, including all its operators and all its operations, thus including
the isotopic lifting of numbers, functional analysis, differential calculus, geometries,
topologies, Lie theory, symmetries, etc. [13,15,16]. As we shall see in paper II, said
isotopies can be very easily constructed via the application of nonunitary transforms
to the totality of the formalism of the conventiona;l scattering theory, thus being
indeed accessible to experimentalists.

The physical needs for isomathematics have been indicated in Sections 1 and 2,
and consists in the necessity for a representation of non-Hamiltonian scattering effects
in a form that is invariant over time so as to admit the sam,e numerical predictions
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under the same conditions at different times. Following the study of all possible alter-
natives, the latter condition required the representation of non-Hamiltonian scattering
effects with an axiom-preserving generalization of the trivial (positive-definite) unit
of quantum mechanics ~ = 1 into the most general possible (positive-definite as a
condition to characterize an isotopy), integro-differential operator Î. Since the unit
is the fundamental (left and right) invariant of any theory, whether conventional or
generalized, the representation of non-Hamiltonian effects via the isounit has indeed
achieved the desired time invariant representation.

However, the assumption of a generalized unit has requested the compatible re-
construction of the entire mathematics used in quantum mechanics with no exception
known to the authors. In fact, the sole elaboration of the isoscattering theory, e.g.,
with conventional trigonometric functions, activates the Theorems of Catastrophic In-
consistencies because it would be the same as elaborating the conventional scattering
theory, e.g., with isotrigonometric functions.

Since no formulation of isomathematics specialized intended for scattering prob-
lems has been presented to date, it is important to outline it in this first paper for
minimal self-sufficiency of the presentation, as well as to minimize possible insidious
misinterpretations that may be caused by insufficient technical knowledge of the field.
In this section we shall outline the rudiments of isomathematics for a positive-definite
but otherwise arbitrary isounit Î and show the resolution of the inconsistency problem
under isotopies.

We should also indicate the distinction between deformations and isotopies. The
former are alterations of conventional quantum formulations defined over conventional
fields, thus being catastrophically inconsistent on mathematical and physical grounds
(see Refs. [6-11] for brevity), while the latter can be characterized as deformations
defined over isofields, thus avoiding the inconsistency theorems.

Note that isofields were introduced in 1993 [12]. Consequently, the contemporary
formulation of deformations coincide with previously proposed isotopies, as it is the
case for the isotopies of the Lorentz symmetry first proposed by Santilli in 1983 [34],
at that time, over conventional fields, and subsequently reintroduced identically, even
in the symbols and terms, as deformations, unfortunately, without the quotation of
the original derivation [34]. Similar occurrence hold for other deformations 9see Ref.
[15a] for brevity).

In these papers, conventional terms, such as numbers, spaces, etc. are referred to
conventional notions of quantum mathematics. The corresponding notions of hadronic
mathematics are indicated isonumbers, isospaces, etc. We regret a perhaps excessive
use of the prefix ”iso,” but it appears recommendable in a first presentation of applied
mathematics to prevent insidious inconsistencies.

Within the context of pure mathematics, we shall show that both the conventional
and the isotopic mathematics can be presented with the same symbols and operations,

18



since they coincide at the abstract level by conception and construction. However,
the latter formulation requires, in any case, an in depth knowledge of the isotopic
realization of conventional abstract axioms, thus warranting again the use of the prefix
”iso” in this first presentation, with the understanding that pure mathematicians may
subsequently achieve the necessary mathematical rigor.

It is at times indicated that, due to the above abstract identity, isomathematics
is trivial, a view perhaps correct. but only following its discovery. However, the
implications solely permitted by isomathematics. such as the extension of Lie’s theory,
the Lorentz-Poincaré symmetry and Einstein’s axioms for the treatment of nonlinear,
nonlocal and non-Hamiltonian systems, are far from being trivial.

3.2. Isounits, Isoproducts and Isofields. As indicated earlier, isomathematics is
based on the following isotopic, thus axiom-preserving lifting of the trivial unit into
the most general possible positive-definite integro-differential operator

~ = 1 > 0→ Î(t, r, p, E, ξ, ω, ψ, ∂ψ, ...) = 1/T̂ (t, r, p, E, ξ, ω, ψ, ∂ψ, ...) > 0. (3.1)

first introduced in 1978 [4,5] and known as Santilli isounit, while T̂ is known as the
isotopic element. We shall use the notation T when the isotopic element is projected
on quantum spaces, but keep the notation Î to avoid confusion with I.

The isotopic lifting of the (multiplicative) unit evidently requires a corresponding
compatible lifting of all multiplications between arbitrary quantities A, B, from the
simple associative form used in quantum mechanics, herein denoted AB = A×B, to
the new form first introduced by Santilli in Ref. [4] of 1978

AB = A×B → A×̂B = A× T ×B, (3.2)

which is also isotopic, because verifying the associativity law of the original product.
It is easy to see that, under lifting (3.2), Î is indeed the correct left and right unit of
the theory, Î×̂Â = A×̂Î = A for all elements A of the set considered.

Fundamental assumptions (3.1) and (3.2) have permitted the isotopic lifting of
numerical fields F (a,×, I), such as the field of real numbers R(n,×, I), complex
numbers C(c,×, I) and quaternions Q(q,×, I) into the Santilli isofields F̂ (â, ×̂, Î)
[12], consisting of the original numbers a = n, c, q lifted into the form of Santilli
isonumbers n̂ = n × Î equipped with isounit (3.1) and isoproduct (3.2), n̂1×̂n̂2 =
(n1 × n2) × Î, as well as with the conventional sum n̂1+̂n̂2 = n̂1 + n̂2 and related
conventional additive unit 0, n̂+ 0̂ = 0̂ + n̂ = n̂, i.e., 0̂ = 0× Î ≡ 0.

To avoid inconsistencies, it should be stressed that all operations with numbers
have to be lifted in an isotopic form we cannot possibly review here (see [15]). We

merely mention for use in the isoscattering theory the isodivision given by /̂ = /× Î so
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that we have simplifications in isomultiplications of the type (a/̂b)×̂(c/̂d) = [(a/b)×
(c/d)× Î.

Also, and very importantly, conventional numbers expressing numerical values
of physical quantities such as coordinates r., momenta p, energy E, etc. have no
meaning for isomathematics and must be lifted into the isotopic form r̂ = r × Î , p̂ =
p × Î , Ê = E × Î, etc. as a necessary condition to be elements of a Santilli isofield,
that is, to be isoscalars.

Readers should, however, be reassured that conventional numbers, as needed for
experiments, are indeed recovered by the isoscattering theories.As an example, the
(right, modular, associative) eigenvalue expression E × |ψ > becomes for isomathe-
matics Ê×̂|ψ̂ > that can be simplified in the form E× Î × T̂ × |ψ̂ >= E× |ψ̂ >, thus
recovering the conventional real number E needed for measurements.

It should be indicated that isofields are isomorphic to ordinary fields, by con-
ception and construction, a property necessary for the consistent application of the
isoscattering theory to experimental measurements. In fact, Santilli merely provided
in Ref. [12] a broader realization of the conventional field axioms. The nontriviality of
the realization is indicated by the fact that the isounit of a Santilli isofield F̂ (â, ×̂, Î)
is generally outside the original field F (a,×, I). In this case, F̂ (â, ×̂, Î) are called
isofields of the first type. When Î ∈ F , we have isofields of the second type.

Despite the simplicity of the isonumber theory, readers should be warned against
predictable perceptions of triviality because, for instance, under the assumption of
the isounit Î == 3, thus dealing with isofields of the second type, we have ”2×3”= 18
and the number 4 becomes a prime number.

For in depth knowledge of Santilli isofield theory and its intriguing implications,
interested readers are suggested to study the original paper [12], Ref. [15a] and Jiang’s
monograph [22].

3.3. Isofunctional Analysis. Any elaboration of the isoscattering theory with
conventional functions, such as sine, cosine, exponential, etc. leads to inconsisten-
cies [6-11,15]. Even though not clearly indicated in the mathematical literature, all
functions crucially depend on the assumed basic unit and multiplication. Therefore,
liftings (3.1) and (3.2) have required the laborious reconstruction of functional anal-
ysis into a form compatible with the basic axioms of isomathematics.

Studies on the isofunctional analysis were initiated by Santilli [4] and continued by
Myung and Santilli [26], Kadeisvili [21], Nishioka [27] Aringazin [29] and others (see
the general bibliography of Ref. [16a] for a comprehensive listing). A presentation of
isofunctional analysis sufficient for the isoscattering theory is available in monograph
[15a]. For completeness we recall the following notions:

3.3.1) Isopowers,
ân̂ = â×̂â×̂...â = (an)× Î , (3.3)
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for which Î n̂ = Î;
3.3.2) Isoexponentiation,

êa = Î + a/̂1̂! + a×̂a/̂2̂! + ... = (ea×T )× Î = Î × (eT×a), (3.4)

where one should note the emergence of the integro-differential quantity T in the
exponent;

3.3.3) Isologarithm,
ˆlogêâ = Î × logêa, (3.5)

which expression is indeed the inverse of the isoexponentiation, as one can verify, as
well as yields a correct isonumber for result;

3.3.4) Isotrigonometric functions (for isosphericval coordinates see later on Section
3.8),

ˆsinθ̂ = Tθ × sin(θ × Îθ), (3.6a)

ˆcosφ̂ = Tφ × cos(φ× Îφ, (3.6b)

where evidently the isounits for angles are generally different than those for space.
Note that the use of conventional angles would have no sense for the isoscattering

theory because all numbers must be isonumbers for consistency. We shall identify
later on specific realizations of the various isounits.

A rather intriguing and unexpected feature of isotopies is that of preserving on
isospaces over isofields the numerical values of the quantities prior to lifting. This
feature has been crucial for the reconstruction of the exact light cone and special
relativity on isospace over isofield when light becomes a local variables, thus requiring
in conventional spaces deformed light cones.

According to this feature, the isoscattering theory is expected to preserve the
numerical value of the angles θ and φ as measured in experiments. However, the
preservation is for the new isoangles θ̂ and φ̂. Consequently, the correct identification
is

θ = θ̂ = θ′ × Îθ, φ = φ̂ = φ′ × Îφ. (3.7)

The above rules indicate the expected differences in the elaboration of experiments
via the scattering and isoscattering theories.

3.3.5) Isomatrices, given by conventional matrices whose elements are isoscalars,
such as for the diagonal case

M̂ = Diag.(â1, â2, ..., ân), (3.8)

where âk = ak × Î;
3.3.6) Isodeterminant,

D̂etM̂ = [Det(M̂ × T̂ )× Î , (3.9)
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where one should note that M̂ × T̂ is an ordinary matrix. Hence, the value of the
isodeterminant is indeed an isonumber.

3.3.7) Isotrace,
T̂ rM̂ = Tr(M̂ × T̂ )× Î , (3.10)

etc. It should be stressed that the above elements of isofunctional analysis are merely
introductory and a study of at least Chapter 6 of monograph [15a] is necessary for a
serious knowledge of the isoscattering theory.

3.4. Isodifferential Calculus. It was believed for centuries that the differential
calculus is independent of the assumed basic unit, since the latter was traditionally
given by the trivial number 1.

Santilli [13] has disproved this belief by showing that the differential calculus can
be dependent on the assumed unit, by formulating the isodifferential calculus with
basic isodifferential, for instance, of an isocoordinate r̂

d̂r̂ = d̂[r × Î(r, ...)] = T̂ × d[r × Î(r, ...)], (3.11)

that does indeed coincide with the conventional differential for all isounits indepen-
dent from r, d̂r̂ ≡ dr, while yielding structural differences for all cases relevant for
the isoscattering theory, namely, when the isounit depends on the local coordinates.
In the latter case we have

d̂r̂ = T × d[r × Î(r, ...)] = dr + r × T × dÎ(r, ...). (3.12)

The compatible formulation of the isoderivative is then given by

∂̂

∂̂r̂
= Î × ∂

∂r̂
. (3.13)

The isointegral is defined as the inverse of the isodifferential and can be written
for simplicity ∫̂

d̂r̂ =

∫
dr̂,

∫̂
d̂r̂×̂f̂(r̂) =

∫
dr̂ × f(r̂), (3.14)

where we have used the isofunction f̂(r̂() = Î × f(r̂).
Note that, as formulated above for simplicity, isodifferentiation and isointegration

yield ordinary scalars and not isoscalars, a feature assumed later on in Section 2.3 of
paper II to reach a formulation accessible to experimentalists.

It should be indicated that the use of the conventional differential calculus leads to
catastrophic mathematical and [physical inconsistencies particularly in the dynamical
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equations [6-11], thus mandating the use of the covering isodifferential calculus. Con-
sequently, the sole functional differences between the conventional and isodifferential
calculus are sufficient to warrant a reinspection of the quantum scattering theory.

As an illustration, the realizations of the isounit of primary physical relevance are
based on exponentials, e.g., Î = M̂×̂exp[f(r, ...)], where M̂ is a matrix or operator
not dependent on r. In this case, the isounit and the isotopic element disappear from
the projection of the isodifferential in our space. This results in significant deviations
between conventional and isotopic differentials, e.g., dr 6= d̂r̂ = dr × (1 + r × ∂f∂r)
thus providing additional expectations of possible numerical differences in the final
elaboration of the same experiment with the conventional and the isotopic scattering
theory.

3.5 Iso-Hilbert Spaces. The fundamental representation space of hadronic me-
chanics is a new realization of the abstract axioms of the conventional Hilbert space
H over the field of complex numbers C, first proposed by Santilli [5] in 1978, then
studied by Myung and Santilli [26] and other authors (see the review in Ref. [15a]
and quoted references), today known as iso-Hilbert spacve or Hilbert-Myung-Santilli
isospaces, and denoted Ĥ over the isofield Ĉ. The new space is characterized by
isostates |ψ̂ > with isoinner product, and related isonormalization,

< ψ̂|×̂|ψ̂ > ×Î =< ψ̂| × T̂ × |ψ̂ > ×Î ε Ĉ, (3.15a)

< ψ̂|×̂|ψ̂ > ×Î = Î , (3.15b)

isoexpectation values of an iso-Hermitean operator Q̂ = Q̂†̂

< ψ̂|×̂Q̂×̂|ψ̂ > ×Î =< ψ̂| × T ×Q× T × |ψ̂ > ×Î , (3.16)

isounit under isonormalization (3.16)

< ψ̂|×̂Î×̂|ψ̂ > ×Î =< ψ̂| × T̂ × T̂−1 × |ψ̂ > ×Î = Î , (3.17a)

Î×̂|ψ̂ >≡ |ψ̂ >; (3.17b)

isoeigenvalue equation for iso-Hermitean operators

Ĥ×̂|ψ̂ >= H × T × |ψ̂ >= Ê×̂|ψ̂ >= E × |ψ̂ >, Ê ∈ R̂, E ∈ R; (3.18)

and additional properties we cannot possibly review here. We limit ourselves to quote
the following main properties (see Ref. [15a] for details):

3.5.1) Hilbert-Santilli isospaces are isomorphic to conventional Hilbert spaces by
conception and construction, as illustrated by the fact that the isoinner product (3.15)
is still inner from the positive-definite character of the isounit. This property is crucial
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to ensure the covering character of hadronic over quantum mechanics, as well as the
existence of a unique and unambiguous interconnecting maps indicated below.

3.5.2) Operators that are Hermitean on H over C are also iso-Hermitean, namely,
they remain hermitean under lifting to the Hilbert-Santilli isospace over the isofield of
isocomplex numbers, and we shall often write Q̂ = Q̂†̂ = Q̂†. Therefore, all quantities
that are observable for quantum mechanics remain observable for hadronic mechanics,
although the opposite is not generally true because of the existence of Hermitean op-
erators representing irreversible process that are well defined for hadronic mechanics
but cannot be even formulated for quantum mechanics due to its simpler structure.

3.5.3) The conventional Hilbert space admits a new symmetry discovered by San-
tilli [13,14] called isoscalar symmetry, given by a rescaling of the unit under which
the conventional inner product is invariant,

< ψ| × |ψ > ×I ≡

≡ < ψ| × w−1 × |ψ > ×(w × I) =< ψ|×̂|ψ > ×Î , w ε C. (3.19)

Evidently, the property persists for the Hilbert-Santilli isospace and we have

< ψ̂|×̂|ψ̂ > ×Î =< ψ̂| × T × |ψ̂ > ×Î ≡

≡< ψ̂| × (w−1 × T )× |ψ̂ > ×(w × Î) =< ψ̂| × T ′ × |ψ̂ > ×Î ′. (3.20)

The lack of discovery of symmetry (3.19) for over one century should not be
surprising, because the new symmetry required the prior discovery of new numbers,
those with arbitrary units [12]. In fact, isosymmetry (3.19) requires the reformulation
of numbers as isonumbers n̂ = n× 1.

Despite its apparent triviality, the discovery of isosymmetry (3.19) has permitted
the achievement of a new grand unification of gravitational and electroweak interac-
tions essentially based on the embedding of gravitation where nobody looked for, in
the unit of electroweak theories. The new grand unification includes the first known
axiomatically correct inclusion of antimatter in grand unified theories also nobody
cared for since gravitation on a Riemannian space cannot represent neutral antimat-
ter. gthis suggests the use of the isodual theory of antimatter to achieve a grand
unifications with a degree of democracy between matter and antimatter (see papers
[44-46] for original words and monograph [33] for comprehensive treatment).

3.6. Isolinearity, Isolocality and Isounitarity. We are now equipped to introduce
the following important notio9ns first introduced by Santilli as the foundation of the
isotopies of Lie’s Theory (see, e.g., Ref. [15]):

DEFINITION 3.6.1: ISOLINEARITY.
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Operators that are nonlinear on H over C (that is, nonlinear in the wavefunction)
can be identically rewritten in a form that is linear on Ĥ over Ĉ, a property called
isolinearity. The reformulation is simply done by embedding all nonlinear terms in
the isounit, In fact. hadronic mechanics was proposed [5] to reformulate complex
nonlinear models, e.g., H(r, p, ψ)× |ψ >= E × |ψ >, into an identical isolinear form
Ho(r, p) × T (r, p, ψ) × |ψ >= E × |ψ >, H = Ho × T . Despite its simplicity, the
reformulation is not trivial because the conventional nonlinear formulation generally
violates the superposition principle, thus being generally inapplicable to composite
systems, while the isotopic formulation verifies the superposition principle on isospace
over isofield, thus allowing consistent studies of nonlinear composite systems.

DEFINITION 5.6.2: ISOLOCALITY.
Operators that are nonlocal on H over C, e.g., of nonlocal-integral type, can be
identically reformulated in a form on Ĥ over Ĉ that is local-differential everywhere
except at the isounit, a property known as isolocality. Again, the reformulation is
done via the embedding of all nonlocal terms in the isounit. It should be noted
that the technical understanding of isolocality requires a technical knowledge of the
isotopology of hadronic mechanics initiated by the mathematicians Gr. Tsagas and
D. S. Sourlas [34] (see also monograph [19]) and completed by the mathematicians
M. Falcon Ganfornina and J. Nunez Valdes [35] (see also monograph [23]).

DEFINITION 5.6.3: ISOUNITARITY.
All operators U that are nonunitary on H over C can be identically reformulated in a
form verifying unitarity on Ĥ over Ĉ, a property called isounitarity. The reformulation
is done via the simple identity

U × U † 6= I, U = Û × T̂ 1/2, (3.21)

under which we have the isounitarity law

Û×̂Û † = Û †×̂Û = Î . (3.22)

This is the property indicated in Section 1 that assures nonunitary S-matrices to
preserve probabilities under the condition that the matrices are not treated via the
mathematics of quantum mechanics.

3.7. Resolution of the Inconsistency Theorems. We are now sufficiently
equipped to show the resolution of the Theorems of catastrophic Inconsistencies of
Nonunitary Theories [6-11], first achieved by Santilli thanks to his isomathematics
(see Ref. [15] for detailed treatment):

INVARIANCE OF THE BASIC UNIT.
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The units of the conventional scattering theory characterize a geometrization of basic
unfits of measurements. For instance, the unit of the three-dimensional Euclidean
space is a geometrization of the units of length along each axis, e.g., I = Diag(1cm,-
1cm, 1cm). When expressed in dimensionless form, the unit acquires the familiar
version I = Diag.(1, 1, 1). All quantum units are invariant under unitary time evo-
lution, I → U × I × U † ≡ I, thus confirming the majestic axiomatic consistency of
quantum mechanics.

However, these units are no longer invariant under nonunitary time evolutions
U × U † 6= I because, in this case, we can have maps of the type I → U × I ×
U † = Diag.(231cm, 1.36cm, 0.3cm) 6= I. This illustrates a first inconsistency of
nonunitary scattering theories, the lack of preservation over time of the basic units
of measurements, with consequential lack of consistent applicability of nonunitary
theories to experiments.

A central features of the isoscattering theory is the invariance of the isounits Î
under the isounitary time evolution of the theory. In fact, under isounitarity law (22)
we have, for instance, the invariance Î = Diag.(231cm, 1.36cm, 0.3cm)→ Û×̂Î×̂Û † ≡
Î, thus resolving the first inconsistency of nonunitary theories

INVARIANCE OF OBSERVABLES.
Another central property of quantum mechanics is that, when a quantity is observable
at a given time, it remains observable at all subsequent times. This feature is verified
by the preservation of Hermiticity under unitary time evolutions and provides another
illustration of the majestic consistency of quantum mechanics.

When the time evolution is no longer unitary, Hermiticity is not necessarily pre-
served over time (this is the Lopez lemma [6] indicated in Section 1). In fact,
the transformed eigenvalue equation for an operator H that is Hermitean at the
initial time to under nonunitary transforms U = U(t) is given by H × |ψ >→
(U ×H ×U †)× (U ×U †)−1 × (U × |ψ > ×U †). Consequently, the initial Hermiticity
of H is not necessarily preserved over time due to the lack of general commutativity
of U ×H × U † and (U × U †)−1.

It is an instructive exercise for the reader interested in acquiring a knowledge
of the isoscattering theory to prove that iso-Hermiticity is indeed preserved under
isounitary transformations [6,12].

INVARIANCE OF NUMERICAL PREDICTIONS.
Yet another important feature of the axiomatic consistency of quantum mechanics is
that, if a Hermitean operator H has the eigenvalue E (e.g., E = 5MeV ) at the initial
time, H × |ψ >= E × |ψ >, said eigenvalue is preserved at all times, as shown by
the transformation (U ×H × U †)× (U × |ψ > ×U †) = H ′ × |ψ′ >= U × (E × |ψ >
×U |dag = E × |ψ′ >.
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Under nonunitary time evolutions, the eigenvalue at the initial time of a Her-
mitean operator is not necessarily preserved at subsequent times, as shown by the
transformation (U × H × U †) × (U × U †)−1 × (U × |ψ > ×U †) = H ′ × T × |ψ′ >=
U × (E ′× |ψ > ×Udag) = E ′× |ψ′ >, T = (U ×U †)−1, where the lack of preservation
of the eigenvalue, E ′ 6= E, follows from the fact that |ψ′ > is now the eigenstate of the
new operator H ′×T . It is an instructive exercise for interested readers to verify that
isoeigenvalues are indeed preserved under isounitary time evolutions. The resolution
of the remaining inconsistencies then follows [16a,16c].

The property important for the isoscattering theory is that eigenvalues of Her-
mitean operators are numerically altered under nonunitary-isounitary lifting. This
occurrence suggests, alone, a reinspection of the conventional scattering theory be-
cause the possible presence of nonunitary effects in deep inelastic scattering could
imply numerical results different than those currently assumed.

3.8. Delta Isofunction. As well known, Dirac’s delta function, here expressed for
the case of a one-dimensional coordinate r,

δ(r − r0) =
1

2π
×
∫ +∞

−∞
ei×k×(r−ro) × dk, (3.23)

is divergent at r = r0, by therefore constituting the origin of divergences in quantum
scattering theories [1].

Figure 3: A schematic view in the left of the conventional delta function δ(r − r0)
illustrating its divergent character at r0, and a schematic view in the right of the
Dirac-Myung-Santilli isodelta function of hadronic mechanics δ̂(r−r0) = δ[T (r−r0)],
illustrating the absence of the above divergency, a feature allowing the removal of
divergencies in the isoscattering theory from primitive axioms.

In view of the above, Myung and Santilli [26] introduced in 1982 the isotopic lifting
of Dirac’s delta function, today known as the Dirac-Myung-Santilli delta isofunction,
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or DMS isodelta for brevity (see, e.g., Nishioka [27]) that, by using the notions of
isointegral (3.14), and isoexponentiation (3.4), can be written

δ̂(r − r0) =
Î

2π
×̂
∫̂ +∞

−∞
êi×k×(r−r0)×̂d̂k,= 1

2π
×
∫ +∞

−∞
ei×k×T×(r−ro) × dk, (3.24a)

T = Σn
k=1ck × (r − r0)k, ck ∈ C. (3.24b)

where we write the isotopic element T without a ”hat” to denote its formulation on
conventional spaces, and example (3.24b) an illustration of the possible rremoval of
the singularity at r0. We then have the evident property

δ̂(r − r0) = δ[T × (r − r0)]. (3.25)

As illustrated in Figure 2, under the appropriate realization of the isotopic element
T , the DMS isodelta eliminates the divergent character of the delta function, thus
setting up the foundations for a new scattering theory without divergencies ab initio,
which is a main objective of this paper.

Note that for (3+1)-dimensional spaces each coordinate is multiplied by its isotopic
element (see next section). For numerous additional properties, e.g., the derivation
of the isodelta via isotransforms, the reader is encouraged to study monograph [xx].
Section 6.4.

3.9. Isospherical Isocoordinates. An additional mathematical notion needed for
the elaboration of the isoscattering theory is given by the isospherical coordinates [15]
here considered for in the Euclid-Santilli isospace with isounit

Î = Diag.(/b21, 1/b
2
2, 1/b

2
3) = 1/T > 0, (3.26)

isometric
δ̂ = T × δ = Diag.(b21, b

2
2, b

2
3), (3.27)

and isoinvariant
r̂2̂ = x2 × b21 + y2 × b22 + z2 × b23. (3.28)

Under the assumption of the conventional orientation of the angles θ, φ with re-
spect to the z-axis, we have the isounits

Îθ = b3, Îφ = b1 × b2, (3.29)

and the projection of the isocoordinates on the conventional Euclidean space

x = r × b−11 × sin(θ × b3)× cos(φ× b1 × b2), (3.30)
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y = r × b−12 × sin(θ × b3)× sin(ψ × b1 × b2), (3.31)

z = r × b−13 × cos(θ × b3). (3.32)

Understanding of the isoscattering theory requires the knowledge that Eq. (3.28)
represents an ellipsoid only when considered on the Euclidean space with respect to
the trivial unit 1, because the same invariant represents the perfect sphere in Euclid-
Santilli isospace over isofield called isosphere. This is due to the fact that the k-axis
is mutated by the quantity 1 → b2k, but the corresponding unit is mutated by the
inverse amount 1→ b−2k , thus preserving the perfect sphericity.

Similarly, the rotational symmetry has been popularly believed in the 20th cen-
tury as being broken for ellipsoid (3.41), while in reality such a breaking is due
to insufficient treatment since the rotational symmetry is reconstructed as exact on
Euclid-Santilli isospaces, as shown by the perfect sphericity of the isosphere.

4. Concluding Remarks
In this paper, we have suggested the re-inspection of the conventional, potential, uni-
tary scattering theory of relativistic quantum mechanics on grounds of the following
aspects:

1) The apparent inapplicability (rather than violation) of the Lorentz-Poincaré
symmetry and special relativity within physical media at large, and within the scat-
tering region in particular, due to: difficulties for a consistent formulation of their
axioms (impossibility of introducing inertial systems within a medium, the sole ex-
istence of the privileged reference frame at rest with the medium, difficulties in the
verification of all axioms within a transparent medfium, and others); deviations pre-
dicted in the repetition within physical media of the historical experimental verifica-
tions of special relativity in vacuum (repetition of Fizeau experiment entirely within
water, and others); difficulties in reaching a numerical (rather than solely conceptual)
representation of all data for all frequencies in the entire reduction to photons of elec-
tromagnetic waves propagating within physical media (inability to reach a numerical
representation of the angle of refraction and the index of refraction; impossibility for
a large number of photons to pass through a large number of nuclei as needed to
maintain the main nonscattered part of e light beam along a straight ;line; difficulties
in reducing to photons electromagnetic waves with one meter wavelength propagating
within physical media; impossibility of representing with photons traveling in vacuum
seemingly unavoidable superluminal causal speeds within physical media; etc.); and
other insufficiencies;

2) Impossibility of reducing to photons traveling in vacuum the electromagnetic
phenomena within the scattering region due to its hyperdense character, thus im-
plying the locally varying speed C = c/n, suggesting a return to the Maxwellian
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interpretation of light and photon wavepackets as transversal electromagnetic waves
propagating in the ether as a universal substratum without conflict with special rel-
ativity in vacuum (due to our impossibility of identifying a privileged system at
rest with the ether), and consequential relevance of the Lorentz problem, namely. the
achievement of the universal symmetry for all locally varying speeds of light C = c/n;

3) The strict reversibility over time of the Lorentz-Poincaré symmetry and special
relativity compared to the strict irreversibility over time of high energy inelastic scat-
tering processes, with ensuing difficulties for rigorous verifications of causality and
other laws, and the need for covering theories as irreversible as the scattering process
being represented;

4) The need advocated by Heisenberg for a covering of quantum mechanics which is
nonlinear in the wavefunction and other quantities due to the expected nonlinearity
of high energy scattering processes, compared to the linear character of quantum
mechanics, the breaking of the superposition principle for Hamiltonians dependent
on wavefunctions and consequential inapplicability of nonlinear quantum models to
composite scattering processes;

5) Einstein-Podolsky-Rosen historical doubts on the final character of quantum
mechanics; Dirac’s call for a reformulation of the scattering theory that is convergent
ab initio so as to avoid the achievement of numerical results in high energy scattering
experiments via ad hoc procedures to achieve mathematical convergence of unknown
physical origin or content; and other authoritative doubts;

6) The No Reduction Theorems preventing a consistent reduction of macroscopic
irreversible systems to a finite set of particles all in nice conservative conditions,
with consequential impossibility of reducing highly irreversible scattering processes
to point-like quantum particles verifying the rotational and Lorentz symmetries,
thus identifying the origin of irreversibility in the total mutual penetrations of the
wave[packets and/or charge distributions of particles in the scattering region, essen-
tially as occurring for macroscopic irreversible systems (such as a spaceship during
reentry in atmosphere);

7) The unavoidable non-Hamiltonian and, therefore, nonunitary character of the
contact effects due to total mutual penetration of extended wavepackets and/or charge
distributions of particles in the scattering region, with consequential exiting from the
class of unitary equivalence of quantum mechanics;

8) The numerical alteration of the eigenvalues of scattering operators under non-
Hamiltonian, thus nonunitary internal effects, with consequential possible lack of final
characer of the data elaboration of measured quantities (cross sections, scattering
angles, etc.) via unitary scattering theory;

9) The recent discovery of the invariance of particle-antiparticle systems under
the new symmetry called isoselfduality (invariance under anti-Hermiticity) that is
verified by the Dirac equation, resulting in its direct representation of an electron

30



and a positron without need for the ”hole theory,” said new invariance not being
generally verified by the scattering amplitude for particle-antiparticle processes;
and other aspects all concurring in a return to the old need for a nonunitary covering
of the conventional unitary scattering theory.

In this paper, we have then recalled the Theorems of Catastrophic Mathematical
and Physical Inconsistencies of Noncanonical and Nonunitary Theories, implying the
lack of invariance over time of the units of measurements, the lack of conservation
over time of observable, the general inability to predict the same numerical results
under the same conditions at different times, and others serious insufficiencies.

In order to avoid excessive complexities at start up, in this and the following
papers we have restricted our analysis to reversible scattering processes without an-
tiparticles. We have then, apparently for the first time, specialized to the scattering
region the new mathematics known as isomathematics, that has been specifically built
over decades of efforts by various authors to bypass said inconsistency theorems; we
have outlined their resolution; and restricted the study to a time reversal invariant
formulation of the nonunitary scattering theory without antiparticles under the name
of isoscattering theory.

In this paper, we have also indicated the possibility that, in the final analysis,
the elaboration via the scattering and isoscattering theories of the same measured
data may lead to the same numerical results. This possibility should not be excluded
due to the indicated preservation under isotopies of both Einsteinian and quantum
axioms and, in case confirmed, would be quite valuable because it would confirm the
broadening of their applicability under nonlinear, nonlocal and nonunitary internal
effects.

However, even under the assumption that the data elaboration of past experiments
are the same for the conventional; and the isotopic scattering theories, the latter is
expected to admit the representation of events precluded to the former, such as the
synthesis of neutrons from protons and electrons as occurring in stars, or the synthesis
of hadrons at large from lighter particles that, as we shall see in Paper IV of this series,
can best be treated via a nonunitary-isounitary theory due to the need for a negative
binding energy under which the Schrödinger equation no longer admits physically
meaningful solutions [36].

Above all, the reader is suggested to keep in mind that the ultimate aim of all
studies herein considered is the conception, quantitative treatment and experimen-
tal verification of much needed new clean energies, such as the novel Intermediate
Controlled Nuclear Fusions (ICNF) [37], due to their strictly irreversible, as well as
nonlinear, nonlocal and non-Hamiltonian character.

The proof of the convergence from primitive axioms without ad hoc manipulations,
the comparison of the data elaboration of measured quantities via the scattering and
isoscattering theory is done in subsequent papers. Similarly, the inclusion of antipar-
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ticles and the extension to irreversible scattering processes requires additional new
mathematics (known as isodual mathematics and Lie-admissible genomathematics,
respectively), thus requiring separate studies.
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