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Abstract

A nonunitary extension of the conventional, unitary scattering theory
has been advocated by various authors as an effective way to incorporate
nonpotential effects expected in dissipative nuclear events, deep mutual
penetrations of the wavepackets of scattering particles, and other events.
Nevertheless, these efforts had to be abandoned because of the violation of
causality, lack of conservation of probabilities, and other problems emerg-
ing under nonunitary time evolutions. We show that the reformulation of a
nonunitary scattering theory permitted by the isotopic branch of hadronic
mechanics and its underlying Lie-isotopic theory, here presented under the
name of isoscattering theory, reconstructs unitarity on iso-Hilbert spaces
over isofields, a property known as isounitarity, thus resolving said prob-
lematic aspects, while having no divergencies an initio, and providing a
significant broadening of the quantum scattering theory, although the Lie-
isotopicv theory is expected as being solely applicable to reversible scatter-
ing events. This first paper is devoted to the conceptual and mathematical
foundations of the Lie-isotopic scattering theory, including the resolution
of the inconsistencies of nonunitary theories. The physical foundations, the
absence of divergencies from primitive axioms, and initial comparisons of
the elaboration of measured quantities (cross sections, scattering angles,
etc.) via the Lie and the Lie-isotopic scattering theories for reversible scat-
tering events are studied in subsequent papers. Deep inelastic events are
irreversible over time, thus requiring the further Lie-admissible broadening
of the formalism studied in subsequent papers. ..
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1. Introduction
As it is well known, the conventional scattering theory of quantum mechan-
ics (see, e.g., Ref. [1] and literature quoted therein), has permitted historical
advances in the 20th century particle physics. Nevertheless, physics is a dis-
cipline that will never admit final theories because all theories are a mere
approximation of the complexities of nature. No matter how accurate a
given theory may be perceived, its broadening for a more accurate repre-
sentation of nature is only a question of time.

In fact, numerous authoritative doubts on the final character of the
conventional quantum scattering theory have been expressed, such as:

1) P. A. M. Dirac (see, e.g., Ref. [2]) expressed in 1981 serious concerns
for the infinities in scattering theories and indicated the need for a revised
theory avoiding divergences ab initio, rather than via ad hoc procedures of
unknown physical origin;

2) B. Davies (see Ref. [3] and papers quoted therein) voiced in 1981
the need to extend the scattering theory into a nonunitary form so as to
incorporate imaginary potentials as used in dissipative nuclear effects and
other events;

3) W. Heisenberg (see the review in Ref. [5])voiced the need for for
a nonlinear extension of quantum mechanics, due to the known nonlinear
character of nature;

4) Einstein, Podolsky and Rosen expressed their celebrated dout on the
”lack of completion” of quantum mechanics (ee later on for comments);

5) R. M. Santilli [4,5] suggested in 1978 the construction of a nonunitary
covering of quantum mechanics under the name of hadronic mechanics in
order to lift the quantum assumption of point-like particles into a form ad-
mitting a representation of the actual extended, thus generally nonspherical
and deformable character of the wavepackets and/or charge distributions of
particles, a representation of contact non-Hamiltonian interactions expected
in deep overlapping of scattering particles, and other effects beyond the rep-
resentational capabilities of quantum mechanics.

The above initial efforts subsequently resulted as being afflicted, in their
original formulation, by fundamental inconsistencies. In essence, a theory
along the above lines generally requires non-Hamiltonian effects (i.e., ef-
fects not representable with a Hermitean Hamiltonian), a feature causing
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the time evolution of the theory as being no longer unitary. In turn, the
loss of unitarity implies: the loss of Hermiticity, thus observability, over
time (an occurrence known as Lopez lemma [6]); the violation of causality;
the lack of conservation of probabilities; the inability to predict the same
numerical values under the same conditions at different times; and other ba-
sic problematic aspects known under the name of Theorems of Catastrophic
Inconsistencies of Nonunitary Theories [6-11] (see also the review in Ref.
[16a]).

A resolution of the above inconsistencies required the construction of a
new mathematics, today known as isomathematics, based on the isotopic
(i.e., axiom-preserving) lifting of the basic unit h̄ = 1 of quantum mechanics
into the most general possible, positive-definite, integro-differential operator
with an explicit dependence on any desired local quantity Î(t, r, p, ψ, ...) =
1/T̂ (t, r, p, ψ, ...) > 0 known as isounit; its inverse T̂ being known as the
isotopic element. The isotopic lifting of the basic (left and right) unity
h̄→ Î(t, r, p, ψ, ...) then required corresponding compatible isotopies of the
entire mathematics of quantum mechanics, including the isotopic lifting of
fields, spaces, functional analysis, differential calculus, topology, geometries,
algebras, groups, symmetries, representation theory, etc. [12-25].

While quantum systems are entirely represented by the sole knowl-
edge of the Hamiltonian H(r, p) = p2/2m + V (r), the representation with
hadronic mechanics of extended particles at short mutual distances re-
quires the knowledge of two quantities, the usual Hamiltonian H(r, p) =
p2/2m+V (r) for the representation of action-at-a-distance, potential inter-
actions, plus the isounit Î(t, r, p, ψ, ...) for the representation of the actual
size, shape and density of particles, their contact nonpotential interactions
and other features beyond any hope of representation via a Hamiltonian.
Note that, being an operator by assumption, the isounit does not commute
with the Hamiltonian and, therefore, it is not generally a constant (although
it is at times averaged into a constant).

By remembering that the unit is the basic invariant of any theory, the
representation of non-Hamiltonian features and interactions via the isounit
is the only form known to the authors permitting nonunitary theories to
achieve the crucial invariance over time as possessed by the majestic ax-
iomatic consistency of unitary quantum theories. The resolution of the
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remaining inconsistencies of early nonunitary theories was achieved via the
reconstruction of unitarity over iso-Hilbert spaces over isofields, a property
known as isounitarity (see the revioew below).

Mathematical maturity was achieved with: the discovery in 1993 that
the conventional axioms of numerical fields admit basically new realizations
of real, complex and quaternionic numbers with arbitrary (left and right,
positive-definite) units, thus resulting in basically new numbers [12]; the dis-
covery in 1995 of the dependence by the conventional differential calculus
on the assumed basic unit with the consequential emergence of new calculi
[13]; the isotopies in 1998 of the fundamental SU(2) spin and isospin sym-
metries with consequential revision of Bell’s inequality and all that [14]; and
other advances identified later on. The achievement of physical maturity
was then consequential, and so were numerous applications and experimen-
tal verifications (see monographs [15] of 1995, updates [16] of 2008, books
[17-24] and vast literatuire quoted therein).

In these papers, we present the reformulation of nonunitary scattering
theories permitted by the isotopic branch of hadronic mechanics that is
based on the Lie-Santilli isotheory and related isomathematics [4,14-23].
Since all isounits assumed in these papers are Hermitean from their positive-
definiteness, Î = Î† > 0, such a reformulation is primarily intended for
scattering processes that are reversible over time, hereon called isoscattering
theory, whose prefix ”iso” is intended to indicate the preservation of the
abstract axioms of the quantum scattering theory and merely present a
broader realization.

Hence, the reader should be aware from these introductory lines that
a main effort of these initial papers on isotopies is that of preserving the
abstract axioms of special relativity, quantum mechanics and the conven-
tional scattering theory, and studying their broader realization permitted
by the novel mathematics. The non triviality of these isotopic liftings will
then be illustrated by showing that the scattering theory: 1) Resolves the
inconsistencies of nonunitary theories; 2) Avoids divergences ab initial; and
3) Broadens the representational capability of the conventional scattering
theory with the representation of conventional potential interactions repre-
sented by the conventional Hamiltonian H, plus nonpotential interactions
represented by the isotonic Î caused by the deep mutual penetration of



6

particles as customary in high energy scattering events, and the direct geo-
metric representation of the size, shape and density of the scattering region.
The issue as to whether the numerical values characterized by the scattering
theory are different than those characterized by the conventional theory for
the same measured quantities, can only be addressed subsequently.

It should be stressed that the extension of the formalism to irreversible
processes requires a yet broader irreversible mathematics, known as Lie-
admissible mathematics, which is characterized by two non-symmetric
units, Î>,< Î for motions forward and backward in time, respectively. In
turn, such basic assumptions require a step-by-step Lie-admissible lifting
of the entire isotopic formalism [4,15]. Due to its complexity, this broader
formulation cannot possibly be presented in these first papers, and will be
presented at some later time (see monographs [15] and the latest memoir
[25].

Hence, the reversible scattering theory presented in these papers is a
mandatory intermediate step prior to the construction of the irreversible
Lie-admissible scattering theory and related new mathematics known under
the names of scattering theory and mathematics where the prefix “geno”
was suggested since the original proposal of 1978 [4.5] to indicate from its
Greek meaning that, this time, the axioms oi special relativity, quantum
mechanic s and the scattering theory are abandoned in view of their no-
torious reversible character (see next section) in favor of new, structurally
broader, irreversible axioms.

It should be indicated that in these papers we present, apparently for the
first time, the axiomatic foundations of the isoscattering theory, although
the main elements of the new theory have been known for some time, but
often ignored by physicists dealing with scattering processes to their peril.
In fact, the following basic results have been available in the scientific liter-
ature for some time:

1) Convergent perturbation theory. Recall that quantum mechanics is
based on the well known Lie product [A,B] = AB − BA between generic
matrices or operators A,B, while the isotopic branch of hadronic mechanics
is based on the Lie-Santilli isoproduct [A,̂B] = AT̂B−BT̂A, first presented
in Ref. [4] of 1978 and then studied by the authors in various works (see
the review in Refs. [15,16]), where T is the inverse of the isounit. It was
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then easy to see since the original proposal to build hadronic mechanics [5]
that any divergent (or weakly convergent) canonical series A(w) = A(0) +
w(AH −HA)/1! + ...→∞ can be turned into a strongly convergent form
under the lifting A(w) = A(0) + w(AT̂H − HT̂A)/1! + ... for all isotopic
element T̂ sufficiently smaller (in absolute value) than w, a feature naturally
verified by actual models, as we shall see. This feature was then studied by
A. Jannussis and other authors (for brevity, see Chapter 11 of monograph
[15b] for review and references).

2) Conservation of probability. As it is well known, the quantum S-
matrix is unitary as a condition to preserve probabilities [1]. Hence, it
was popularly believed that nonunitary theories violate the conservation of
probabilities. The recovering of the conservation of probability under an
isounitary reformulation of nonunitary theory was well established by 1995
[15b].

3) Absence of divergencies. Recall that divergencies in quantum scatter-
ing theories mainly originate from Dirac’s delta function δ(x−x0) since the
latter is divergent at x = x0 [1]. The absence of divergencies in the scat-
tering theory of hadronic mechanics was identified in 1982 by Myung and
Santilli [26] with the introduction of the isotopic covering of the Dirac delta
function called by Nishioka [27] the Dirac-Myung-Santilli isodelta function
and denoted δ̂(x − x0) = δ[T̂ (x − xo)] which, as one can see, removes the
divergency of the delta function at x = x0 under a judicious choice of the
isotopic element T , as reviewed later on in Section 3.8.

4) Nonpotential scattering theory. The extension of the quantum scat-
tering theory to incorporate interactions not entirely represented with a
Hamiltonian, as expected in deed inelastic scattering, was sufficiently voiced
in the original proposal [5], and subsequently studied by R. Mignani [28]
and others. Additional more recent studies on nonpotential scattering the-
ory have been conducted by A. K. Aringazin et al [29] (again for brevity,
see Chapter 12 of monograph [15b] for reviews and additional references).

5) Inequivalence of Hamiltonian and non-Hamiltonian data elaborations.
It is popularly believed that, since cross sections, scattering angles and other
quantities are measured, the numerical values produced by data elaborations
via unitary scattering theories have a final experimental character. In real-
ity, nature is not as simple as all of us tend to believe. Santilli showed in
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1989 (see the review in Chapter 12 of monograph [15b]) that the elabora-
tion of measured quantities via quantum and hadronic scattering theories are
generally inequivalent, thus warranting serious comparative studies. This is
due to the fact known since 1978 [5] that, if the Hamiltonian H pof a given
scattering theory has the eigenvalue E, H|ψ >= E|ψ >, the same Hamilto-
nian H has a generaly different eigenvalue E ′ for the isoscattering theory,
HT |ψ′ >= E ′|ψ > E ′ 6= E, trivially, in view of the general lackj of cpom-
mutativity between H and T (see Section 3.6 for details). Irrespective of
all preceding aspects, the latter occurrence, alone, warrants a reinspection
of the conventional, reversible, Hamiltonian, unitary scattering theory.

The reader should be aware from these introductory lines of the exis-
tence of preliminary, yet rather vast experimental support of deviations from
conventional Lie theories in virtually all quantitative sciences when dealing
with the main assumption of the scattering theory, that is, extended parti-
cles and electromagnetic waves moving within physical media. Among these
experimental data,z we mention:

1) The need for contact non-Hamiltonian interactions to achieve an ac-
tual attractive force between the identical electrons in molecular valence
couplings since, as expected to be known although rarely voiced, identical
electrons repel each other according to quantum mechanics and chemistry
[32];

2) Deviations from the geometry of spacetime have been, again prelim-
inarily, yet directly measured in the experimental verification of the isored-
shift, [31]. We are here referring to a shift toward the red of the frequency
of light propagating within a transparent physical medium without any rel-
ative motion between the source, the medium and the detector, the shift
being merely due to the loss of energy E = hν by light to the medium due to
inevitable interactions, with consequential evident reduction of frequency.

3) The elaboration of numerous particle physics experiments dealing
with the hyperdense interior of hadrons, when elaborated without ad hoc
parameters or arbitrary functions of unknown physical origin, show the
clear presence of non-Hamiltonian effects [16d]. This is typically the case
of the two-point amplitude of the Bose-Einstein correlation whose quan-
tum fit of experimental data requires four arbitrary parameters (the so-
called “chaoticity parameters”), while vacuum expectation values admit at
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best two parameters. These effects can be fully representable via a four-
dimensional isounit of which the three space components represent the ac-
tual , very elongated shape of the proton-anti proton fireball, and the forth
components represents its density, in remarkable agreement with experi-
mental data [loc. cit.].

In any case, as part of the ongoing efforts to appraise the experimental
claims based on the conventional scattering theory, a rather significant ex-
perimental effort in under way at this writing (Spring 2010) to repeat within
physical media the historical experiments that have established the validity
of special relativity, all done in vacuum, as well known. This significant
experimental effort on the disciplines actually holding within physical me-
dia at large, and within the scattering region in particular, combined with
the theoretical efforts herein considered, will eventually provide the neces-
sary elements for the resolution of fundamental open issues in scattering
experiments, of course, in due time.

Above all, the reader should keep in mind that special relativity and
quantum mechanics are reversible theories, thus having manifest limitation
for all energy releasing processes, due to their strict irreversibility. There-
fore, the conception, quantitative treatment and experimental verification
of much needed new clean energies, such as the novel Intermediate Con-
trolled Nuclear Fusions (ICNF) [37] are crucially dependent on the covering
formulations treated in these paper.Their possible confirmation in parti-
cle accelerators via the covering isoscattering theory would then acquire a
primary significant for the resolution of alarming environmental problems.

For additional historical data and a comprehensive literature in the field,
interested colleagues may inspect Refs. [16], particularly the General Bibli-
ography of Hadronicx Mechanics in Volume [16a].

In closing these introductory lines, we should recall that the conventional
scattering theory achieved maturity only following decades of collegial stud-
ies presented in a large number of refereed publications. Consequently, it is
hoped the reader is not expecting a final resolution of the scattering problem
in these initial papers, but merely the initiation of the studies leading to a
future collegial resolution following a predictable large number of additional
papers.



10

2. Basic Physical Assumptions
2.1. Exterior and Interior Dynamical Problems. Until the earlier
part of the 20th century, there was a clear distinction between (see Refs.
[30] for technical characterizations):

1) exterior dynamical problems, referred to systems of point-particles
and electromagnetic waves propagating in empty space; and

2) interior dynamical problems, referred to extended particles and elec-
tromagnetic waves propagating within physical media.

As a historical note, we recall that Schwartzschild wrote two papers, the
first on the exterior gravitational problem containing his celebrated solution,
and a second, virtually ignored paper on the interior gravitational problem
(for review and references, see Ref. [15a]).

The primary difference between exterior and interior problems is that the
former verify the integrability conditions for the existence of a Lagrangian
or a Hamiltonian (the so-cal;led conditions of variational selfadjointness),
while the latter systems (called variationally nonselfadjoint) violate these
conditions due to the presence of contact, nonconservative and nonpotential
interactions, thus not being representable with Lagrangian or Hamiltonian
mechanics [30].

With the advent of special and general relativities, the distinction be-
tween exterior and interior dynamical problems was eliminated via the re-
duction of interior problems to a finite number of point-particles that, as
such, move in vacuum, thus recovering the conditions of exterior problems.

2.2. No Reduction Theorems. In the second half of the 20th century,
it became known that interior dynamical problems cannot be consistently
reduced to exterior problems, an occurrence known under the name of No
reduction Theorems, such as:

NO REDUCTION THEOREM 2.1 [5,25]: A macroscopic system in
nonconservative and irreversible conditions cannot be consistently reduced
to a finite collection of point-like particles all in conservative and reversible
conditions and, vice versa, the latter system cannot consistently reconstruct
the former under the correspondence or other principles.

A number of additional No Reduction Theorems were also proved based
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on the violation of thermodynamical laws due to the evident loss of entropy
when passing from a real physical system to an ideal collection of point-
particles moving in empty space all in conservative conditions, as necessary
to verify special relativity, quantum mechanics and the conventional scat-
tering theory.

An additional popular belief disproved by the No Reduction Theorems
is that total conservation laws for an isolated system are solely verified by a
system of particles in conservative conditions. In fact, it was proved in Ref.
[30b] that, since they have no potential energy, nonconservative forces are
in essence exchange forces, as a result of which they cancel each other when
the system is isolated, resulting in the full verification of the conventional
total conservation laws.

Figure 1: A suggestive view from NASA of a spaceship during reentry in our
atmosphere. Recent No reduction Theorems have established that the nonlin-
ear, nonlocal-integral and nonpotential non-Hamiltonian forces experienced
by the spaceship originate at the ultimate elementary level of nature, thus
being also present in the interior of the scattering region at high energies.

Yet another popular belief dispelled by the above No reduction The-
orems is that the nonlinear, nonlocal-integral and nonpotential forces of
our macroscopic environment ”disappear” in the reduction of an interior
system to its elementary constituents. As a matter of fact, No Reduction
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Theorem 2.1 establishes that the nonlinear, nonlocal and nonpotential forces
experienced, for instance, by a spaceship during reentry in our atmosphere
originate at the most primitive possible level, that of elementary particles,
and are evidently due to the interactions of the electron orbitals of the pe-
ripheral atoms constituting the spaceship with the electron orbitals of the
resistive medium (see Figure 1).

The particular type of non-Hamiltonian interactions here referred to
deals with the deep overlapping of the wave packets of and/or the charge
distribution of particles and are referred to as nonlocal-integral interactions
(or merely nonlocal for brevity) in the sense that they occur over a surface
or volume integral. As such, the nonlocal interactions at the basis of the
scattering theory cannot be reduced, by conception, to a finite set of isolated
points.

Note that we are including nonlocal interactions experienced by elec-
trons, namely, by particles with a notorious point-like charge. Nevertheless,
electrons do not have a “point-like wavepacket,” thus experiencing indeed
nonlinear, nonlocal and nonpotential interactions when in conditions of deep
mutual penetration, as it is the case for valence electron coupling in molec-
ular structures [32].

The studies reported in Refs. [30] have also established that the time
evolution of systems with nonlinear, nonlocal and nonpotential interaction
are necessarily noncanonical at the classical level and nonunitary at the
operator level. We are now minimally equipped to formulate the following:

ASSUMPTION 2.1: The scattering region is an interior dynamical sys-
tem, thus characterized by a nonlinear (in the wavefunction), nonlocal (in-
tegral) and nonpotential (nonunitary) time evolution.

Note that the No Reduction Theorems prohibit the exact reduction of
the scattering region to a finite set of isolated points, which is considered
a mere first approximation of a rather complex reality. The same theorems
identify the evident need for covering formulations. Note finally that the
No Reduction Theorems are not bypassed by the reduction of the scattering
particles to point-like quarks, since elementary constituents with a point-like
wavepacket do not exist.
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2.3. Insufficiencies of the Lorentz-Poincaré Symmetry. The break-
ing of the Lorentz-Poincaré (LP) symmetry for interior dynamical problems
at large, and particularly for the interior of the scattering region, is rather
plausible and should be studied seriously because no scattering theory can
claim final results until the basic spacetime symmetry is established beyond
scientific doubt. Among a number of symmetry breaking aspects, we quote
[15,16]:

1) The axiomatic foundations of the Lorentz-Poincaré symmetry requires
the equivalence of all inertial reference frames. This feature is certainly
valid in empty space, but it is unresolved for the interior of the scattering
region because of the impossibility of even defining inertial reference frames
in interior conditions. Inertial reference frames are indeed used in quan-
tum scattering theories, but they constitute an exterior treatment, thus
reducing an interior to an exterior problem. Additionally, in vacuum there
is no known experimental way to detect a privileged reference frame, as
well known (Michelson-Morley experiment). By contrast, the sole refer-
ence frame that can be consistently defined for the scattering region is the
privileged reference frame at rest with the interior region itself, since other
frames would require motion of a hypothetical observer within a hyperdense
medium.

2) The Lorentz-Poincaré symmetry is exactly valid for Keplerian sys-
tems, that is, systems of point-particles moving in vacuum around a heavier
particle known as the Keplerian nucleus. By contract, the scattering region
has no Keplerian nucleus. This aspect alone may cause a breaking of the
Lorentz-Poincaré symmetry.

3) There are serious reasons to expect that the historical experiments
that have established the validity of special relativity in vacuum are invalid
in interior conditions [31]. For instance, it is easy to see that., in the event
the known Fizeau experiment is repeated entirely underwater, there are con-
tributions for the travel of light in water outside the traditional pipes with
opposite water velocities that violate Lorentz-transformations. By contrast,
the repetition of the Michelson-Morley experiment under complete underwa-
ter conditions is expected to retain the original result, this time confirming
the constancy of the speed of light with respect to the privileged reference
frame at rest with the water, by therefore no longer confirming the Lorentz
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symmetry. Needless to say, a problem of such a fundamental character
cannot be resolved in a few sentences one way or another, and requires the
systematic repetition in interior conditions of all historical experiments that
have established the validity of the Lorentz-Poincaré symmetry in vacuum
[31].

The reader should be aware that a rather vast effort has been conducted
over decades for the construction of a covering spacetime symmetry appli-
cable to interior problems at large, and the scattering region in particu-
lar. These efforts required first the construction of the covering Lie-Santilli
isotheory [4,15,16,18-34] capable of reducing nonlinear, nonlocal and non-
canonical (or nonunitary) interior problems to equivalent isolinear, isolocal
and isocanonical (or isounitary) forms (see next section for details). Only
following the achievement of the Lie-Santilli isotheory, the efforts could be
concentrated in the construction of a covering of the Lorentz-Poincaré sym-
metry applicable to interior conditions [33-43] which is known today as the
Lorentz-Poincaré-Santilli (LPS) isosymmetry. We reach in this way the
following:

ASSUMPTION 2.2: The scattering region is characterized by the Lorentz-
Poincarś-Santilli isosymmetry.

The noninitiated reader should know that, by conception and construc-
tion, the LPS isosymmetry is locally isomorphic to the conventional LP
symmetry. This feature may have deep implications for the scattering prob-
lem because, in the final analysis, it may imply that the data elaboration
of existing high energy experiments with the conventional and the isotopic
scattering theory yields the same numerical value. Rather than being a
drawback, if established by future collegial works, this possible outcome
alone warrants this study, e.g., because it would established the validity of
special relativity for interior conditions nowadays considered inapplicable.

In any case, as shown in paper III of this series, even assuming that the
elaboration of past experiments via the conventional and isotopic scattering
theory yields the same numerical results, the broader representational ca-
pabilities of the isotopic theory are beyond doubt, thus offering the possible
prediction and representation of scattering events beyond the capability of
the conventional theory; It is only hoped the reader does not expect the
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final resolutions of these complex issues in these initial papers.

2.4. Insufficiencies of Quantum Mechanics. Following the historical
successes of quantum mechanics for the structure of the hydrogen atoms
and numerous other systems, quantum mechanics has been applied to all
possible particle conditions existing in the universe, thus including interior
conditions, as typically occurring in the scattering region as well as in the
structure of hadrons, nuclei and stars.

Despite the achievement of historical results, serious doubts have emerged
in regard to the exact character of quantum mechanics for interior problems,
such as [15,16]:

1) Quantum mechanics has permitted the achievement of a numerically
exact representation from first principles of all experimental data of exte-
rior dynamical problems, By contrast, when passing to interior problems,
quantum mechanics has only permitted an approximate representation of
experimental data, an occurrence that, per se, is a direct indication of the
merely approximate character of quantum mechanics for interior conditions.
For instance, quantum mechanics has provided an exact representation of
the structure of the hydrogen atoms, while it misses 2% of the binding en-
ergy of the hydrogen molecule from unadulterated quantum principles [32].
In nuclear physics, quantum mechanics misses an exact representation of
the simplest possible nucleus, the deutneriom, since there are insufficiencies
in the representation of its spin, magnetic moment, stability and other fea-
tures, with dramatic insufficiencies for heavy nuclei such as the zirconium
[16].

2) The No Reduction Theorems establish that the nonlinear, nonlocal
and nonpotential character of our macroscopic systems originate at the ul-
timate level of elementary particles, thus requiring a covering of quantum
mechanics. As an example, the approximate character of quantum mechan-
ics for the hydrogen molecule originates from the conditions of deep mutual
penetration of the wavepackets of the two valence electrons by characteriz-
ing interactions dramatically beyond a possible representation by quantum
mechanics. Similar occurrences hold for other interior problems.

3) The representation of interior conditions via quantum mechanics is
generally done with the use of completely arbitrary parameters or functions
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of unknown physical origin that are fitted from the data, and quantum me-
chanics is then claimed as being exactly valid. As an example, an exact
representation of the binding energy of the hydrogen molecule is achieved
via the so-called ”screened Coulomb potentials,” that is, the multiplication
of the Coulomb potential by an arbitrary function such as V (r) = f(r)e2/r,
and then the fitting of the arbitrary function (f(r) from the experimental
data. However, it is known that ”screened Coulomb potentials” do not ad-
mit quantized levels and, therefore, the very name ”quantum chemistry”
becomes questionable [32]. In particle physics, the use of ad hoc parameters
and functions for interior conditions has reached at time paradoxical char-
acters. For instance, the experimental data of the two-points function of
the Bose-Einstein correlation are fitted via the use of four arbitrary parame-
ters (called the ”chaoticity parameters”) and then the claim that relativistic
quantum mechanics is exact. However, the quantum axioms for the expec-
tation value of a two-dimensional Hermitean operator may admit, under
debatable assumptions, a maximum of two arbitrary parameters, the use of
four parameters being excluded by the very axioms of quantum mechanics
[16a]. A deeper inspection has shown that the missing two parameters must
originate from off-diagonal elements in the vacuum expectation values thus
casting shadow on the consistent representation of observables.

In view of the above and numerous other insufficiencies [16a,24], a vast
effort has been conducted by numerous scientists over decades for the con-
struction of a nonlinear, nonlocal and nonpotential covering of classical and
quantum mechanics known under the name of hadronic mechanics with the
following main results [15,16,32,33]:

A) The construction of the so-called iso-, geno-, and hyper mathemat-
ics for the representation of variationally nonselfadjoint interior systems of
matter that are single-valued reversible, single valued irreversible, and multi-
valued irreversible, respectively, and their isoduals for antimatter, these new
mathematics being characterized by different generalized units as outlined
in Section 3;

B) The construction of corresponding new classical mechanics, known
as iso-, geno- and hyper-Lagrangian or Hamiltonian mechanics for matter,
and their isoduals for antimatter, achieving the representation of interior
dynamical systems via an action principle, as outlined in paper II; and
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C) The isotopic, genotopic and hyperstructural branches of hadronic me-
chanics for the operator representation of the above identified interior sys-
tems of matter, and their isoduals for antimatter, possessing progressively
increasing complexity and methodological needs, as also outlined in paper
II.

The above formulations have indeed allowed exact representations of
interior problems from unadulterated first axioms, such as an exact repre-
sentation of the binding energy and other features of the hydrogen molecule
from first principles without arbitrary functions [32], an exact representation
of the experimental data of the Bose-Einstein correlation from first princi-
ples without arbitrary parameters, and other interior problems in classical
physics, particle physics, nuclear physics, supercondiuctivity, chemistry, as-
trophysics and cosmology (see Vol. [16d] and Chapter 5 of Ref. [24] for a
review).

We are now equipped to formulate the following:

ASSUMPTION 2.3: Quantum mechanics is assumed as being exactly
valid everywhere in the exterior of the scattering region, while the covering
hadronic mechanics is assumed as being exactly valid in the interior region.

The smooth transition from the interior (hadronic mechanics) to the ex-
terior (quantum mechanics) is simply achieved via realizations of the gen-
eralzied unit of the type

Limr>1fmÎ(t, t, r, p, ψ, ...) = h̄. (2.1)

As we shall see in paper II, the above condition is quite naturally verified
by all meaningful realizations of the generalized unit.

In view of the general inequivalence of Î(t, r, p, ψ, ...) and I, the evi-
dent lack of general commutativity of Î(t, r, p, ψ, ...) and H(r, p), and other
aspects, the isoscattering theory requires a reinspection of the data elabora-
tion of experimental data achieved with the conventional scattering theory
to ascertain whether said data elaborations persist under nonlinear, nonlocal
and nonpotential internal effects, or the final numerical values themselves
need a revision.

2.5. Restrictions for Irreversibility and Antimatter. Recall that
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Figure 2: A schematic view of the main assumptions of these papers, the va-
lidity of conventional quantum mechanics everywhere in exterior conditions,
and the validity of the covering hadronic mechanics for interior conditions.

the formalism of the covering scattering theory includes that of quantum
mechanics, plus three covering formalisms of hadronic mechanics with pro-
gressively increasing complexity, and all their isoduals for antimatter. To
avoid the initiation of the study with excessive complexities, in these three
papers we shall restrict our formulations to isomathematics and isomechan-
ics, resulting in the suggested name of isoscattering theory, where the reader
should keep in mind that the prefix ”iso” indicates the preservation of the
axioms of the conventional theory, and merely the use of broader realiza-
tions.

This restriction implies that, by conception and construction, the isoscat-
tering theory does not generally represent irreversible processes, unless under
certain conditions, as we shall see, such as isounits that are Hermitean but
time noninvariant

Î(t, r, p, ψ, ...) 6= Î(−t, r, p, ψ, ...). (2.2)

In other words, we shall essentially study scattering processes in the way
they are treated by quantum mechanics, without a quantitative representa-
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tion of their irreversibility, and shall address the latter issue in a subsequent
paper based on Lie-admissible genomathematics and genomechanics [25]. In
any case, the construction of the Lie-isotopic isoscattering theory is a rec-
ommendable pre-requisite for the much broader Lie-admissible irreversible
genoscattering theory.

Additionally, the isoscattering theory of these first papers does not in-
clude antiparticles also to avoid excessive complexities at start up. This
additional restriction is due to recent advances in antimatter that have
achieved full scientific democracy between matter and antimatter at all lev-
els of study, from Newtonian mechanics to second quantization, thus ending
the scientific imbalance of the 20th century of treating antimatter at the sole
quantum or quantum field theoretical levels [33].

These advances have been stimulated by E. C. G. Stueckelberg concep-
tion of antimatter with a negative time, but the achievement of consistency
required the use of a conjugation of all physical and mathematical quan-
tities, thus leading to negative time, energy, and other physical quantities
referred to corresponding negative units, that are as causal as conventional
positive time, energy and other physical quantities referred to corresponding
positive units.

The treatment of this new setting required the construction of the new
isodual mathematics that is anti-isomorphic to conventional mathematics
in all its parts and operations. In turn, these advances have identified a
new symmetry, called isoselfduality, essentially given by invariance under
anti-Hermiticity trivially verified by the imaginary unit i = −i†, but less
trivially verified by the Dirac equation and related gamma matrices (see
Ref. [33] for details)

γµ ≡ −γ†µ, (2.3)

and other cases.
Physically, isoselfduality has emerged as representing systems of parti-

cles and their anti[particles, thus permitting a new interpretation of the
Dirac equation as providing a direct quantujm representation of an electron
and its antiparticle (the positron) without any need for the ”hole theory,”
since the the isodual theory applies at the classical, let alone purely quantum
level, where it reaches equivalence with the conventional charge conjugation
[33].
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Therefore, the inclusion of antiparticles in our study of scattering pro-
cesses requires a reinspection of the very structure of the conventional Feyn-
man’s diagrams so as to achieve a full democracy of treatment between
particles and antiparticles, thus suggesting a separate treatment to avoid
excessive complexities at start up.

It should be noted, as we shall see in paper II., that the invariance
under isoselfduality is generally violated by quantum scattering treatments
inclusive of particles and antiparticles. This occurrence alone mandates
a reinspection ab initio of scattering theories in general, let alone when
including particles and antiparticles.

In these papers, we shall use the terms ”quantum mathematics,” ”quan-
tum scattering theory,” etc. to denote aspects pertaining to quantum me-
chanics and use the terms ”hadronic mathematics,” ”hadronic scattering
theory,” etc. to denote their corresponding coverings as characterized by
hadronic mechanics.

A number of divergent terminologies exist in the literature of this pa-
per as compared to that of the quantum scattering theory. For instance,
the term ”potential” is used in the literature of hadronic mechanics as a
synonym of ”Hamiltonian” or, more technically, referring to the verification
of all integrability conditions for the existence of a Hamiltonian [30], while
systems of that class are not necessarily called ”potential” in the quantum
literature.

This is the case for the interaction term H1 = J ∗A that is generally con-
sidered as being of nonpotential character in the quantum literature, while it
verifies the conditions of variational self-adjointness (see monographs [30]),
thus being of a true potential for the hadronic literature, as confirmed in
any case by the fact that said interaction term is fully ”Hamiltonian” and
additive to the kinetic term and other potentials, e. g., H = H0 +H1.

By comparison, the terms ”nonpotential” is used in the hadronic liter-
ature to stress the impossibility of representing the novel ”nonpotential”
interactions with a Hamiltonian, technically referring to the violation of the
conditions of variational self-adjointness in the frame of the experimenter,
thus requiring new vistas.
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3. Elements of Isomathematics.
3.1. Introduction. As indicated in Sections 1 and 2, numerous as-
pects warrant the broadening of the scattering theory to incorporate non-
Hamiltonian effects, that is, effects that cannot be represented via the con-
ventional Hamiltonian. Any meaningful broadening of the conventional
scattering theory requires the existing from the class of unitary equiva-
lence of quantum mechanics. However, the ensuring nonunitary theories
are afflicted by a litany of problems known under the name of Theorems of
Catastrophic Inconsistencies of Nonunitary Theories [6-12]. Consequently,
the central objective of this section is to identify an equivalent formulation
of nonunitary theories resolving the inconsistency problems.

Following decades of research, the solution of the above problem re-
quired the construction by various authors of a new mathematics, known as
isomathgematics, originally proposed by Santilli [4] in 1978, subsequently
studied by the same author in disparate works, as well as by numerous
pure and applied mathematicians, including (in chronological order of con-
tributions) R. M. Santilli, S. Okubo, H. C. Myung, M. L. Tomber, Gr. T.
Tsagas, D. S. Sourlas, J. V. Kadeisvili, A. K. Aringazin, A. Kirhukin, R.
H. Ohemke, G. F. Wene, G. M. Benkart, J. M. Osborn, D. J. Britten, J.
Lohmus, E. Paal, L. Sorgsepp, D. B. Lin, J. V. Voujouklis, P. Broadbridge,
P. R. Chernooff, J. Sniatycku, S. Guiasu, E. Prugovecki, A. A. Sagle, C.-X.
Jiang, R. M. Falcon Ganfornina, J. Nunez Valdes, A. Davvaz, and others
(see the comprehesnive bibliography at the end of Ref. [16a]). To illustrate
the complexity of the problems to be addressed, following the original pro-
posal of 1978, initial mathematical maturity was solely achieved in memoir
[13] of 1996, thus warranting this review and specialization to the scattering
region so as to avoid possible insidious misinterpretations.

For the benefit of experimentalists we indicated that, as a result of the
above efforts, the new mathematics can be constructed via the systematic
application of axiom-preserving liftings, called isotopies, of the totality of the
mathematics of quantum mechanics, including all its operators and all its
operations, thus including the isotopic lifting of numbers, functional anal-
ysis, differential calculus, geometries, topologies, Lie theory, symmetries,
etc. [13,15,16]. As we shall see in paper II, said isotopies can be very eas-
ily constructed via the application of nonunitary transforms to the totality
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of the formalism of the conventiona;l scattering theory, thus being indeed
accessible to experimentalists.

The physical needs for isomathematics have been indicated in Sections 1
and 2, and consists in the necessity for a representation of non-Hamiltonian
scattering effects in a form that is invariant over time so as to admit the
sam,e numerical predictions under the same conditions at different times.
Following the study of all possible alternatives, the latter condition required
the representation of non-Hamiltonian scattering effects with an axiom-
preserving generalization of the trivial (positive-definite) unit of quantum
mechanics h̄ = 1 into the most general possible (positive-definite as a con-
dition to characterize an isotopy), integro-differential operator Î. Since the
unit is the fundamental (left and right) invariant of any theory, whether con-
ventional or generalized, the representation of non-Hamiltonian effects via
the isounit has indeed achieved the desired time invariant representation.

However, the assumption of a generalized unit has requested the com-
patible reconstruction of the entire mathematics used in quantum mechan-
ics with no exception known to the authors. In fact, the sole elaboration
of the isoscattering theory, e.g., with conventional trigonometric functions,
activates the Theorems of Catastrophic Inconsistencies because it would
be the same as elaborating the conventional scattering theory, e.g., with
isotrigonometric functions.

Since no formulation of isomathematics specialized intended for scatter-
ing problems has been presented to date, it is important to outline it in
this first paper for minimal self-sufficiency of the presentation, as well as
to minimize possible insidious misinterpretations that may be caused by
insufficient technical knowledge of the field. In this section we shall outline
the rudiments of isomathematics for a positive-definite but otherwise arbi-
trary isounit Î and show the resolution of the inconsistency problem under
isotopies.

We should also indicate the distinction between deformations and iso-
topies. The former are alterations of conventional quantum formulations
defined over conventional fields, thus being catastrophically inconsistent on
mathematical and physical grounds (see Refs. [6-11] for brevity), while
the latter can be characterized as deformations defined over isofields, thus
avoiding the inconsistency theorems.
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Note that isofields were introduced in 1993 [12]. Consequently, the con-
temporary formulation of deformations coincide with previously proposed
isotopies, as it is the case for the isotopies of the Lorentz symmetry first
proposed by Santilli in 1983 [34], at that time, over conventional fields, and
subsequently reintroduced identically, even in the symbols and terms, as
deformations, unfortunately, without the quotation of the original deriva-
tion [34]. Similar occurrence hold for other deformations 9see Ref. [15a] for
brevity).

In these papers, conventional terms, such as numbers, spaces, etc. are
referred to conventional notions of quantum mathematics. The correspond-
ing notions of hadronic mathematics are indicated isonumbers, isospaces,
etc. We regret a perhaps excessive use of the prefix ”iso,” but it appears
recommendable in a first presentation of applied mathematics to prevent
insidious inconsistencies.

Within the context of pure mathematics, we shall show that both the
conventional and the isotopic mathematics can be presented with the same
symbols and operations, since they coincide at the abstract level by concep-
tion and construction. However, the latter formulation requires, in any case,
an in depth knowledge of the isotopic realization of conventional abstract
axioms, thus warranting again the use of the prefix ”iso” in this first presen-
tation, with the understanding that pure mathematicians may subsequently
achieve the necessary mathematical rigor.

It is at times indicated that, due to the above abstract identity, isomath-
ematics is trivial, a view perhaps correct. but only following its discovery.
However, the implications solely permitted by isomathematics. such as the
extension of Lie’s theory, the Lorentz-Poincaré symmetry and Einstein’s ax-
ioms for the treatment of nonlinear, nonlocal and non-Hamiltonian systems,
are far from being trivial.

3.2. Isounits, Isoproducts and Isofields. As indicated earlier, isomath-
ematics is based on the following isotopic, thus axiom-preserving lifting
of the trivial unit into the most general possible positive-definite integro-
differential operator

h̄ = 1 > 0→ Î(t, r, p, E, ξ, ω, ψ, ∂ψ, ...) = 1/T̂ (t, r, p, E, ξ, ω, ψ, ∂ψ, ...) > 0.
(3.1)
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first introduced in 1978 [4,5] and known as Santilli isounit, while T̂ is known
as the isotopic element. We shall use the notation T when the isotopic
element is projected on quantum spaces, but keep the notation Î to avoid
confusion with I.

The isotopic lifting of the (multiplicative) unit evidently requires a cor-
responding compatible lifting of all multiplications between arbitrary quan-
tities A, B, from the simple associative form used in quantum mechanics,
herein denoted AB = A×B, to the new form first introduced by Santilli in
Ref. [4] of 1978

AB = A×B → A×̂B = A× T ×B, (3.2)

which is also isotopic, because verifying the associativity law of the original
product. It is easy to see that, under lifting (3.2), Î is indeed the correct
left and right unit of the theory, Î×̂Â = A×̂Î = A for all elements A of the
set considered.

Fundamental assumptions (3.1) and (3.2) have permitted the isotopic
lifting of numerical fields F (a,×, I), such as the field of real numbersR(n,×, I),
complex numbers C(c,×, I) and quaternions Q(q,×, I) into the Santilli
isofields F̂ (â, ×̂, Î) [12], consisting of the original numbers a = n, c, q lifted
into the form of Santilli isonumbers n̂ = n× Î equipped with isounit (3.1)
and isoproduct (3.2), n̂1×̂n̂2 = (n1 × n2) × Î, as well as with the con-
ventional sum n̂1+̂n̂2 = n̂1 + n̂2 and related conventional additive unit 0,
n̂+ 0̂ = 0̂ + n̂ = n̂, i.e., 0̂ = 0× Î ≡ 0.

To avoid inconsistencies, it should be stressed that all operations with
numbers have to be lifted in an isotopic form we cannot possibly review here
(see [15]). We merely mention for use in the isoscattering theory the isodivi-

sion given by /̂ = /× Î so that we have simplifications in isomultiplications

of the type (a/̂b)×̂(c/̂d) = [(a/b)× (c/d)× Î.
Also, and very importantly, conventional numbers expressing numerical

values of physical quantities such as coordinates r., momenta p, energy E,
etc. have no meaning for isomathematics and must be lifted into the isotopic
form r̂ = r × Î , p̂ = p × Î , Ê = E × Î, etc. as a necessary condition to be
elements of a Santilli isofield, that is, to be isoscalars.

Readers should, however, be reassured that conventional numbers, as
needed for experiments, are indeed recovered by the isoscattering theo-
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ries.As an example, the (right, modular, associative) eigenvalue expression
E×|ψ > becomes for isomathematics Ê×̂|ψ̂ > that can be simplified in the
form E × Î × T̂ × |ψ̂ >= E × |ψ̂ >, thus recovering the conventional real
number E needed for measurements.

It should be indicated that isofields are isomorphic to ordinary fields, by
conception and construction, a property necessary for the consistent appli-
cation of the isoscattering theory to experimental measurements. In fact,
Santilli merely provided in Ref. [12] a broader realization of the conven-
tional field axioms. The nontriviality of the realization is indicated by the
fact that the isounit of a Santilli isofield F̂ (â, ×̂, Î) is generally outside the
original field F (a,×, I). In this case, F̂ (â, ×̂, Î) are called isofields of the
first type. When Î ∈ F , we have isofields of the second type.

Despite the simplicity of the isonumber theory, readers should be warned
against predictable perceptions of triviality because, for instance, under the
assumption of the isounit Î == 3, thus dealing with isofields of the second
type, we have ”2× 3”= 18 and the number 4 becomes a prime number.

For in depth knowledge of Santilli isofield theory and its intriguing im-
plications, interested readers are suggested to study the original paper [12],
Ref. [15a] and Jiang’s monograph [22].

3.3. Isofunctional Analysis. Any elaboration of the isoscattering theory
with conventional functions, such as sine, cosine, exponential, etc. leads to
inconsistencies [6-11,15]. Even though not clearly indicated in the mathe-
matical literature, all functions crucially depend on the assumed basic unit
and multiplication. Therefore, liftings (3.1) and (3.2) have required the la-
borious reconstruction of functional analysis into a form compatible with
the basic axioms of isomathematics.

Studies on the isofunctional analysis were initiated by Santilli [4] and
continued by Myung and Santilli [26], Kadeisvili [21], Nishioka [27] Aringazin
[29] and others (see the general bibliography of Ref. [16a] for a compre-
hensive listing). A presentation of isofunctional analysis sufficient for the
isoscattering theory is available in monograph [15a]. For completeness we
recall the following notions:

3.3.1) Isopowers,

ân̂ = â×̂â×̂...â = (an)× Î , (3.3)
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for which Î n̂ = Î;
3.3.2) Isoexponentiation,

êa = Î + a/̂1̂! + a×̂a/̂2̂! + ... = (ea×T )× Î = Î × (eT×a), (3.4)

where one should note the emergence of the integro-differential quantity T
in the exponent;

3.3.3) Isologarithm,
ˆlogêâ = Î × logêa, (3.5)

which expression is indeed the inverse of the isoexponentiation, as one can
verify, as well as yields a correct isonumber for result;

3.3.4) Isotrigonometric functions (for isosphericval coordinates see later
on Section 3.8),

ˆsinθ̂ = Tθ × sin(θ × Îθ), (3.6a)

ˆcosφ̂ = Tφ × cos(φ× Îφ, (3.6b)

where evidently the isounits for angles are generally different than those for
space.

Note that the use of conventional angles would have no sense for the
isoscattering theory because all numbers must be isonumbers for consis-
tency. We shall identify later on specific realizations of the various isounits.

A rather intriguing and unexpected feature of isotopies is that of pre-
serving on isospaces over isofields the numerical values of the quantities
prior to lifting. This feature has been crucial for the reconstruction of the
exact light cone and special relativity on isospace over isofield when light
becomes a local variables, thus requiring in conventional spaces deformed
light cones.

According to this feature, the isoscattering theory is expected to preserve
the numerical value of the angles θ and φ as measured in experiments.
However, the preservation is for the new isoangles θ̂ and φ̂. Consequently,
the correct identification is

θ = θ̂ = θ′ × Îθ, φ = φ̂ = φ′ × Îφ. (3.7)

The above rules indicate the expected differences in the elaboration of
experiments via the scattering and isoscattering theories.
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3.3.5) Isomatrices, given by conventional matrices whose elements are
isoscalars, such as for the diagonal case

M̂ = Diag.(â1, â2, ..., ân), (3.8)

where âk = ak × Î;
3.3.6) Isodeterminant,

D̂etM̂ = [Det(M̂ × T̂ )× Î , (3.9)

where one should note that M̂ × T̂ is an ordinary matrix. Hence, the value
of the isodeterminant is indeed an isonumber.

3.3.7) Isotrace,
T̂ rM̂ = Tr(M̂ × T̂ )× Î , (3.10)

etc. It should be stressed that the above elements of isofunctional analysis
are merely introductory and a study of at least Chapter 6 of monograph
[15a] is necessary for a serious knowledge of the isoscattering theory.

3.4. Isodifferential Calculus. It was believed for centuries that the
differential calculus is independent of the assumed basic unit, since the
latter was traditionally given by the trivial number 1.

Santilli [13] has disproved this belief by showing that the differential
calculus can be dependent on the assumed unit, by formulating the isodif-
ferential calculus with basic isodifferential, for instance, of an isocoordinate
r̂

d̂r̂ = d̂[r × Î(r, ...)] = T̂ × d[r × Î(r, ...)], (3.11)

that does indeed coincide with the conventional differential for all isounits
independent from r, d̂r̂ ≡ dr, while yielding structural differences for all
cases relevant for the isoscattering theory, namely, when the isounit depends
on the local coordinates. In the latter case we have

d̂r̂ = T × d[r × Î(r, ...)] = dr + r × T × dÎ(r, ...). (3.12)

The compatible formulation of the isoderivative is then given by

∂̂

∂̂r̂
= Î × ∂

∂r̂
. (3.13)
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The isointegral is defined as the inverse of the isodifferential and can be
written for simplicity∫̂

d̂r̂ =
∫
dr̂,

∫̂
d̂r̂×̂f̂(r̂) =

∫
dr̂ × f(r̂), (3.14)

where we have used the isofunction f̂(r̂() = Î × f(r̂).
Note that, as formulated above for simplicity, isodifferentiation and

isointegration yield ordinary scalars and not isoscalars, a feature assumed
later on in Section 2.3 of paper II to reach a formulation accessible to ex-
perimentalists.

It should be indicated that the use of the conventional differential cal-
culus leads to catastrophic mathematical and [physical inconsistencies par-
ticularly in the dynamical equations [6-11], thus mandating the use of the
covering isodifferential calculus. Consequently, the sole functional differ-
ences between the conventional and isodifferential calculus are sufficient to
warrant a reinspection of the quantum scattering theory.

As an illustration, the realizations of the isounit of primary physical
relevance are based on exponentials, e.g., Î = M̂×̂exp[f(r, ...)], where M̂
is a matrix or operator not dependent on r. In this case, the isounit and
the isotopic element disappear from the projection of the isodifferential in
our space. This results in significant deviations between conventional and
isotopic differentials, e.g., dr 6= d̂r̂ = dr×(1+r×∂f∂r) thus providing addi-
tional expectations of possible numerical differences in the final elaboration
of the same experiment with the conventional and the isotopic scattering
theory.

3.5 Iso-Hilbert Spaces. The fundamental representation space of hadronic
mechanics is a new realization of the abstract axioms of the conventional
Hilbert space H over the field of complex numbers C, first proposed by San-
tilli [5] in 1978, then studied by Myung and Santilli [26] and other authors
(see the review in Ref. [15a] and quoted references), today known as iso-
Hilbert spacve or Hilbert-Myung-Santilli isospaces, and denoted Ĥ over the
isofield Ĉ. The new space is characterized by isostates |ψ̂ > with isoinner
product, and related isonormalization,

< ψ̂|×̂|ψ̂ > ×Î =< ψ̂| × T̂ × |ψ̂ > ×Î ε Ĉ, (3.15a)
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< ψ̂|×̂|ψ̂ > ×Î = Î , (3.15b)

isoexpectation values of an iso-Hermitean operator Q̂ = Q̂†̂

< ψ̂|×̂Q̂×̂|ψ̂ > ×Î =< ψ̂| × T ×Q× T × |ψ̂ > ×Î , (3.16)

isounit under isonormalization (3.16)

< ψ̂|×̂Î×̂|ψ̂ > ×Î =< ψ̂| × T̂ × T̂−1 × |ψ̂ > ×Î = Î , (3.17a)

Î×̂|ψ̂ >≡ |ψ̂ >; (3.17b)

isoeigenvalue equation for iso-Hermitean operators

Ĥ×̂|ψ̂ >= H × T × |ψ̂ >= Ê×̂|ψ̂ >= E × |ψ̂ >, Ê ∈ R̂, E ∈ R; (3.18)

and additional properties we cannot possibly review here. We limit ourselves
to quote the following main properties (see Ref. [15a] for details):

3.5.1) Hilbert-Santilli isospaces are isomorphic to conventional Hilbert
spaces by conception and construction, as illustrated by the fact that the
isoinner product (3.15) is still inner from the positive-definite character of
the isounit. This property is crucial to ensure the covering character of
hadronic over quantum mechanics, as well as the existence of a unique and
unambiguous interconnecting maps indicated below.

3.5.2) Operators that are Hermitean on H over C are also iso-Hermitean,
namely, they remain hermitean under lifting to the Hilbert-Santilli isospace
over the isofield of isocomplex numbers, and we shall often write Q̂ = Q̂†̂ =
Q̂†. Therefore, all quantities that are observable for quantum mechanics
remain observable for hadronic mechanics, although the opposite is not
generally true because of the existence of Hermitean operators representing
irreversible process that are well defined for hadronic mechanics but cannot
be even formulated for quantum mechanics due to its simpler structure.

3.5.3) The conventional Hilbert space admits a new symmetry discovered
by Santilli [13,14] called isoscalar symmetry, given by a rescaling of the unit
under which the conventional inner product is invariant,

< ψ| × |ψ > ×I ≡

≡ < ψ| × w−1 × |ψ > ×(w × I) =< ψ|×̂|ψ > ×Î , w ε C. (3.19)
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Evidently, the property persists for the Hilbert-Santilli isospace and we
have

< ψ̂|×̂|ψ̂ > ×Î =< ψ̂| × T × |ψ̂ > ×Î ≡

≡< ψ̂| × (w−1 × T )× |ψ̂ > ×(w × Î) =< ψ̂| × T ′ × |ψ̂ > ×Î ′. (3.20)

The lack of discovery of symmetry (3.19) for over one century should
not be surprising, because the new symmetry required the prior discovery
of new numbers, those with arbitrary units [12]. In fact, isosymmetry (3.19)
requires the reformulation of numbers as isonumbers n̂ = n× 1.

Despite its apparent triviality, the discovery of isosymmetry (3.19) has
permitted the achievement of a new grand unification of gravitational and
electroweak interactions essentially based on the embedding of gravitation
where nobody looked for, in the unit of electroweak theories. The new
grand unification includes the first known axiomatically correct inclusion of
antimatter in grand unified theories also nobody cared for since gravitation
on a Riemannian space cannot represent neutral antimatter. gthis suggests
the use of the isodual theory of antimatter to achieve a grand unifications
with a degree of democracy between matter and antimatter (see papers [44-
46] for original words and monograph [33] for comprehensive treatment).

3.6. Isolinearity, Isolocality and Isounitarity. We are now equipped
to introduce the following important:

DEFINITION 5.6.1: ISOLINEARITY.
Operators that are nonlinear onH over C (that is, nonlinear in the wavefunc-
tion) can be identically rewritten in a form that is linear on Ĥ over Ĉ, a prop-
erty called isolinearity. The reformulation is simply done by embedding all
nonlinear terms in the isounit, In fact. hadronic mechanics was proposed [5]
to reformulate complex nonlinear models, e.g., H(r, p, ψ)×|ψ >= E×|ψ >,
into an identical isolinear form Ho(r, p)×T (r, p, ψ)×|ψ >= E×|ψ >, H =
Ho × T . Despite its simplicity, the reformulation is not trivial because
the conventional nonlinear formulation generally violates the superposition
principle, thus being generally inapplicable to composite systems, while the
isotopic formulation verifies the superposition principle on isospace over
isofield, thus allowing consistent studies of nonlinear composite systems.
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DEFINITION 5.6.2: ISOLOCALITY.
Operators that are nonlocal on H over C, e.g., of nonlocal-integral type, can
be identically reformulated in a form on Ĥ over Ĉ that is local-differential
everywhere except at the isounit, a property known as isolocality. Again, the
reformulation is done via the embedding of all nonlocal terms in the isounit.
It should be noted that the technical understanding of isolocality requires
a technical knowledge of the isotopology of hadronic mechanics initiated by
the mathematicians Gr. Tsagas and D. S. Sourlas [34] (see also monograph
[19]) and completed by the mathematicians M. Falcon Ganfornina and J.
Nunez Valdes [35] (see also monograph [23]).

DEFINITION 5.6.3: ISOUNITARITY.
All operators U that are nonunitary on H over C can be identically re-
formulated in a form verifying unitarity on Ĥ over Ĉ, a property called
isounitarity. The reformulation is done via the simple identity

U × U † 6= I, U = Û × T̂ 1/2, (3.21)

under which we have the isounitarity law

Û×̂Û † = Û †×̂Û = Î . (3.22)

This is the property indicated in Section 1 that assures nonunitary S-
matrices to preserve probabilities under the condition that the matrices
are not treated via the mathematics of quantum mechanics.

3.7. Resolution of the Inconsistency Theorems. We are now suf-
ficiently equipped to show the resolution of the Theorems of catastrophic
Inconsistencies of Nonunitary Theories [6-11]:

INVARIANCE OF THE BASIC UNIT.
The units of the conventional scattering theory characterize a geometriza-
tion of basic unfits of measurements. For instance, the unit of the three-
dimensional Euclidean space is a geometrization of the units of length along
each axis, e.g., I = Diag(1cm, 1cm, 1cm). When expressed in dimensionless
form, the unit acquires the familiar version I = Diag.(1, 1, 1). All quantum
units are invariant under unitary time evolution, I → U × I ×U † ≡ I, thus
confirming the majestic axiomatic consistency of quantum mechanics.
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However, these units are no longer invariant under nonunitary time evo-
lutions U × U † 6= I because, in this case, we can have maps of the type
I → U × I × U † = Diag.(231cm, 1.36cm, 0.3cm) 6= I. This illustrates a
first inconsistency of nonunitary scattering theories, the lack of preserva-
tion over time of the basic units of measurements, with consequential lack
of consistent applicability of nonunitary theories to experiments.

A central features of the isoscattering theory is the invariance of the
isounits Î under the isounitary time evolution of the theory. In fact, under
isounitarity law (22) we have, for instance, the invariance Î = Diag.(231cm,-
1.36cm, 0.3cm) → Û×̂Î×̂Û † ≡ Î, thus resolving the first inconsistency of
nonunitary theories

INVARIANCE OF OBSERVABLES.
Another central property of quantum mechanics is that, when a quantity is
observable at a given time, it remains observable at all subsequent times.
This feature is verified by the preservation of Hermiticity under unitary time
evolutions and provides another illustration of the majestic consistency of
quantum mechanics.

When the time evolution is no longer unitary, Hermiticity is not neces-
sarily preserved over time (this is the Lopez lemma [6] indicated in Section
1). In fact, the transformed eigenvalue equation for an operator H that is
Hermitean at the initial time to under nonunitary transforms U = U(t) is
given by H×|ψ >→ (U ×H×U †)× (U ×U †)−1× (U ×|ψ > ×U †). Conse-
quently, the initial Hermiticity of H is not necessarily preserved over time
due to the lack of general commutativity of U ×H × U † and (U × U †)−1.

It is an instructive exercise for the reader interested in acquiring a knowl-
edge of the isoscattering theory to prove that iso-Hermiticity is indeed pre-
served under isounitary transformations [6,12].

INVARIANCE OF NUMERICAL PREDICTIONS.
Yet another important feature of the axiomatic consistency of quantum
mechanics is that, if a Hermitean operator H has the eigenvalue E (e.g.,
E = 5MeV ) at the initial time, H × |ψ >= E × |ψ >, said eigenvalue is
preserved at all times, as shown by the transformation (U ×H×U †)× (U ×
|ψ > ×U †) = H ′ × |ψ′ >= U × (E × |ψ > ×U |dag = E × |ψ′ >.

Under nonunitary time evolutions, the eigenvalue at the initial time of
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a Hermitean operator is not necessarily preserved at subsequent times, as
shown by the transformation (U×H×U †)×(U×U †)−1×(U×|ψ > ×U †) =
H ′ × T × |ψ′ >= U × (E ′ × |ψ > ×Udag) = E ′ × |ψ′ >, T = (U × U †)−1,
where the lack of preservation of the eigenvalue, E ′ 6= E, follows from the
fact that |ψ′ > is now the eigenstate of the new operator H ′ × T . It is an
instructive exercise for interested readers to verify that isoeigenvalues are
indeed preserved under isounitary time evolutions. The resolution of the
remaining inconsistencies then follows [16a,16c].

The property important for the isoscattering theory is that eigenvalues
of Hermitean operators are numerically altered under nonunitary-isounitary
lifting. This occurrence suggests, alone, a reinspection of the conventional
scattering theory because the possible presence of nonunitary effects in deep
inelastic scattering could imply numerical results different than those cur-
rently assumed.

3.8. Delta Isofunction. As well known, Dirac’s delta function, here
expressed for the case of a one-dimensional coordinate r,

δ(r − r0) =
1

2π
×

∫ +∞

−∞
ei×k×(r−ro) × dk, (3.23)

is divergent at r = r0, by therefore constituting the origin of divergences in
quantum scattering theories [1].

In view of the above, Myung and Santilli [26] introduced in 1982 the
isotopic lifting of Dirac’s delta function, today known as the Dirac-Myung-
Santilli delta isofunction, or DMS isodelta for brevity (see, e.g., Nishioka
[27]) that, by using the notions of isointegral (3.14), and isoexponentiation
(3.4), can be written

δ̂(r − r0) =
Î

2π
×̂
∫̂ +∞

−∞
êi×k×(r−r0)×̂d̂k,= 1

2π
×

∫ +∞

−∞
ei×k×T×(r−ro) × dk,

(3.24a)
T = Σn

k=1ck × (r − r0)k, ck ∈ C. (3.24b)

where we write the isotopic element T without a ”hat” to denote its for-
mulation on conventional spaces, and example (3.24b) an illustration of the
possible rremoval of the singularity at r0. We then have the evident property

δ̂(r − r0) = δ[T × (r − r0)]. (3.25)
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Figure 3: A schematic view in the left of the conventional delta function
δ(r−r0) illustrating its divergent character at r0, and a schematic view in the
right of the Dirac-Myung-Santilli isodelta function of hadronic mechanics
δ̂(r − r0) = δ[T (r − r0)], illustrating the absence of the above divergency, a
feature allowing the removal of divergencies in the isoscattering theory from
primitive axioms.

As illustrated in Figure 2, under the appropriate realization of the isotopic
element T , the DMS isodelta eliminates the divergent character of the delta
function, thus setting up the foundations for a new scattering theory without
divergencies ab initio, which is a main objective of this paper.

Note that for (3+1)-dimensional spaces each coordinate is multiplied by
its isotopic element (see next section). For numerous additional properties,
e.g., the derivation of the isodelta via isotransforms, the reader is encouraged
to study monograph [xx]. Section 6.4.

3.9. Isospherical Isocoordinates. An additional mathematical notion
needed for the elaboration of the isoscattering theory is given by the iso-
spherical coordinates [15] here considered for in the Euclid-Santilli isospace
with isounit

Î = Diag.(/b21, 1/b
2
2, 1/b

2
3) = 1/T > 0, (3.26)

isometric
δ̂ = T × δ = Diag.(b21, b

2
2, b

2
3), (3.27)
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and isoinvariant
r̂2̂ = x2 × b21 + y2 × b22 + z2 × b23. (3.28)

Under the assumption of the conventional orientation of the angles θ, φ
with respect to the z-axis, we have the isounits

Îθ = b3, Îφ = b1 × b2, (3.29)

and the projection of the isocoordinates on the conventional Euclidean space

x = r × b−11 × sin(θ × b3)× cos(φ× b1 × b2), (3.30)

y = r × b−12 × sin(θ × b3)× sin(ψ × b1 × b2), (3.31)

z = r × b−13 × cos(θ × b3). (3.32)

Understanding of the isoscattering theory requires the knowledge that
Eq. (3.28) represents an ellipsoid only when considered on the Euclidean
space with respect to the trivial unit 1, because the same invariant repre-
sents the perfect sphere in Euclid-Santilli isospace over isofield called iso-
sphere. This is due to the fact that the k-axis is mutated by the quantity
1 → b2k, but the corresponding unit is mutated by the inverse amount
1→ b−2k , thus preserving the perfect sphericity.

Similarly, the rotational symmetry has been popularly believed in the
20th century as being broken for ellipsoid (3.41), while in reality such a
breaking is due to insufficient treatment since the rotational symmetry is
reconstructed as exact on Euclid-Santilli isospaces, as shown by the perfect
sphericity of the isosphere.

4. Concluding Remarks
In this paper, we have suggested the re-inspection of the conventional,
potential, unitary scattering theory of relativistic quantum mechanics on
grounds of the following aspects:

1) The apparent inapplicability (rather than violation) of the Lorentz-
Poincaré symmetry and special relativity within physical media at large, and
within the scattering region in particular, due to: difficulties for a consistent
formulation of their axioms (impossibility of introducing inertial systems
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within a medium, the sole existence of the privileged reference frame at rest
with the medium, difficulties in the verification of all axioms within a trans-
parent medfium, and others); deviations predicted in the repetition within
physical media of the historical experimental verifications of special relativ-
ity in vacuum (repetition of Fizeau experiment entirely within water, and
others); difficulties in reaching a numerical (rather than solely conceptual)
representation of all data for all frequencies in the entire reduction to pho-
tons of electromagnetic waves propagating within physical media (inability
to reach a numerical representation of the angle of refraction and the index
of refraction; impossibility for a large number of photons to pass through
a large number of nuclei as needed to maintain the main nonscattered part
of e light beam along a straight ;line; difficulties in reducing to photons
electromagnetic waves with one meter wavelength propagating within phys-
ical media; impossibility of representing with photons traveling in vacuum
seemingly unavoidable superluminal causal speeds within physical media;
etc.); and other insufficiencies;

2) Impossibility of reducing to photons traveling in vacuum the elec-
tromagnetic phenomena within the scattering region due to its hyperdense
character, thus implying the locally varying speed C = c/n, suggesting a
return to the Maxwellian interpretation of light and photon wavepackets as
transversal electromagnetic waves propagating in the ether as a universal
substratum without conflict with special relativity in vacuum (due to our
impossibility of identifying a privileged system at rest with the ether), and
consequential relevance of the Lorentz problem, namely. the achievement of
the universal symmetry for all locally varying speeds of light C = c/n;

3) The strict reversibility over time of the Lorentz-Poincaré symmetry
and special relativity compared to the strict irreversibility over time of high
energy inelastic scattering processes, with ensuing difficulties for rigorous
verifications of causality and other laws, and the need for covering theories
as irreversible as the scattering process being represented;

4) The need advocated by Heisenberg for a covering of quantum mechan-
ics which is nonlinear in the wavefunction and other quantities due to the
expected nonlinearity of high energy scattering processes, compared to the
linear character of quantum mechanics, the breaking of the superposition
principle for Hamiltonians dependent on wavefunctions and consequential
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inapplicability of nonlinear quantum models to composite scattering pro-
cesses;

5) Einstein-Podolsky-Rosen historical doubts on the final character of
quantum mechanics; Dirac’s call for a reformulation of the scattering theory
that is convergent ab initio so as to avoid the achievement of numerical re-
sults in high energy scattering experiments via ad hoc procedures to achieve
mathematical convergence of unknown physical origin or content; and other
authoritative doubts;

6) The No Reduction Theorems preventing a consistent reduction of
macroscopic irreversible systems to a finite set of particles all in nice con-
servative conditions, with consequential impossibility of reducing highly ir-
reversible scattering processes to point-like quantum particles verifying the
rotational and Lorentz symmetries, thus identifying the origin of irreversibil-
ity in the total mutual penetrations of the wave[packets and/or charge dis-
tributions of particles in the scattering region, essentially as occurring for
macroscopic irreversible systems (such as a spaceship during reentry in at-
mosphere);

7) The unavoidable non-Hamiltonian and, therefore, nonunitary char-
acter of the contact effects due to total mutual penetration of extended
wavepackets and/or charge distributions of particles in the scattering re-
gion, with consequential exiting from the class of unitary equivalence of
quantum mechanics;

8) The numerical alteration of the eigenvalues of scattering operators
under non-Hamiltonian, thus nonunitary internal effects, with consequential
possible lack of final characer of the data elaboration of measured quantities
(cross sections, scattering angles, etc.) via unitary scattering theory;

9) The recent discovery of the invariance of particle-antiparticle sys-
tems under the new symmetry called isoselfduality (invariance under anti-
Hermiticity) that is verified by the Dirac equation, resulting in its direct
representation of an electron and a positron without need for the ”hole
theory,” said new invariance not being generally verified by the scattering
amplitude for particle-antiparticle processes;
and other aspects all concurring in a return to the old need for a nonunitary
covering of the conventional unitary scattering theory.

In this paper, we have then recalled the Theorems of Catastrophic Math-
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ematical and Physical Inconsistencies of Noncanonical and Nonunitary The-
ories, implying the lack of invariance over time of the units of measurements,
the lack of conservation over time of observable, the general inability to pre-
dict the same numerical results under the same conditions at different times,
and others serious insufficiencies.

In order to avoid excessive complexities at start up, in this and the
following papers we have restricted our analysis to reversible scattering pro-
cesses without antiparticles. We have then, apparently for the first time,
specialized to the scattering region the new mathematics known as isomath-
ematics, that has been specifically built over decades of efforts by various
authors to bypass said inconsistency theorems; we have outlined their reso-
lution; and restricted the study to a time reversal invariant formulation of
the nonunitary scattering theory without antiparticles under the name of
isoscattering theory.

In this paper, we have also indicated the possibility that, in the final
analysis, the elaboration via the scattering and isoscattering theories of the
same measured data may lead to the same numerical results. This possibility
should not be excluded due to the indicated preservation under isotopies
of both Einsteinian and quantum axioms and, in case confirmed, would be
quite valuable because it would confirm the broadening of their applicability
under nonlinear, nonlocal and nonunitary internal effects.

However, even under the assumption that the data elaboration of past
experiments are the same for the conventional; and the isotopic scattering
theories, the latter is expected to admit the representation of events pre-
cluded to the former, such as the synthesis of neutrons from protons and
electrons as occurring in stars, or the synthesis of hadrons at large from
lighter particles that, as we shall see in Paper IV of this series, can best
be treated via a nonunitary-isounitary theory due to the need for a nega-
tive binding energy under which the Schrödinger equation no longer admits
physically meaningful solutions [36].

Above all, the reader is suggested to keep in mind that the ultimate
aim of all studies herein considered is the conception, quantitative treat-
ment and experimental verification of much needed new clean energies, such
as the novel Intermediate Controlled Nuclear Fusions (ICNF) [37], due to
their strictly irreversible, as well as nonlinear, nonlocal and non-Hamiltonian
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character.
The proof of the convergence from primitive axioms without ad hoc ma-

nipulations, the comparison of the data elaboration of measured quantities
via the scattering and isoscattering theory is done in subsequent papers.
Similarly, the inclusion of antiparticles and the extension to irreversible
scattering processes requires additional new mathematics (known as isod-
ual mathematics and Lie-admissible genomathematics, respectively), thus
requiring separate studies.
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[20] J. Lôhmus, E. Paal, and L. Sorgsepp, Nonassociative Algebras in
Physics (Hadronic Press, Palm Harbor, 1994), available as free down-
load from
http://www.santilli-foundation.org/docs/Lohmus.pdf

[21] J. V. Kadeisvili, Santilli’s Isotopies of Contemporary Algebras, Ge-
ometries and Relativities, Ukraine Academy of Sciences, Second edi-
tion (1997), available as free download from
http://www.santilli-foundation.org/docs/Santilli-60.pdf

[22] Chun-Xuan Jiang, Foundations of Santilli Isonumber Theory, Inter-
national Academic Press (2001), available as free download from
http://www.i-b-r.org/docs/jiang.pdf

[23] Raul M. Falcon Ganfornina and Juan Nunez Valdes, Fundamentos
de la Isoteoria de Lie-Santilli, International Academic Press (2001),
available as free downlaod from
http://www.i-b-r.org/docs/spanish.pdf

[24] A. O. E. Animalu, M. Cloonan and D. Gandzha, New Sciences for a
New Era” Mathematical, Physical and Chemical Discoveries of Rug-
gero Maria Santilli, in preparation, preli,kinary versionm available in
the website
http://www.santilli-foundation.org/santilli-scientific-discoveries.html



44

[25] R. M. Santilli, ”Lie-admissible invariant representation of irreversibil-
ity for matter and antimatter at the classical and operator levels,”
Nuovo Cimento B 121, 443 (2006), available as free downlload from
http://www.i-b-r.org/Lie-admiss-NCB-I.pdf

[26] H. C. Myung and R. M. Santilli, Hadronic Journal Vol. 5, pages 1277-
1366 (1982). available as free download from
http://www.santilli-foundation.org/docs/Santilli-201.pdf

[27] M. Nishioka, Lettere Nuovo Cimento Vol. 39, pages 369-372 (1984),
available as free download from
http://www.santilli-foundation.org/docs/Santilli-202.pdf

[28] R. Mignani, Nuovo Cimento 39, 406 (1984).

[29] A. K. Aringazin, D. A. Kirukhin, and R. M. Santilli, Nonpotential
elastic scattering of spinning particles,” Hadronic J. 18, 257 (1995),
available as free download from
http://www.santilli-foundation.org/docs/Santilli-502.pdf

[30] R. M. Santilli, Foundation of Theoretical Mechanics, Volume I (1978)
[30a], and Volume II (1982) [30b], Springer-Verlag, Heidelberg, Ger-
many, available as free download from
http://www.santilli-foundation.org/docs/Santilli-209.pdf
http://www.santilli-foundation.org/docs/santilli-69.pdf

[31] R. M. Santilli, ”Experimental verifications of isoredshift with possi-
ble absence of universe expansion, big bang, dark matter and dark
energy,” The Open Astronomy Journal 4, 1 (2010), available as free
download from
http://www.santilli-foundation.org/docs/Santilli-isoredshift.pdf

[32] R. M. Santilli, Foundations of Hadronic Chemistry, with Applications
to New Clean Energies and Fuels, Kluwer Academic Publishers (2001),
available as free download from
http://www.santilli-foundation.org/docs/Santilli-113.pdf



45

[33] R. M. Santilli, Isodual Theory of Antimatter with Applications to Anti-
gravity, Grand Unifications and Cosmology, Springer (2006).

[34] Gr. T. Tsagas and D. S. Sourlas, Algebras, Groups and Geometries
12, 1-65 and 67-88 (1995). available from the link
http://www.santilli-foundation.org/docs/Santilli-324.pdf

[35] Raul M. Falcon Ganfornina and Juan Nunez Valdes, Algebras, Groups
and Geometrioes 20, 1 (2003), available from the link
http://www.santilli-foundation.org/docs/isotopologia.pdf

[36] J. V. Kadeisvili, ”The Rutherford-Santilli neutron,” Hadronic J. 31,
1, (2008), available in free pdf download from
http://www.i-b-r.org/Rutherford-Santilli-II.pdf also available in html
version in the website http://www.i-b-r.org/Rutherford-Santilli-
neutron.htm

[37] R. M. Santilli, “Experimental confirmation of the novel ‘Intermedi-
ate Controlled Nuclear Fusion’ without harmful radiations,” New Ad-
vances in Physics, in press (2010), available from
http://www.santilli-foundation.org/docs/ICNF.pdf


