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Abstract

The objects of modern iso–Geometry, iso-spaces, like all objects of mod-

ern iso-Mathematics, are sets of elements of arbitrary nature endowed with

some mathematical iso-structure, for example, iso-symmetry etc.

The typical way to think about iso-symmetry is with the concept of a

“iso-group”. But to get a concept of iso-symmetry that’s really up to the de-

mands put on it by modern iso-Mathematics, we need — at the very least —

to work with a “category” of iso-symmetries, rather than a iso-group of iso-

symmetries. In this article we construct Santilli isofunctor for mathematical

iso-structures. The compositions of morphisms between Santilli isofunctors

are built in terms of diagrams and equations. There are obtained categories

of iso-groups, iso-rings, iso-fields, vector iso-spaces, iso-algebras, etc.

∗This research has been partially supported by the R. M. Santilli Foundation.
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1 Santilli iso-functor

The most important mathematical iso-structures are geometric, algebraic

and topological ones [1–5].

Santilli’s central idea [6,7] is the generalization of the fundamental unit

of the number theory, from its trivial n-dimensional form I = diag(1, 1, . . .)

to an n-dimensional matrix Î with the general dependence of all essential

variables

I = diag(1, 1, . . .) ⇒ Î = Î(s, x, ẋ, ẍ, ψ, ∂ψ, ∂∂ψ, µ, τ, . . . ) (1)

under the condition of preserving the original axioms of the unit (nonde-

generacy, hermiticity, and positive-definiteness).

The “lifting” I ⇒ Î requires, naturally, for necessary compatibility, a

generalization of the conventional associative multiplication x ◦ y into the

so-called isomultiplication

x ◦ y ⇒ x ◦̂ y := xTy , T = fixed , (2)

where the quantity T is called the isotopic element. Then Î = T−1 is a

correct left and right unit element of the theory with respect the new mul-

tiplication ◦̂ and it is called the isounit.

Definition 1.1. Let X and Y be two categories [8]. A covariant Santilli

iso-functor from X to Y is a family of isofunctions Î [9] which asso-

ciates to each object A in X an object ÎA in Y and to each morphism

f ∈ HomX(A,B) a morphism Îf ∈ HomY(ÎA, ÎB), and which is such that:

(FI) Î(g ◦ f) = Îg ◦ Îf for all f ∈ HomX(A,B) and g ∈ HomY(B,C);

(F2) Î id A = id ÎA for all A ∈ Ob (X).

It is clear from the above that a covariant functor is a transformation

that preserves both:

• The domains and the codomains identities.
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• The composition of arrows, in particular it preserves the direction of

the arrows.

Definition 1.2. Let X and Y be two categories. A contravariant San-

tilli iso-functor from X to Y is a family of isofunctions F̂ which asso-

ciates to each object A in X an object F̂A in Y and to each morphism

f ∈ HomX(A,B) a morphism F̂ f ∈ HomY(F̂A, F̂B), and which is such

that:

(FI) F̂ (g ◦f) = F̂ f ◦ F̂ g for all f ∈ HomX(A,B) and g ∈ HomY(B,C);

(F2) F̂ id A = id F̂A for all A ∈ Ob (X).

Thus, a contravariant Santilli functor in mapping arrows from one cate-

gory to the next reverses the directions of the arrows, by mapping domains

to codomains and vice versa. A contravariant Santilli functor is also called

a Santilli presheaf. These types of Santilli functors will be the principal ob-

jects which we will study when discussing Santilli quantum isotheory in the

language of topos theory.

Definition 1.3. Given two categories C and D, the collection of all covari-

ant (or contravariant) Santilli functors F : C → D is actually a category

which will be denoted as DC. This is called the category of Santilli functors

and has as objects covariant (or contravariant) Santilli functors and as map

natural transformations between Santilli functors.

2 Categories of Groups and iso-Groups

One of the simplest algebraic structures is the structure of a group [7,8]. A

set G of elements of any kind is said to be a group if a group operation a ◦ b

is defined in it satisfying the following axioms:

G.1◦ For any two elements a and b there exists an element

c = a ◦ b (3)
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G.2◦ This operation is associative, that is, for any three elements a, b, c,

(a ◦ b) ◦ c = a ◦ (b ◦ c). (4)

G.3◦ There exists a neutral element e, i. e. an element such that for every

element a,

a ◦ e = e ◦ a = a. (5)

G.4◦ For each element a there exists a symmetric element ā such that

a ◦ ā = ā ◦ a = e. (6)

If the group operation a ◦ b is called addition, we write c = a + b and

the element c is called the sum, the neutral element is called zero and is

written as 0, the symmetric element is called the opposite and is written as

−a, and the group is called additive.

If the group operation a ◦ b is called multiplication, we write c = a · b,

or c = ab, the element c is called the product, the neutral element is called

unit and is written as 1, the symmetric element is called the inverse and is

written as a−1, and the group is called multiplicative.

If the group satisfies in addition the axiom

G.5◦. For any two elements a and b

a ◦ b = b ◦ a, (7)

then the group is called commutative or Abelian.

A set of elements endowed with an operation a ◦ b without the proper-

ties G.2◦, G.3◦ and G.4◦ is called a magma. A magma with the property

G.3◦ is called a unital magma, a magma with the property G.2◦ is called a

semigroup. A magma in which the equations a ◦ x = b and x ◦ a = b are

solvable for all a and b is called a quasigroup. A unital semigroup is called

a monoid, a unital quasigroup is called a loop. All these structures (as also

the ones to be introduced yet) are termed infinite, respectively finite, if the

underlying set is infinite, respectively finite.
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Definition 2.1. A map f : G−→G′ between two groups (G, ◦) and (G′,�)

is called homomorphism, if the following property holds:

(∀a, b ∈ G)[f(a ◦ b) = f(a)�f(b)] (8)

Thus a homomorphism “carries” the composition law ◦ on G to the compo-

sition law � on G′. Homomorphisms of groups are well visualized in some

important aspects with the help of two concepts, the image Im(f) and the

kernel Ker(f) of the homeomorphism.

Definition 2.2. If f : G−→G′ is a group homomorphism, then we define:

a)Im(f) = f(a)/a ∈ G (9)

b)Ker(f) = a ∈ G/f(a) = e′ ∈ G′. (10)

It is well known that Im(f) is a subgroup of G′ and Ker(f) is a subgroup of

G.

Definition 2.3. A homomorphism f between two groups G and G′ is called

isomorphism if f is bijective. In the case where G = G′ an homomorphism

f is called endomorphism and an isomorphism is called automorphism.

Definition 2.4. Grp is the category with groups as objects and homomor-

phisms as morphisms.

Definition 2.5. Let Grp and IsoGrp be two categories.

A Santilli iso-functor Î from Grp associates to each object A in Grp ca-

tegory an object ÎA in IsoGrp and to each morphism f ∈ HomGrp(A,B)

a morphism Îf ∈ HomIsoGrp(ÎA, ÎB), i.e., we reconstruct the elements of

the category IsoGrp as

Grp ∋ A−→ Â ≡ AÎ ∈ IsoGrp, (11)

where the isounit Î is defined with the help of an invertible element [6]

T : Î = T−1, (12)

called isotopic element, and the new composition law is defined by

(∀ Â, B̂ ∈ IsoGrp)[Â◦̂B̂ ≡ ÂT B̂]. (13)
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It can be proved easily, that IsoGrp for the fixed isotopic element T ,

with the above internal composition, can become a iso-group Ĝ with unit

Î [6]. The notions of isomorphism, iso-isomorphism, etc, can be defined in

a similar way as above.

Definition 2.6. Let Î : Grp → IsoGrp and Î ′ : Grp → IsoGrp be two

functors. A natural transformation α : Î → Î ′ is given by the following

data:

For every object A in Grp there is a morphism αA : Î(A) → Î ′(A) in

IsoGrp such that for every morphism f : A → B in Grp the following

diagram is commutative

Î(A)
αA

−→ Î ′(A)

Î(f) ↓ ↓ Î ′(f)

Î(B)
αB

−→ Î ′(B).

Commutativity means (in terms of equations) that the following composi-

tions of morphisms are equal: Î(f) ◦ αA = αB ◦ Î ′(f).

The morphisms αA, A ∈ Ob(Grp), are called the components of the

natural transformation α.

3 Categories of iso-rings and iso-fields

3.1 IsoRng category

Groups are algebraic systems with one internal composition law. More com-

plicated (and hence, richer) systems are obtained if we introduce a second

internal composition law, which is related to the first.

If, in a set of elements of any kind two operations a+b and ab are defined

such that

R.l◦ The set is a commutative group with respect to the operation a+ b;

A.2◦ The set is a semigroup with respect to the operation ab;
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R.3◦ The operation ab is distributive with respect to the operation a+b:

a(b+ c) = ab+ ac, (a + b)c = ac + bc, (14)

the set is called a ring.

The ring Z of integers is a ring with 1, the rings 2Z of even integers, 3Z

of integers of the form 3n, n from Z, and so on, are rings without 1.

Definition 3.1. A map f : R−→R′ between two rings R(+, ⋆) and R′(�, ◦)

is called ring homomorphism, if it preserves both composition laws, i.e,

if the following property holds:

(∀a, b ∈ R)[f(a+ b) = f(a)�f(b) ∧ f(a ⋆ b) = f(a) ◦ f(b)] (15)

Definition 3.2. A homomorphism f between two rings R and R′ is called

isomorphism if f is bijective. In the case where R = R′, a homomorphism

f is called endomorphism and an isomorphism is called automorphism.

Definition 3.3. If f : R−→R′ is a ring homomorphism, then we define

i) Im(f) = f(a) / a ∈ R, (16)

ii) Ker(f) = a ∈ R / f(a) = e′ ∈ R′ (17)

where e′ is the identity element of the ring R′.

Definition 3.4. Rng is the category with rings as objects and ring homo-

morphisms as morphisms.

Definition 3.5. Let Rng and IsoRng be two categories. A Santilli iso-

functor Î from Rng associates to each object A in Rng category an ob-

ject ÎA in IsoRng and to each morphism f ∈ HomRng(A,B) a mor-

phism Îf ∈ HomIsoRng(ÎA, ÎB), i.e., we reconstruct the elements of the

category IsoRng as

Rng ∋ A−→ Â ≡ AÎ ∈ IsoRng, (18)
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where the isounit Î is defined with the help of an isotopic element [6]

T : Î = T−1, (19)

the first composition law (which is often called addition) is kept unchanged

and the second composition law (which is often called multiplication) is de-

fined by

(∀ Â, B̂ ∈ IsoRng)[Â⋆̂B̂ ≡ ÂT B̂]. (20)

It can be proved easily, that IsoRng for the fixed isotopic element T ,

with the above internal composition, can become a iso-ring R̂ with isounit

Î [6]. The notions of isomorphism, iso-isomorphism, etc, between two iso-

rings can be defined in a similar way as above.

3.2 IsoField category

A ring in which the set of elements without 0 is a commutative group with

respect to the operation ab is called a field.

Definition 3.6. A field F is a commutative ring with unit where every

element (except zero), is invertible. More precisely a field F(+, ·) is:

1) An abelian group with respect to an internal operation, which is usally

denoted with + and called addition and

2) is equipped with a second internal operation, denoted with · and called

multiplication, so that the following rules hold

i) (∀ α, β, γ ∈ F) [α(βγ) = (αβ)γ], (21)

ii) (∃ 1 ∈ F) (∀ α ∈ F) [α1 = 1α = α], (22)

iii) (∀ α ∈ F) (∃ α−1 ∈ F) [αα−1 = α−1α = 1], (23)

iv) (∀ α, β ∈ F) [αβ = βα], (24)

v) (∀ α, β, γ ∈ F) [α(β + γ) = αβ + αγ]. (25)

A ring in which the set of elements without 0 is a noncommutative group

with respect to the operation ab is called a skew field.
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Definition 3.7. A map f : F−→F′ between two fields F(+, ·) and F′(�, ◦)

is called field homomorphism, if it preserves both composition laws, i.e,

if the following property holds:

(∀a, b ∈ F)[f(a+ b) = f(a)�f(b) ∧ f(a · b) = f(a) ◦ f(b)] (26)

In the following we shall denote a field for brevity with F instead of

F(+, ·).

The ring Q of rational numbers, the ring R of real numbers, the ring

C of complex numbers, the ring Fp of residues modulo a prime integer p,

and the Galois field Fq (q = pk) obtained from Fp by adjoining the roots

of an irreducible algebraic equation of degree k over Fp, are fields. The

ring H of quaternions is a skew field. The fields Fp and Fq are finite and

contain p and q= pk elements, respectively. The rings Z,Q,R,C, and H

are infinite, and the three last fields are continuous (topological). A field

Q(α, β, . . .) of algebraic numbers, obtained from Q by adjoining the roots

α, β, . . . of an irreducible algebraic equation over Q, and the field Qp, of

p-adic numbers, which is also an extension of Q, are also infinite, and the

last field is continuous.

Definition 3.8. Field is the category with fields as objects and field ho-

momorphisms as morphisms.

Definition 3.9. Let Field and IsoField be two categories. A Santilli iso-

functor Î from Field associates to each object A in Field category an ob-

ject ÎA in IsoField and to each morphism f ∈ HomField(A,B) a mor-

phism Îf ∈ HomIsoField(ÎA, ÎB), i.e., we reconstruct the elements of the

category IsoField as

Field ∋ A−→ Â ≡ AÎ ∈ IsoField, (27)

where the isounit Î is defined with the help of an isotopic element [6]

T : Î = T−1, (28)
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the first composition law (which is often called addition) is kept unchanged

and the second composition law (which is often called multiplication) is de-

fined by

(∀ Â, B̂ ∈ IsoField)[Â·̂B̂ ≡ ÂT B̂]. (29)

4 Subcategories, subisogroups, subisorings

Subsets of categories, isogroups and isoringsthat are also categories, isogroups

and isorings respectively, are called subcategories, subisogroups and subisor-

ings, respectively.

Definition 4.1. A category D is called a subcategory of a category C

if Ob (D) ⊆ Ob (C), Mor (D) ⊆ Mor (C), and morphism composition in D

coincide with their composition in C.

A bijection between two sets endowed with algebraic structures which

preserves the operations of these structures is called an isomorphism, sets

between which there is an isomorphism are called isomorphic.

A surjection or injection between two sets endowed with algebraic struc-

tures which preserves the operations is called a homomorphism, sets between

which there is a homomorphism are called homomorphic.

If two isogroups Ĝ and Ĥ are homomorphic, the elements of Ĝ corres-

ponding to the neutral element of Ĥ form a subisogroup N̂ of Ĝ, such a

subisogroup is called an invariant subisogroup or normal subisogroup. In

this case the isogroup isomorphic to Ĥ is called the quotient isogroup and

is written as Ĝ/N̂ .

If two isorings R̂ and Ŝ are homomorphic, the elements of R̂ correspon-

ding to the zero in Ŝ form a subisoring Ĵ of R̂ called an ideal. In this case

the isoring isomorphic to Ŝ is called the quotient isoring and is written as

R̂/Ĵ .

Isomorphisms of a isogroup or a isoring onto itself are called isogroup

or isoring automorphisms, respectively; homomorphisms of a isogroup or a

isoring into itself are called isogroup or isoring endomorphisms, respectively.
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5 Direct sums and products

If Ĝ and Ĥ are two isogroups with operations ĝ1◦̂ĝ2 and ĥ1◦̂ĥ2, the pairs

(ĝ, ĥ) with operation (ĝ1, ĥ1)◦̂(ĝ2, ĥ2) = (ĝ1◦̂ĝ2, ĥ1◦̂ĥ2) form a isogroup. If Ĝ

and Ĥ are both additive, respectively multiplicative, isogroups, this isogroup

is called a direct sum, respectively direct product, and is written as Ĝ⊕̂Ĥ,

respectively Ĝ⊗̂Ĥ.

The direct sum R̂⊕̂Ŝ of rings R̂ and Ŝ is similarly defined.

6 Vector isospaces

A set Ln of elements of any kind, called vectors, is said to be an n-dimensional

vector space if in this set the operations of addition and of multiplication by

scalars, that is real numbers, are defined, satisfying:

V I.1◦ - 5◦ Addition of vectors satisfies axioms G.1−5◦ for a commutative

group;

V II.1◦ For any vector a and any scalar λ there exists a vector

b = a · λ = aλ (30)

called the product of a by λ;

V II.2◦ Multiplication by 1 does not change a vector:

a · 1 = a; (31)

V II.3◦ Multiplication of vectors by scalars is distributive with respect

to addition of scalars:

a(λ + µ) = aλ+ aµ; (32)

V II.4◦ Multiplication of vectors by scalars is distributive with respect

to addition of vectors:

(a+ b)λ = aλ+ bλ; (33)

V II.5◦ Multiplication of vectors by scalars is associative:

(aλ)µ = a(λµ); (34)
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and axioms V III.1◦ - 2◦ of dimension, which are based on the notions of

linear independence and dependence of vectors. Vectors a1, a2, . . . , am are

said to be linearly independent if a linear combination a1λ1 + a2λ2 + . . . +

amλm is equal to zero only if all coefficients λi = 0, and linearly dependent

if there are nonzero coefficients λi such that this linear combination is equal

to zero.

V III.1◦ There exist n linearly independent vectors;

V III.2◦ Any n + 1 vectors are linearly dependent.

If we have chosen n linearly independent vectors e1 e2, . . . , en in Ln, then

each vector can be written as

x =
∑

i

eix
i = eix

i. (35)

The numbers xi are called the coordinates of the vector x, the vectors ei
are called basis vectors. Later we will write the sums (35) only in the last

form and when in our formulas the same upper and lower indices appear we

will always mean summation with respect to these indices.

Definition 6.1. A subset U of a vector space V is called vector subspace

if it is a subsystem which obeys the axioms of vector space in itself, that is

U is closed under vector addition and scalar multiplication.

Definition 6.2. The notions of Ker(f) and Im(f) are defined by the rela-

tions

a) Ker(f) = [x ∈ V / f(x) = 0 ∈ U ], (36)

b) Im(f) = [f(x) ∈ U / x ∈ V ]. (37)

It easy proved that Ker(f) and Im(f) are subspaces of V and U respectively.

Definition 6.3. Let V and U two vector spaces over the same field F (not

necessarily of the same dimension). A map f : V −→U is called linear

map or linear transformation if the following property is holds:

(∀α, β ∈ F) (∀x, y ∈ V ) [f(αx+ βy) = αf(x) + βf(y)]. (38)

In case V = U , the map f is called linear operator.
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Two vector spaces are called isomorphic if there is a bijection between them

that preserves addition of vectors and multiplication of vectors by scalars,

and homomorphic if there is a surjection or an injection between them that

preserves these operations. Isomorphisms of a vector space onto itself and

homomorphisms of a vector space into itself are called automorphisms and

endomorphisms of this vector space respectively. Automorphisms and endo-

morphisms of a vector space are called linear transformations in it.

Definition 6.4. Vectk category consisting of vector spaces over a field k

as objects and k-linear maps as morphisms;

From the definition of vector space one can see that we cannot construct an

isotopy of a vector space without first introducing an isotopy of the field,

because the multiplicative unit I of the space is that of the underlying field.

Note that we are lifting of the field, but the elements of the linear space

remain unchanged.

Definition 6.5. Let Vect and IsoVect be two categories, V be a vec-

tor space over the field F and F̂ an isofield of F. A Santilli iso-functor

Î from Vect associates to each object A in Vect category an object ÎA in

IsoVect category by “isovector space” as the vector space V̂ , (which is the

same set as V ), over the isofield F̂ equipped with a new external operation

⋄ which is such to verify all the axioms for a vector space, i.e,

(∀ α̂, β̂ ∈ F̂) (∀ x ∈ V̂ )[α̂ ⋄ (β̂ ⋄ x) = (α̂ ⋆ β̂) ⋄ x], (39)

(∀ α̂,∈ F̂) (∀ x, y ∈ V̂ )[α̂ ⋄ (x+ y) = (α̂ ⋄ x+ β̂) ⋄ y], (40)

(∀ α̂, β̂ ∈ F̂) (∀ x ∈ V̂ )[(α̂ + β̂) ⋄ x) = (α̂ ⋄ x+ β̂) ⋄ x], (41)

(∀ x ∈ V )[Î ⋄ x = x ⋄ Î = x]. (42)

and to each morphism f ∈ HomVect(A,B) an isolinear transformation as a

morphism Îf ∈ HomIsoVect(ÎA, ÎB), which is an isomap:

f̂ : V̂ −→ V̂ ′, (43)
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between two isolinear vector spaces V̂ and V̂ ′ over the same isofield F̂ which

preserves the sum and isomultiplication, i.e., which is such that

(∀ α̂, , β̂ ∈ F̂) (∀ x, y ∈ V )[f̂(α̂ ⋆ x+ β̂ ⋆ y) = α̂ ⋆ f̂(x) + β̂ ⋆ f̂(y)]. (44)

7 Algebras

If the set A is simultaneously a vector space Ln and a ring R or a field F

and if the following axiom holds:

A.1◦ For any two elements a and b and any two scalars λ and µ we have

(aλ)(bµ) = (ab)(λµ), (45)

then the set A is called an n-algebra.

The product of two basis elements of an algebra can be written as

eiej = Ck
ijek. (46)

The numbers Ck
ij are called the structure constants of the algebra. In

this book we will consider both associative and nonassociative algebras.

The field C of complex numbers is a commutative associative algebra with

basis 1, i (i2 = −1), the skew field H of quaternions is a noncommutative

associative algebra with basis 1, i, j, k (i2 = j2 = k2 = −l, ij = −ji = k,

jk = −kj = i, ki = −ik = j).

An algebra which is a field or a skew field is called a division algebra.

Two algebras are called isomorphic if there is a bijection between them

that preserves addition and multiplication of vectors, and multiplication of

vectors by scalars, and homomorphic if there is a surjection or an injection

between them that preserves these operations. Isomorphisms of an algebra

onto itself and homomorphisms of an algebra into itself are algebra auto-

morphisms and algebra endomorphisms of this algebra, respectively.

Definition 7.1. A subset V of an algebra A is called a subalgebra if it

satisfies the algebra axioms, i.e., if it is an algebra in its own right.
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It is easy to proove that a subset V ⊂ A of an algebra A is a subalgebra

iff:

(∀x, y ∈ A)(∀α ∈ F)[x+ y ∈ A, αx ∈ A, xy ∈ A] (47)

that is, the subset V is closed under all the composition laws.

Definition 7.2. A map f : A−→A
′ between algebras over the same field F

is called morphism if:

(∀x, y ∈ A)(∀α, β ∈ F)[f(αx+ βy) = αf(x) + βf(y) ∧ f(xy) = f(x)f(y)].

(48)

Definition 7.3. The usual statements about the image and kernel of a

morphisms (48) hold.

Definition 7.4. Alg is the category with algebras as objects and maps (48)

as morphisms.

Definition 7.5. Let Alg and IsoAlg be two categories.

A Santilli iso-functor Î from Alg associates to each object A in Alg ca-

tegory an object Â in IsoAlg and to each morphism f ∈ HomAlg(A,B)

a morphism f̂ ∈ HomIsoAlg(Â, B̂), i.e., we reconstruct the elements of the

category IsoAlg as an “isotope” Â of an algebra A with elements x, y, z, · · ·

and product xy over a field F, is the same vector space Ln but defined over

the isofield F̂, equipped with a new product x ⋆ y, called “isotopic product”,

which is such to verify the original axioms of A.

A possible way to overcome basic issues in present-day Category For-

mulation of Santilli’s Isotopies is to solve another three problems:

Problem 1, it has to be formulated the basic results of categories of topo-

logical, incidence and metric isostructures: Category of topological isospaces;

Category of Affine isospaces; Category of projective isospaces; Category of

Euclidean isospaces; Category of pseudo-Euclidean isospaces; Category of

conformal isospaces; Category of pseudoconformal isospaces.

Problem 2, it has to be shown how Lie-Santilli Isogroups and Isoalgebras.

can be represented in category theory.
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Problem 3, it has to be described the categorical concept of infinite-

dimensional isospaces: Category of infinite-dimensional linear isospaces; Ca-

tegory of Hilbert isospaces; Category of Banach isospaces and Categories of

Hilbert and Banach isoalgebras.
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