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Abstract

We review matrix Lie-Santilli algebras and groups with associative
and distributive matrix product, i.e. the theory without assuming that
the unit matrix has the conventional form. The axiom of associative and
distributive matrix product can be realized in different ways implying
accordingly different forms of the unit matrix (Santilli isounit) obeying
the axiom of unit element. Such algebras were first studied by Santilli. We
study realizations of Lie-Santilli groups and algebras, and review examples
of Lie-Santilli matrix algebras which are of interest in physics.
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1 Introduction

The unit matrix in n X n matrix algebra over field of complex numbers C is
defined due to the axiom of unit element. This axiom uses matrix product which
in turn is axiomatically defined as an associative and distributive one [1, 2]. The
unit is taken as a diagonal n x n matrix of the following conventional form:

I = diag(1,1,...,1).
The matrix I is such that for any n X n matrix M the following relations hold:
IM=MI=M.

In this review, we consider matrix Lie-Santilli algebras and groups, with matrix
product of a more general form than the conventional one. This generalized
matrix product is based on the usual matrix product and also is associative
and distributive. The corresponding unit matrix takes a more general form as
compared to the standard one. Such algebras were first studied and developed
by Santilli [3, 4]; see also recent reviews on fundamentals and applications of
this theory in ref. [5].

In Sec. 2, we study admissible realizations of the axiom of matrix product [3}.
Following Santilli, we conjecture that the most general form of the associative
and distributive product of two n x n matrices M and N is of the form

MTN,

where 7' is fixed n x n matrix, with the underlying product between M, T, and
N being the standard matrix one.

This form of product in algebras was first introduced and studied by Santilli
{3], with 7' being called isotopic element. The axiom of unit element implies
that the unit matrix I, corresponding to this product, is of the form

f:T_l,

where the inverse matrix 7! is defined due to the relationship I T =TI =1I.
Indeed, one can verify that

ITM = MTI = M

holds identically for any matrix M.

In the particular case when = 7', the standard unit matrix and standard
matrix product are recovered, [ = I = T'. In the general case, [ # 7.

We introduce definition of dual matrix algebra, which is defined due to the
interchange I <> T'. Also, we consider metrics and associated coordinate systems
in the matrix space. We study the conditions of reducing the unit matrix I to
the standard one, and introduce the notion of generating matrix, which is of
particular relevance for applications in physics.



-302 -

Throughout the paper, we use the notation
MxN

adopted from ref. [6], to denote the associative and distributive matrix product
between M and N. Matrix algebra of n x n matrices over field C equipped with
an associative and distributive matrix product is denoted as M(n, C, X).

In Sec. 3, we study some classical matrix Lie groups and Lie algebras, which
are generalized to corresponding Lie-Santilli groups and Lie-Santilli algebras by
assuming the general form of unit, and derive restrictions on the form of unit
matrix I from original definitions of the Lie algebras and the associated Lie
groups, i.e., obey the main principle of the theory stating that Lie character is
preserved. By collecting all the derived restrictions we arrive at the conclusion
that the most simple admissible nonstandard form of unit matrix appears to be
of the form of a positive-definite diagonal matrix,

f = diag(qn q2; .- Qn)o

gi > 0,7 =1,...,n This is in full accordance with earlier result by Santilli. We
consider action of the Lie-Santilli groups on classical linear spaces R® and C",

and find that the associated matrix Lie-Santilli groups, in which matrix product
is MT'N and unit is I, conserve metrics which are, in general, not conformally
equivalent to the Euclidean one. Also, we briefly review the infinite dimensional
case, and indicate the relevance of the unit I in mathematical and physical
context.

In Sec. 4, we consider in detml SO(3,R, x), SO(2,R, x), SO(1,1,R, %), and
U(1,C, x) matrix Lie-Santilli groups and M(2 C, X) matrix Lie-Santilli algebra,
as examples which are of interest in physics. To construct nontrivial realization
(i-e., with the unit [ # I) of SO(3,R, X), we use properties of the dual algebra.
We estabhsh the relationship between SO(2,R, x) and U(1,C, x), and consider
the action of U(1,C, X) on complex plane C. It is remarkable to note that
U(1,C, x) makes, in general, linear non complex-analytic transformation of the
complex plane C. This is in confirmation of emphasize made by Santilli [6]
that theory with the nonstandard form of product (and unit) is related to the
standard one by a non-unitary transformation. We construct the realization
map which relates GL{n, C, x) with GL(2n, R, X). One of the open problems is
construction of a nontrivial realization of the SU(2,C, x) Lie-Santilli group.

Detailed studies on associative algebras and groups with unit element differ-
ent from the standard one, and its applications to physics, were made by Santilli
[3, 4, 5, 6] since 1978; see also Sourlas and Tsagas [7]. We refer the reader to
these papers for review and results of recent development of the Lie-Santilli
algebras.

The main motivating idea lying behind the present talk, as well as some of
the results, are due to the recent study presented in ref. [6]. Particularly, there
it has been emphasized that the physical theories which are based on various
types of classical .and operator deformations of the standard ones should be
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reformulated in order to provide their physical self-consistency and predictivity
by preserving Lie character of the theories.
In the present talk, we consider different realizations of Santilli approach [6]
trying to give self-consistent and detailed review of the matrix algebras.
Particularly, (i) we show that the associative and distributive product M x N
has a unique representation

MXN = MTN,

as stated earlier by Santilli; (ii) introduce and use the so-called dual algebra

M(n,C, >"<~'1); (iii) analyze coordinate systems in the matrix space and homo-
topy class of unit; (iv) explicitly derive restrictions on the form of unit implied
by self-consistent consideration of some classical Lie algebras; (v) explicitly es-
tablish the relationship between SO(2,R, x) and U(1,R, ), and the associated
realization map for the case n > 2; and (vi) present nontrivial examples of some
Lie-Santilli groups and algebras, with the specific examples of Santilli isounit.

Three important statements are in order.

i) Santilli [8] re-examined the classification of numbers and discovered that
the abstract axioms of the numerical field R do not require necessarily that the
basic unit be the usual number 1, but can be an arbitrary quantity subject that
it is the inverse of T', and the new ring is equipped with product MxN = MTN,
where

I*(t,r,v,a,E,..) =1/T >0

now universally known as Santilli isounit (viewed here as a scalar field over some
variables ¢, r, v, a, F, etc.), T being known as the isotopic element, and 1 is the
usual unit number. This led to the discovery of new numbers, those with an
arbitrary positive definite unit, known as Santilli numbers (isoreal, isocomplex
and isoquaternions) first presented in ref. [8]. After reformulating his Lie-
isotopic theory on numbers, Santilli discovered that the emerging mathematical
and physical theories remain inconsistent because, for instance, they are unable
to predict the same numerical values under the same conditions at different
times, as it is the case for Hamiltonian theories.

ii) Despite the above efforts, isotopic theories remained inconsistent. Follow-
ing additional efforts, Santilli [9] found that the origin of the consistencies rests
in the differential calculus that had been assumed for centuries not to depend
on the basic unit. This led to the discovery of the differentiators calculus with
the basic definition of the differential of the variable r

d*r = Td[rI*(t,r,v,...)],

where d stands for the usual differential.

iii) Reformulations of the realizations of Lie-Santilli groups and algebras, and
representations of Lie-Santilli groups according to the isonumbers, isodifferential
calculus, and isogeometry is a necessary task to avoid inconsistencies found by
Santilli.

In fact, as one can see, the case 1 x 1 of Lie-Santilli matrix algebras over
R represent natural generalization of the usual field of real numbers R. This
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requires formulation of field in consistency with Lie-Santilli algebras, and thus
separate consideration of the construction of Lie-Santilli algebras over the field
equipped with Santilli isounit (isofield). This has been done by Santilli [8, 9].

When dealing with the realizations of Lie-Santilli theory, which is the main
issue of the present talk, we could not remain at the abstract axiom level and
should choose specific isounit T for isofield, to provide actual calculations. The
same is in the realization of Lie-Santilli matrix algebras where we should choose
specific matrix isounit I # I = diag(1,1,...,1), for example, in the form [ =
diag(g1,42,--.,4r), ¢ > 0,1 =1,...,n, to study explicit examples of Lie-Santilli
group representations.

While in the case of matrix algebras we can leave some parameters like ¢;
unspecified before making calculations, in the case of numbers there is no much
room for such a parametric freedom, and we should specify T to be certain real
number (for given values of the variables ¢, 7, v, a, ete.), to make realization.
Both usual field of real numbers R and any specific field of isonumbers (i.e.,
the field equipped with certain 7" # 1) are different realizations of the abstract
field of real numbers. In the present talk we restrict ourselves by R (and C)
while the cases of isofields with different specific Santilli isounits are of much
interest to consider since the general formalism necessitates consideration of
mappings between them to avoid inconsistencies. One of the interesting issues
is to consider Lie-Santilli algebras and groups modulo these mappings of the
isofields,

For example, in higher dimensions, the consistency leads us to consider in-
homogeneous dilation R} (i.e.,.isospace) of the Euclidean space R" (see Sec-
tion 3.2.3).

2 Matrix algebra M(n,C, x)

2.1 The x-product of matrices

In this subsection we present basics of Lie-Santilli matrix algebras.

We denote the set of all n x n matrices over field of complex numbers C by
M(n,C).

We start, consideration by recalling that the usual matrix algebra M(n,C),
which is viewed as M(n,C) equipped by the conventional matrix product, is a
Lie algebra with respect to the commutator

[M,N]=MN —NM, M,N €M(n,C), (2.1)

where the product is usual product of matrices in the underlying associative
and distributive algebra with standard unit I = diag(1,1,...,1).
In M(n,C), we follow Santilli [3] and define the X-commutator as follows:

[M,N]; = MXN —~ NXM, M,N € M(n,C), (2.2)
with respect to the X-product
| MXN = MTN, (2.3)



- 305 -

ie. .
n
(M)?N)” = Z m,;;chlnlj, (24)
k=1

where

T=I" TIi=IiT=1I, IeM(nC), (2.5)
and m, T%, and ny; are corresponding matrix elements. Here, I is a fixed
invertible matrix, which is the (left and right) unit, and we assume that in
general [ # T'. Indeed, it can be immediately checked that I verifies the axiom
of left and right unit element,

MXI=1xM =M, VYM eM(n,C). (2.6)

We denote the set M(n,C) equipped by the unit I and the associated X-
product as M(n, C, x).
Evidently, M(n, C, x) is a linear space, i.e., the following relationships hold:

M+N=N+M, (2.7)

M+ {(N+P)=(M+N)+P, (2.8)

M+0=M, (2.9)

M+ (-M) =0, (2.10)

o(BM) = (af)M, (2.11)

a(M+N)=aM +aN, (a+8)M =aM + BM, (2.12)
1-M=M, (2.13)

where o and 3 are complex numbers, and the X-product is associative and

distributive, i.e., the following two relationships hold (iso-associativity and iso-
distributivity [3, 5]):

(MXN)XP = Mx(NxXP), (2.14)

MxX(N +P)=MXN+MxP, (M+N)XP=MxP+NxP. (2.15)

Inverse of matrix in the algebra M(n,C, X) is defined as
MM = MM =], (2.16)
and multiplication of matrix by complex number « is as usual,
aM = (am;;). (2.17)

This means that M(1,C, X) is assumed to be isomorphic to M(1,C). In one-
dimensional case, the X-product is ax8 = o1'8 = T'af, where o, 8, and T are
complex numbers, so that we can ignore overall fixed non-zero factor 7" in all
the products. Indeed, there is an isomorphism between C and T'C provided by
dilation. Nontriviality comes in higher-dimensional cases; see Secs. 3.2.3 and
4.2 for details.
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We denote nth power of matrix in M{n, C, X) by

M™ = MXMx---xM, (2.18)
D

n

and define M0 = .
We conclude that M(n,C, x) is an associative and distributive algebra.
Note that M(n,C, X) preserves a Lie algebra character with respect to the
x-commutator. One can check that X-commutator (2.2) is skew-symmetric,

and Jacobi identity,
[M,[N, Plils + [P, [M, NIl + [N, [P, Mg ] =0, (2.19)
with respect to X-commutator is satisfied. Namely,
[M,[N,Ply]ly = MXNXP ~ MXPXN — NXPXM + PxNxM,

[P,[M,N];]z = PXMXN — PXNXM — MXNXP+ NxMxP, (2.20)
[N,[P,M]3]s = NXPXM —~ NXMXP — PXMxXN + MXPxN,

and by summing up these three expressions we obtain identically zero.

. In definitions of usual Lie algebras sl(n), o(n), and u(n), and associated
Lie groups one uses the following operations with matrices: Trace, Transpose
(M?), and Complex Conjugate (M). All these operations, and also Det, concern
matrix elements and their definitions in the algebra M(n, C, X) we keep the same
as in algebra M(n, C).

We emphasize that both algebras M(n, C) and M(n, C, %) obey the same set
of axioms by construction.

Thus, the product (2.3) is one of the admissible realizations of abstract def-
inition of the product in matrix algebra accompanied by associated realization
of the unit element I. This realization of product is based on the usual matrix
product and can be thought of as the simplest generalization of it. However,
note that M(n,C, X) is not generalization of abstract matrix algebra. Instead,
M(n,C) and M(n,C, x) are two different realizations of the abstract matrix al-
gebra, with M(n, C) being a simplest realization while M(n, C, X) is an example
of more general realization of it which is intimately based on M(n, C).

Perhaps, some other admissible realizations of the matrix product exist. In
general, this means that the axioms of matrix algebra do not fix the form of
matrix product and the form of unit matrix to be only the standard ones. The
aim of the present paper is to investigate implications of the form (2.3) of matrix
product assuming that the matrix [ is different from I.

As we will demonstrate in the following Sections, some severe restrictions
on the form of unit matrix I naturally arise. Counterparts of the classical
Lie groups associated to M(n, C, X) reveal interesting properties. For example,
the associated orthogonal group conserves the metrics defined by I, which is,
in general, not conformally equivalent to Euclidean metrics I = (6). Also,
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the associated unitary groups make, in general, linear non complex-analytic
transformations of the complex space.

Following Santilli, we conjecture that the product (2.3) is the most general
realization of the abstract associative and distributive product in matrix algebra
with a unit. In Appendix A, we sketch the proof.

2.2 The dual algebra M(n,C, X ")

In this subsection we introduce the notion of dual aigebra.
We start by noting that the transformation

po: X IXI, X=M,N, (2.21)
converts the X-commutator
MTN — NTM (2.22)
to the commutator with respect to I,
MIN - NiM. (2.23)
Indeed, we have

[po(M), po(N))y = IMITINT — INITIMI (2.24)
= I(MIN — NIM)f = po(MIN = NIM) # po[M, N]s.

This means that po is not endomorphism of Lie algebra M(n,C, x). Vice versa,
the transformation pfy : X ~ TXT converts the commutator (2.23) to the
X-commutator.

In general, one can construct some algebra by making the following inter-

change: o
IeT. (2.25)

We call the resulting algebra as a dual to M (n, C, X), and denote it by M(n, C, X 1).
In the dual algebra, 7" is a unit matrix while I is used in the definition of X-
product. Accordingly, we call commutator (2.23) as a dual commutator, which
defines Lie algebra dual to the one specified by X-commutator (2.2).

In the case [ = I, the two algebras M(n,C, X) and M(n, C, X ') degenerate
to one algebra, M(n, C) and this is the way to obey the self-duality condition,
M(n,C, x) ~ M(n,C,x~ ) which simply means that I = 7. In other words,
the usual matrix algebra M(n, C) with standard form of unit is picked up by the
self-duality condition. Indeed, [ = T = [~ has only one nontrivial solution,
I = diag(1,1,...,1), for the unit element.

Also, we note that the transformation

pr: X IXT=IXxI"1 (2.26)



- 308 -

is inner automorphism of M(n,C, x) in terms of standard product. Indeed, it
is homomorphism since

pr(M)xp1(N) = IMTD)T(INT) = (MXN)T = p; (MXN), (2.27)

maps [ to I, and makes one-to-one correspondence, with the inverse transfor-

mation o
it X s TXI. (2.28)

The transformations p; and pl’1 make one-to-one correspondence between ele-

ment X and its conjugate. It should be emphasized that [ in Eq. (2.26) is fixed
so that TX7~* do not, of course, form a class of conjugated elements for X.
Instead, 7X 1! form a similarity class (1 is fixed and X is arbitrary).

Also, we note that the transformation

p2: X SXXXS™T X, 8 € M(n,C, %), (2.29)
is endomorphism of M(n, C, X),
pa(M)Xpa(N) = (SXM %S H)P(sxN%xs~1)  (2.30)
= SX(MTS™IPSTN)% S = SX(MRN)%S™1 = pp(M%N),
where we have used the definition (2.16).

2.3 Metrics and coordinates of M(n,C, x)

In this subsection we consider metrics and coordinate systems in space of ma-
trices of Lie-Santilli algebra.

The x-product (2.3) is a smooth function (polynomial) of matrix elements
of multipliers M and N. We introduce metrics in M(n,C, %) as follows:

M2 =3 " jmi | T ml). (2.31)
i

Here, we have denoted M = (m}) and T = (Tl’“), and naturally require 7" to be
matrix of a positive-definite form. In the standard case [10], T' =T = (6F), the
metrics (2.31) is Euclidean, and simply computed as a sum of all squared matrix
elements [m?|?, giving us in the result a real number; for example, |I|? = n in
M(n,C).

For the metrics (2.31) we have, evidently,

M+ N| < M|+ |N], (2.32)
and also it can be easily proved that

[MxN| < |M|x|N|. (2.33)
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Indéed, we have for the inner product (,) with positive definite form 7’
N N 1 .
(@, T}y, Ty) ~ (2, Ty)* = 5 ({2, Ty) — (v T=)), (2.34)

from which (2.33) follows.
Let us introduce local coordinates in the space of matrices, in the neighbour-

hood of 1, )
M-I <1 (2.35)

Coordinate z(M) of matrix M in M(n,C, X) is defined as
(M) = mi— I}, 2i(f)=0. (2.36)

If we multiply all the matrices, in the neighbourhood of I, by the matrix T = [~!
from the right then we can introduce the coordinate y(M) of matrix M:

y; (M) =miTi ~ 8, yil) =0, (2:37)

which is the coordinate of M in the neighbourhood of I = (5;) This coordinate
system can be used for matrices M such that

M — 1| < |]]. (2.38)

Thus, we have coordinate system z(M) in the neighbourhood of I, which is re-
lated to coordinate system y(M) in the neighbourhood of I. The two coordinate
systems coincide if [ = I.

In addition to the coordinate system y(M ), we can introduce the alternative
one, with the multiplication from the left,

z;- (M) = km — 5 z; (I)=o0. (2.39)
This coordinate system is not equivalent to y(M) since in general M T +£TM.

The following remarks are in order.

(a) The coordinate system z(M) can be introduced in the neighbourhood of
any matrix I. "

(b) The coordinate system y(M) can be introduced for any invertible I. The
procedure of moving the neighbourhood, (M) — y(M), described above is for-
mal and means that one can introduce coordinate system in the neighbourhood
of any invertible element of the matrix space which is “equivalent” in some sense
to the standard coordinate system in the neighbourhood of I = (4%).

(¢) The choice of the center of coordinate system is a matter of convenience.
Natural preference is made to the usual unit matrix = (0%) as a center for the

coordinate system. However, when one uses I as unit in the matrix algebra,
as it is the case for M(n,C, ), it becomes natural to choose [ as a center of
coordinate system to have a consmtent picture. However, even in this case one
can move the neighbourhood of I to the neighbourhood of I = (5’) by using

coordinate system y(M) or z(M) because I is an invertible matrix, and 7' in
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Eqgs: (2.37) and (2.39) is always well defined. Note however that the center is
still I due to the second equation in (2.37).

(d) It is remarkable to note that the sizes of the vicinities are different; see
Egs. (2.35) and (2.38).

(e) Also, we emphasize here that while the center of coordinate system in,
e.g., Euclidean space R™ is indeed of no importance in accordance to its ho-
mogeneity, the choice of the center in matrix spaces, which are not in general
homogeneous and commutative, is of some importance. This is reflected par-
tially by the fact that we have two-fold way to rich neighbourhood of standard
I, namely, coordinate systems y(M) and 2(M).

2.4 Homotopy class of unit

In this subsection we study relationship between Santilli isounit [ and usual
unit 7.

2.4.1 Path from [ to I

Let us specify the form of unit I by picking up the diagonal form

I= diag(g1,92,---,qn), (2.40)

where parameters g; satisfy the following conditions:
GER, G#0 (i=12,...,n), Y g#0, (2.41)

that is A A A
I eM(n,R), Detl#0, Trace 0, (2.42)

This specific form of [ obeys the conditions (3.76) requiring that / should be
real, symmetric, and non-traceless matrix, and the diagonal form of [ appears to
be important in universal definitions of algebras of pseudo-unitary and pseudo-
orthogonal groups; see Sec. 3.3. Complete list of the requirements on the form
of I will be presented in Sec. 3.4 below.

The matrix 7" is then given by

T = diag(1/q1,1/9s, - -, 1/qn). (2.43)

The norm of the unit I defined by (2.31) is

]f!:\/Zqi::V'Hace I, (2.44)

and not equal to zero due to (2.42). Then, to have real positive norm we must
put
Trace 1 > 0. (2.45)

Below, we restrict consideration on the unit  of the form (2.40), which
defines n-parametric family of algebras M(n,C, x), with the parameters qi.
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We note that in the case

I—1, (2.46)
if such a limit exists, we recover the original algebra M(n, C). The limit does not
always exists since I is a deformation of T by n real parameters g1, qg, ..., ¢,

which can have both negative and positive values, whereas I should always be
invertible by definition. So, I and I should be homotopically equivalent, i.e. it
must exist a smooth path in space M(n, C) connecting / and I. This is possible
if and only if ¢;’s are positive numbers,

>0, i=12,...,n (2.47)

Indeed for negative value of some g;, the path should go through the point

; = 0, in which [ is not an invertible matrix (Det [ =0at g; = 0), and T blows
up as ¢; — 0; see Eq. (2.43). Also, condition (2.47) follows from the requirement
that I must be positive definite matrix; see Eq. (2.31).

Therefore, in general we must restrict consideration to the homotopy class of
matrices to which standard unit matrix I belongs. Thus, the inverse map I + [
is a smooth deformation, along with n-parametric path in space M(n,C). The
parameterization is given simply by the diagonal matrix W = diag(wy, wa, ..., wy,),
with the parameters w; running from 1 to g,. R

In view of the conditions (2.41) and (2.47), we can represent the matrix /
as follows:

f:diag(1+r1,1+,r2,...,1+rn).=_I+R, r; > —1, (2.48)
where R = diag(ri,rg,..., ).
Whereas 1 commute with any element of M(n,C), i.e. [I,M] = 0, one ob-

serves that I does not in general commute with any element of algebra M(n, C),
[f, M] 0, (2.49)

that is, I is not in the center of M(n,C). However, it is in the center of the
algebra M(n, C, x),

~

[[,M]; =0, VM e M(n,C,%). (2.50)

2.4.2 [ in M(2,C)

To see more details on the connection between I and I and to provide an
example, let us consider the usual algebra M(2,C) of 2x2 complex matrices.

The unit is
10
I = ( 0 1 > (2.51)

and we take the known example of matrix / € M(2,C) of the form

~ qu
I = , 2.52
(0@) (2.52)
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whefe
a#l, @#l, @ #e (2.53)

We emphasize here that I is unit matrix, and matrix product is an ordinary
one; I is not unit matrix in M(2, C).
We observe that both the matrices are Hermitean,

I'sf=1, I'=1, (2.54)
and therefore normal, i.e.,
I'r=rnrt, iti=iit, (2.55)

and therefore they are simple, i.e. multiplicity of each eigenvalue of the matrices
is equal to its geometrical multiplicity.
While [ is unitary matrix in M(2,C),

=1, (2.56)
the matrix [ is not unitary in M(2, C),
I'T = IT = diag(q?, ¢3) # 1. (2.57)

It is remarkable to note, however, that in the algebra M(2,C, X) we have

A ~

Mxi=Ixi=1, (2.58)

so that [ is unitary matrix in M(2,C, x) while I is not unitary in M(2,C, X).

Matrices I and I have different spectra and therefore they are not unitary
similar to each other, i.e., there is no unitary matrix U € M(2, C) such that the
relation

I£U U (2.59)
holds. Moreover, they are not even simply similar to each other, i.e.,
#8718, (2.60)

for any matrix S € M(2,C). Indeed, S7'I§ = S71S = I by definition, and
thus this can not be equal to I. So, vice versa,

I#Viv, (2.61)

for any V € M(2,C) (see Appendix B for the proof).
The same properties are valid for higher dimensional cases, n > 2.

2.4.3 The generating matrix

Let us consider the ordinary eigenvalue problem,

(¢ - Q)z =0, (2.62)
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where Q € M(n,C). In the case Q is a positive-definite Hermitean matrix, we
have set of positive real eigenvalues qi, qa, ..., gn, S0 that we can rewrite the
above equation as X
(J-Qz= (2.63)

where I = diag(q1,qz,-- -1Gn), ¢ > 0. This means that @ and I are unitary
similar to each other, Q@ = U TUT, and I is positive-definite Hermitean matrix.
We note that it is exactly the matnx we have as a general form of unit in
M(n, C, X); see also Sec. 3.4. Particularly, the scalar matrix I = M corresponds
to fully degenerate spectrum of @, in which case @ is necessarily of the form
Q = Al

We call positive-definite Hermitean matrix Q satisfying Eq. (2.63) as a gen-
erating matrix for unit I, [ € M(n,C, x). Clearly, all generating matrices for a
given fixed I are unitary similar to each other, and they are not necessarily of
a diagonal form.

If we relax the condition of diagonality of unit [ (see Sec. 3.4) we can take
generating matrix () as a unit in algebra M(n, C, X) provided that in some basis,
unitary related to the original one, @ has a diagonal form.

3 Lie-Santilli groups and Lie-Santilli algebras

In this Section we study some classical Lie-Santilli groups and algebras which
are based on the matrix algebra M(n,C, X).

3.1 Lie-Santilli groups
3.1.1 Group GL(n,C, x)

We denote subgroup of M(n, C, X) consisting of matrices obeying the condition
of nonzero determinant,

Det M #0, M € M(n,C,x), (3.1)

as GL(n,C, x).

3.1.2 Unitary group U(n,C, %)

The group U(n,C, x) is a subgroup of GL(n,C, x) defined by the following
unitarity condition:

UsxIxUt =UxUT =UTU = ], (3.2)
where we have denoted for Hermitean conjugation

Ut =0 (3.3)
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From the unitarity condition (3.2), it follows that
Det (UxU') = Det (UTU') = (Det T)(Det U)(Det U) (3.4)
= (Det T')|Det U)? = Det I,

that is, A X
[Det U|? = (Det )%, U € U(n,C, %). (3.5)

Apart from the usual case, determinant of unitary matrices in M(n, C, X) is not,

in general, equal to +1.
We define the subgroup SU(n,C, X) by the condition

[Det Ul =Det I, U e SU(n,C, %), (3.6)

i.e., determinant of special unitary matrices in M(n, C, x) is equal to Det I.

3.1.3 Orthogonal group O(n,R, %)
Similarly, for orthogonal group O(n, R, X) we have
OXIx0t'=0x0' =010t =, 0€O0(nR,x%), (3.7)
and for SO(n, R, x) we have additionally,
Det O = Det 1. (3.8)

3.1.4 Group SL(n,C, x)
The subgroup SL(n,C, X) of GL(n,C, x) is defined due to condition

Det M =Det I, M € SL(n,C, x). (3.9)

Note that for the usual case, ] = I, we have Det [ = 1 while for  of the
form (2.40) we have R
Det I:(I1Q2"'Qn- (310)

3.2 Action of the groups on classical linear spaces

3.2.1 Eigenvalue problem

We define natural (left) action of the group GL(n,C, X) on complex space C™
as
2z Mxz=MTz, M eGL(n,C, %), zeCn (3.11)

This definition is consistent with the action of unit J ,

%z =z, (3.12)
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which can be viewed as an identity transformation of C*. Also, for two conse-
quential actions, we have
Z=Mxz, 2"=Nx2=NX(MXz)=(NxM)xz=QXz, (3.13)
M,N,Q € GL(n,C, x),

that means that this action is consistent with the algebra GL(n,C, x).
The eigenvalue problem is then defined by the following equation:

Mxz = )z, (3.14)
where A € C, or, equivalently,
(M — M)xz=0. (3.15)
This equation can be identically rewritten as
(M — MT)z = 0. (3.16)

Thus, in the algebra M(n,C, X) the characteristic polynomial of the matrix M
is

c(X) = Det (A — MT). (3.17)
3.2.2 Action of unitary group
Let us identify (Hermitean) scalar product in C",
n . -
(z1,22)c = Y #hgi3, (3.18)
1,j=1

where 21 2 € C™, such that it is conserved under the action of unitary matrix
U € U(n,C, x) on each multiplier,

(Ux21,UXz) = (21, z3). (3.19)

From the above two equations we have immediately

Y UiTn 92" TL0] =Y 2™ g™, (3.20)
ie. . o
Ui 95T 0] = gm, (3.21)
or
UxgxUt =g. (3.22)

Therefore, we should put g = I to achieve consistency with the definition of
unitarity (3.2). Obviously, this does not mean that I is conserved by the unitary
matrix in the sense UIUT = I. Instead, the matrix

~ A

U=UT, (3.23)
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with Ut = TUT, plays such a role, namely, we have from Eq. (3.22)

o~ o

Uitt =1, (3.24)

which is consistent with the definition (3.2). X R
Note that the scalar product (3.18), with g = I, is Hermitean since / is real
symmetric positive-definite matrix (Hermitean, IT = I).

3.2.3 Action of orthogonal group

Similarly to the above case, the group O(n, C, ) conserves the following scalar
product:

n
(z1,T2)R = Z Lijzix}, (3.25)
£, J=1
where 1 5 € R”, or explicitly,

(1, 22)R = qlm{zé -+ qgmf:vg + - gpxlah. (3.26)

This scalar product defines Euclidean space R™ equipped by the metrics I,

n
(¢,2) =" q:(z")?, (3.27)
i=1
i.e. the metric tensor is
9i; = qi0i;. (3.28)

We denote Euclidean space R™ equipped by the metrics (3.28) by Ry. The
matrix conserving the above scalar product is of the form

O = of, (3.29)
ie. o A
OIOt = 1. (3.30)
Note that
(z,2)c = (z,2)R, (3.31)

as in the usual case.

In terms of the algebra M(n, C, X), the above unitarity and orthogonality
definitions mean that the matrix [ is an invariant. In contrast, in terms of the
usual algebra M(n,C) and geometry, these mean that the metric tensor 1" is
transformed to metric tensor I; see Eqgs. (3.2) and (3.7). In the limiting case
I=1I= TI we have conservation of the metric tensor Oij

This sxtuamon can be readily understood in terms of the duality property
(2.25) of algebra M(n,C, ). Namely, the definitions relate dual spaces, the one
equipped by the metric (3.28) and the other equipped by the metric T, ie.,

giel = 5—51,, (3.32)

k)
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which are simply inverse to each other, and coincide when [ = I =T

Note that the above space R} with metrics (3.27) can not be obtained from
Euclidean space R™ by dilation = ++ Az, except for one-dimensional case. In-
stead, we have the transformation

zt s & = 2t /G, (3.33)

which we call inhomogeneous dilation, £ € R}. So the map I I does not
correspond in general to any linear conformal transformation of R™. Only when
g1 = @2 = -++ = @y this is the case. The transformation (3.33) can be thought
of as that it gives the coordinates z* different weights. R

Accordingly, the use of the general form (2.40) of unit I assumes, in general,
different weights of the coordinates in contrast to equal weights provided by the
standard unit 1. A

The equations g;;z‘z? = (Det I)? and gfualgizi = (Det T)? define funda-
mental ellipsoids,

a1 (z')? + ga(2®)? + - +qn,( "2 = (g2 - qn)*, (3.34)
Ty Ltoeey o Lone 1 ,
QI( e qz( A Qn( "= (q192- - qn)?’ (3.35)

corresponding to Tand T, respectively. They are regular (n — 1)-hypersurfaces
in R™. In usual terms, definitions of the unitarity and orthogonality are such
that corresponding matrices transform the second ellipsoid to the first one. The
sphere ) (%) = 1 lies between the ellipsoids, and is a limiting case of both the
ellipsoids.

The following remarks are in order.

(a) In usual geometrical terms, these ellipsoids are not conserving under the
orthogonality group O(n,C, X). So, none of which is a homogeneous space of
this group, and group O(r,C, x) does not act on it transitively in the usual
sense. Indeed, varying matrix O in Eq. (3.7), we observe that they act on
TIT = T, Whlch is a fixed matrix, and the result is another fixed matrix I.
However, in terms of the group O(n,C, %), the ellipsoid (3.34) defined by I is
conserved due to Eq. (3.7). So this ellipsoid is a homogeneous space of group
O(n,C, x) under the action of this group on it, and every two points of the
elhpsozd can be connected by some O € O(n,C, X) (transitivity).

(b) Also, we see from the above considerations that the matrix of the form

M= MT (3.36)

appears to be of frequent use in the formalism. Note that according to Eq. (2.49),
we have in general MT # TM. We shall see in Sec. 3.3 that matrices of the
form M7 is also of use in the Lie algebras. From Eq. (2.37), we see that such
mastrices correspond to those described in the neighbourhood of standard unit
(c) The use of different possible definitions of unitarity (3.2) and orthogona-

lity (3.7)
U'TU = I, 00 =1, (3.37)
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respectively, yields the same set up as above, with the matrix MT replaced by
TM. Note that this corresponds to choosing of the coordinate system (2.39)
instead of (2.37).

3.2.4 Action of pseudo-unitary and pseudo-orthogonal groups

Definitions given in Sec. 3.1 can be extended to the case of pseudo-Euclidean
spaces, with accordingly defined pseudo-unitary group U(m, k, C, X) and pseudo-
orthogonal group O(m, k, R, X).

Let us define the metrics

G, =GI, (3.38)
where
G = diag(1,1,...,1,-1,~1,...,-1) (3.39)
Nt s’ \_____.,,k,.._.._/
m

is metrics of pseudo-Euclidean space R™F. Then, definitions of pseudo-unitary
group U(m, k,C, X) and pseudo-orthogonal group O,(m, k, R, x) are, respec-
tively,

UG, xU' =G, OxG.x0!'=G,. (3.40)
These groups conserve the metrics G.. The other possible definition of metrics,
_ G =1I¢6, (3.41)
leéds to definitions of different groups U;(m, k,C, x) and Oy(m, k, R, X),
UxGxUt =G, 0xGx0t =G|, (3.42)
since in general GI # IG. Also, note that
(G, &) = GIIG - IGGI +#0 (3.43)
and o . o
[Gr,Gily = GIG ~ IGTGI #0. (3.44)

The groups Uj(m,k,C, x) and O;(m,k,R, x) conserve the metrics G,. Evi-
dently, these definitions of the groups are directly equivalent to that with re-
spect to (3.38) if and only if pseudo-Euclidean metrics G and unit I commute,
GI =1 G, so that G’ and Gl coincide,

~ ~

G, =G =@, (3.45)

and we can put

UxGxU' =@, OxGx0'=3, (3.46)
for definitions of pseudo-unitary group U(m,k,C, x) and pseudo-orthogonal
group O(m, k, R, x), respectively. This is the case only for diagonal form of
the unit I because in general only diagonal matrices commute with pseudo-
Euclidean metrics G.

Note that due to the inner automorphism (2.26) we have p; : G, — Gy,
namely, G; = IG, T, so that G, and G are elements conjugated to each other in
GL(n,C, x), and the groups U,.(m, k,C, X) (O.(m, k,R, X)) and U;(m, k,C, X)
(Oi(m, k, R, X)) are conjugated to each other, as subgroups of GL(n,C, >?)
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3.3 Matrix exponent and Lie-Santilli algebras

In this Section we study realizations and relationship between matrix exponents

and Lie-Santilli algebras.

Tangent spaces in the neighbourhood of the unit I for the above considered
groups are corresponding Lie algebras gl(n,C, X), sl(n,C, x), u(n,C, %), and
o(n,R, %), which are well defined Lie algebras, as in the usual case.

The map from the tangent spaces to the groups is achieved by matrix ex-
ponent. The maftrix exponent is defined, as usually, due to its formal series
expansion. In M(n,C, X), we define

o

M

sM o :

eM = 20: — (3.47)
n=

where the A-power of matrix M is defined by Eq. (2.18), and we put

~

=1 (3.48)
Explicitly,
" 1. .
éM=I+M+§—‘-MxM+~-. (3.49)

This series expansion converges due to Egs. (2.32) and (2.33). Then, one can
easily prove using Eqgs. (3.47) and (3.48) that

xéN, for x-commuting matrices M and N, (3.50)

If M = &%, then exists M ™! =é&"%, (3.51)
&X' = (&)L (3.52)

The above definition of matrix exponent defines local coordinates in the
tangent space of group in the neighbourhood of unit element I of the group
which have the following explicit form:

gi(M)=(WM)i=M~-1)i-..., (3.53)

where M is a group element.‘ This map is one-to-one correspondence in some
neighbourhood of the point z%(M) = 0.

The matrix exponent in M(n,C, X) is simply related to the usual matrix
exponent by

eM =fet™ M e GL(n,C, %), (3.54)
with €® = I. Indeed, by using the power expansion we have
. - 1. . . . 1. 2 s F
M=T+M+ MIM A+ =II+TM+ 5 TMTM +...) = IeT™  (3.55)

The following remarks are in order.
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(1) In fact, we need only in the neighbourhood of unit I when dealing with Lie
algebras. In general, matrix exponent is not one-to-one correspondence when it
is extended to the whole group; well known example is the usual SL(2, R).

(ii) Note that there is an alternative relation,

eM = MT (3.56)

between the matrix exponents. This relation is equivalent to (3.55), in the
algebra M(n,C, X). Indeed, let us check that the r.h.s. of (3.54) X-commute
with the r.h.s. of (3.56), in the neighbourhood of unit,

[eMTf,IAeTM];( = eMTfeTM _ feTMPeMT | (3.57)

~ (I+MDI(I+TM) - I(I+TMTI+ M)
(I+2M + MTM) — (I +2M + MTM) =0,

where we have dropped higher-order terms.

Using the matrix exponent (3.47) we can prove that if M € SL(n,C, x), i.e.
Det M = Det I, then algebra sl(n,C, x), as a tangent space of the group in the
neighbourhood of unit I, consists of matrices X such that

Trace XT =0, (3.58)

and vice versa. A
Indeed, let Trace XT = 0. For M(t) = étX we have

Mty +t2) = M(t1)>A<M(t2), (3.59)

where we used the fact that M(¢;) = é%% and M(ty) = é2X X-commute.
Therefore,

Det M (t; +t2) = Det M(t;)Det TDet M(t3). (3.60)
Solution for this equation is given by F(t) = Det M(t) = ¢;1e%?, where ¢; 2 are
constants. Evidently, ¢; = (Det 7)~! = Det I. On the other hand,

F(t) =Det &% =Det (I +tX +o(t)) = Det (I +tT'X +o(t))] (3.61)
= (t Trace XT + o(t))(Det I).

So, if Trace XT = 0 then

1dF .
Cy = E;—C?t-lt:() = Trace XT = 0. (362)

Thus we have, finally, F(t} = Det j ,i.e. Det M = Det I. It can be easily shown
that, vice versa, if Det M = Det I then Trace XT = 0.

Comparing this to the usual relation, Trace X = 0, for sl(n,C) we see some
modification. Let us denote

Trace M = Trace MT. (3.63)
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One can verify that Trace M is not conserved under unitary transformation
while Trace M is a conserved entity. Indeed, let us make the unitary transfor-
mation

M M =UxMxU', (3.64)
where unitary matrix U is given by (3.2). Then,

Trace M' =Y MLT7 =Y " (U T*™ My, T"UL)T (3.65)
=3 T T* " My T™ =~ 67 My T = > My T™™ = Trace M,

where we used the unitarity condition ZU f i Ui = f;k, and the fact that
Zlkngm — ZIlkam — §m

Below, we investigate exphcxtly relations between the groups U(n,C, X),
O(n, R, x) and their tangent spaces.

Let us consider neighbourhood of the unit I of the group U(n,C, X). Let
U(t) € U(n,C, %) and U(0) = I, where t is parameter. Then, we have

U@yxUt(t) =1, det_o X, (3.66)

where X belongs to tangent space of U(n,C, x) in the neighbourhood of I.
Differentiating first equation in (3.66), we have

au

d N
EE(UTUT)IH, =[— —TU" +UT~—--]|t_g (3.67)

= XTI +ITX" = X + Xt =0.
So, u(n,C, x) consists of the skew-Hermitean matrices,

=X (3.68)

Similarly, it can be shown that if O € O(n, R, X) is orthogonal matrix then
matrices from the tangent space in the neighbourhood of unit of this group are
skew-symmetric, and vice versa. Indeed, for X such that

X =Xt (3.69)

we have

OXOt = eXX(eX)t = X kX = eXtX = ], (3.70)
where we used Egs. (3.50) and (3.52), and the fact that X and X! are x-
commuting matrices.
For the tangent space elements X of pseudo-unitary group U(m,k,C, x)
and pseudo-orthogonal group O(m, k,C, x), it is an easy exercise to obtain
from Egs. (3.46) the usual relations,

XG+GXT=0, XG+GXt=0, (3.71)
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respectively, where G is matrix of pseudo-Euclidean metrics (3.39). For example,
for the pseudo-unitary group U(m, k,C, X) we have

d (UTGTU”)lt 0= [%QTGTUT + UTGT%Z—] =0 (3.72)

= X(TGIT)I + I(TGIT)X" = XG + GX'1 =0,

where we have assumed that the matrices G and I commute and thus T is
diagonal matrix; see remark below Eq. (3.46). In general, we have instead of
(3.71), o o

XTGI+GXt =0, XTGI+GX*=0, (3.73)
for the groups U,.(m, k,C, X) and O,(m, k, R, X), respectively, where G=GI=
Gy, and

XG+IGTX' =0, XG+IGTXt=0, (3.74)
for the groups U;(m, k, C, x) and Oy(m, k, R, x), respectively, where G=IG=
Gy. The definitions (3.73) and (3.74) can be rewritten in a compact natural
form, o o

XXG+GxX1 =0, XXG+GxXt'=0, (3.75)
where G = @r, or G= G,

To prove that the above tangent spaces indeed are Lie algebras one must

show that the following properties hold:

1) If Trace M = 0 and Trace N = 0 then Trace [M, N]; =

2) If M = —M and N* = —N then [M, NJt = —[M, N],.

x =
3)1f MT = —M and Nt = —N then [M,N]!, = —[M, N];.

In fact, by this one shows that the spaces sl(n, C, X), o(n, R, x), and u(n, C, X)
are closed with respect to X-commutator.

Note that the unit I is subject to Trace, Transpose and Complex conjugate
operations in the above 1)-3). Let us put the following restrictions on [:

Trace [ #£0, =1, =1, (3.76)

i.e. I is real symmetric matrix with non-zero trace. Particularly, the form (2.40)
obeys the requirements (3.76).

Then, it is easy to check that the properties 1)-3) hold for any I obeying
(3.76). Namely, we have

1) Trace [M,N]; = Trace MT'N — Trace NTM (3.77)
= Trace MTN — Trace MTN = 0.
2) [M, N, = (MTN)!~(NTM)* = N*T* M~ MUTPN? (3.78)

= N'TM!~MTNt = NTM - MTN



-323 -

Similarly, for 3).
In the same manner, one can prove that tangent spaces of U(m, k,C, X) and
O(m, k,R, X) are Lie algebras with respect to X-commutator.

3.4 Some restrictions on the form of Santilli isounit

We are now in a position to collect all the restrictions on the form of I stemming
from counsideration made above.

1) To have well defined inverse required to set up X-product, I should be
non-degenerate; see Sec. 2.1.

2) To define positive norm in space of matrices, I should be matrix of a
positive-definite symmetric form; see Sec. 2.3.

3) To have positive norm, I should have positive trace; see Sec. 2.3.

4) To be in the homotopy class of 7, I should have positive diagonal elements,
for a diagonal form of I; see Sec. 2.4.

5) For consistent definitions of algebras of orthogonal and unitary groups, [
should be symmetric and Hermitean, respectively; see Sec. 3.3.

6) To have conventional definitions of algebras of psendo-unitary and pseudo-
orthogonal groups, I should commute with the matrix of pseudo-Euclidean met-
rics. This means that I should be of a diagonal form since symmetric form of 7
is not sufficient here; see Sec. 3.3.

_+ All these requirements taken together put strong limitation on the form of
I, confining us with the choice made in Sec. 2.4. Namely, the family of possible
units consists of diagonal n X n. matrices with positive real elements,

j = dia’g(thQ) T Qn)v g >0, (379)

that is in confirmation with the result by Santilli.

3.5 Infinite-dimensional case

Most of the definitions and properties of M(n, C, x) studied in previous sections
can be readily extended to infinite dimensional case, n = co. Here, the unit is,
evidently,

f:diag(ql,q2,...,qi,...), fEM(oo,C,Q), (3.80)
and the X-product is as usual; see Eq. (2.3). Further, in the continuous limit
we have the unit A A

Ipp = I(p')o(p" - p), (3.81)
and the product,
(M)} N)p/p == /dp”dp/” Mp’p”fp”p”’Np’”p7 (3.82)

where X A
Ty = 171 (0")6(p" — p). (3.83)
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One of the applications of M(oco, C, X) and its continuous limit which would be
of interest to investigate, is quantum mechanics. It is well known that quantum
mechanical Hermitean operators in any representation can be given in the form
of infinite-dimensional matrices.

Considering action of Lie groups on classical spaces, in Sec. 3.2, we have
seen that the coordinates z¢ are given with different weights /@ by the general
form of unit I, in contrast to equal weights, ¢; = 1, ascribed to the coordinates
by standard unit I.

Such a property is quite natural in quantum mechanics when one deals with
gquantum mechanical ensemble of pure states realized with different probabilities,
i.e. the pure states are given with different weights, and thus form a mixed
state. This formalism concerns von Neumann’s density matrix and canonical
ensembles. Let us consider the standard quantum mechanical definition of the
density matrix,

Pmn = Z-Pkémkckna (384)

where P are the weights, P, > 0, >_ P, = 1, and ¢k, are amplitudes, and
compare it with the X-product (2.3). We see that the density matrix p is
obtained by x-product,

p=élc, (3.85)
of the amplitude matrices, where T' = diag(Py, Py, ..., Pg,...). In quantum
mechanics, diagonal elements of the density matrix,

Wy = Prn = Zpklcknlz, (3.86)

is probability density to find observable in state |n), in the mixed ensemble. For
example, in coordinate representation,

plz, ', t) =Y Petpi(z' )y (a), (3.87)
k

and
w(z,t) = p(x,z,t) = Y Pelthp(z)[? (3.88)
k

is probability density of the coordinate z, in the mixed state ensemble.

From the above sketch we see that pure states can be associated to the
standard form of unit while mixed states can be associated to general form
of unit (3.80), with the identification Py = 1/g; and normalization condition
Trace T = 1. Then, 9 are seen as components of vector in space Ry, and
(3.88) is scalar product in RZ° given by the dual metrics g = T see Eq. (3.32).

Also, there are some other examples of using weight functions in functional
analysis. For example, well known space Ly pla,b] of complex functions is a
Hilbert space if one defines scalar product as [11]

b
(frg) = / dz p(z) f(2)j(z), (3.89)
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where the weight function p(z) is real and positive, in the region [a, b]. Suppose
that polynomials p,(z) constitute orthogonal system, i.e.

b
- / do p(2)pm(@)pa(). (3.90)

Then, up to constant factors, for p{z) = 1, a = —1, b = 1 we obtain Legendre
polynomials, for p(z) = exp{—z?}, a = —oo, b = +00 we obtain Chebyshev-
Hermite polynomials, and for p(z) = exp{—z}, a = 0, b = +oc we obtain
Chebyshev-Lagerre polynomials.

The above examples are given just to stress that some elements of infinite-
dimensional (discrete or continuous) case of M(n,C, x), where unit is not nec-
essarily of standard form, are well established in quantum mechanics of mixed
states and in functional analysis. In both the cases, their discrete finite-dimensi-
onal limit leads to consideration of M(n, C, x) equipped by unit of a general form
(3.79).

In finite-dimensional case, there is the following example where inhomoge-
neous dilation (3.33) is explicitly used. For system of N point-particles with
different masses, in three-dimensional Euclidean space we have the following
Lagrangian:

= - Z msis — Ulz;), (3.91)

where Ty = (2, Zr+1, Tk4+2) are coordinates of the particles, and my = myy; =
Mia2, k= 1,...,3N — 3. Introducing z} = /m;z;, one can rewrite the above

Lagrangian as
13 .,
=3 > af ~Ulx)). (3.92)
=1
The same transformation of coordinates can be used in the case of Schrodinger
equation for system of N particles.

4 Examples of matrix Lie-Santilli algebras and
groups

4.1 Algebra s0(3,R, x) and group SO(3,R, %)

A number of realizations of Lie-Santilli algenras and groups have been intro-
duced and developed so far by Santilli [3, 8, 9, 4]; see also review by Santilli and
Animalu [5]. In this Section we make a close consideration and review of some
examples useful in physics.

We start our consideration of examples of matrix Lie-Santilli algebras and
groups with the general form of unit by consideration of so(3, R, x).
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Let us briefly recall the usual so(3, R) algebra. Basis elements of this algebra
are 3 x 3 skew-symmetric matrices,

0 0 0 0 0 -1 0 1 0
Xi=10 0 1], Xg=1 00 0 ], Xg=1{ -1 00
0 -1 0 10 0 ¢ 0 0
(4.1)
These matrices satisfy commutation relations
X1, Xo] = X3, [X3,Xi]=Xs, [X2,X3]=X:.
One can construct non-skew-symimetric matrices
Xi = Xzi or X.L = in, (4.2)
with the unit matrix A
I = diag(ai, a9, a3) (4.3)
identically satisfying the X-commutation relations
[Xl)XZ])Q = X?n [X3)X1]§< = X% [X% XS])"( = Xl' (44)

Indeed, e.g., for the first x-commutator in the above equation we have
X TXs — XXy = Xy ITXod — XoIT Xy I = (X1 X5 — XoX0)] = Xsl. (4.5)

However, these Xi matrices can not be used to construct the group SO(3, R, §<),
except for the trivial case a; = ap = ag, which makes X ;'s skew-symmetric. In-
deed, only skew-symmetric matrices correspond to the orthogonal group; see
Eq. (3.69). X

To construct appropriate X;’s with general values of the parameters a;, we
proceed as follows. First, we calculate for ordinary X;’s given by (4.1) the
commutators Xika - kaXi. They are

X IXo—Xol Xy = a3Xs, Xs3lX1—-X1IX3=ayXe, XolX3—X3lXs,=a1X;.

Then, we use the duality property (2.21) of the x-commutator, and find that
the matrices X; of the form A o
X =IX;I, (4.6)

are skew-symmetric by construction, namely,

. 0 0 0 0 0 —aes
Xi={ 0 0 agas |, Xo= 0 0 0 , (4.7)
0 —agas O aiaz 0 0
N 0 ajag 0
X3: Q102 0 0 y
0 0 0



-327 -

and satisfy the commutation relations
(X1, Kol = asXs, [Xs, Xl =aske, [Ko, K]y =X, (4.8)

Corresponding matrix exponents, namely, éi(t) = é”z", obtained by the use of
Eq. (3.56) are of the following form:

ay 0 0
O = 0 as oS \/dsast Vazas sin \/azast |, (4.9)
0 —,/asagsin . /asast a3 cos y/azazt

aj cos \Jajagt 0 - /aiazsinJajozt
t] 0

az

Vvaiagsin Jajast 0 ag cos /aiast

A ay cos Jajast Jaiassin /fajast 0
O3 = | —,/ai63sin\/ajazt  apcos./aiast 0 1}. o (4.11)
0 0

ag

, (4.10)

Simple but tedious algebra shows that these matrices have determinants equal
to Det I = ajagas, and satisfy orthogonality condition (3.7). Therefore we
conclude that linear combinations of these basis elements constitute the group
SO(3,R, x).

- Action of the O;’s on vector 1 = (%1, x2,73) is of the form O;1r, so we
present explicit forms of the matrices éi = Oiff‘, which are of practical use,
below:

1 0 0

Oi=10 cos /azazt Vaz/essinJazazt |, (4.12)
—v/as/azsin Jasast coS8 +/azast
cos y/aiast 0 —+/a1/azsin /ajast
Oy = 0 1 0 , (4.13)
vas/ay sin Jajazt 0 cos y/ajast

cos \/ajast vVei/agsin/ajast 0
O3 = | —\/ay/a;y sin\/arast C0S \/G1 Gzt 0. (4.14)

0 0 1

<

4.2 The groups SO(2,R, X) and U(1,C, %)
According to the results of Sec. 4.1, elements of the group SO(2,R, x) are of

the form
A ai cos . /aiast vaiag sin /ajast
0= v . (4.15)
—y/a1agsin /aiast Qa3 COs (/aiast
This matrix is counterpart of the matrix of usual rotation of Euclidean plane.
We are interested in the group U(1,C, X), from which, by making it real,
the group O(2, R, X) can be obtained. We recall that in the usual case elements
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of U(1) are complex numbers of unit module, e**. The representation (4.15) can
be reproduced by the following realization map. A

First, we note that for the 2 x 2 unit matrix I = diag(a1,a2), we have
Det [ = ajay, and Det O = ayay = Det I, as it should be for special orthogonal
matrices. We introduce the complex number

£ = Det Fexp{iVDet I't}, (4.16)
and the matrix

:@( Bl (1)) 4.17)

Observe that |¢] = Det I, and the matrix .J has the properties

~

J=-1, (4.18)

-

Det J = Det I, Ji=J

and does not commute with [ ,

ij—jfzvbafmy-@)(g 1). (4.19)

<

However, it x-commute with I, namely,

IxJ—Jxi=o. (4.20)
Also, note that, particularly, O(0) = I and O(x/2) =
Then, it can be verified that the realization map is given by

=r(¢) = Re £(Det T)1 + Im £(Det T)J. (4.21)

Indeed, Re £ = Det I cos./atast, Im & = Det Isin . /a; azt, and multiplying
these by (Det T)I and (Det T').J, respectively, we reproduce, after summing up,
the representation (4.15). Note that determinant of the realization map matrix
is
Det () = [¢], (4.22)

and matrix r X-commutes with J due to Eq. (4.20) that means that J is indeed
an operator of complex character,

Thus, elements of U(1,C, x) are of the form (4.16), with product of the
complex numbers given trivially by

& =& xb =& (Det T)éa, &5 € U(L,C, %), (4.23)

where Det T' = 1 /(a1a2) is a real number, and a; and ay are fixed positive real
numbers,

Note that the matrix product in SO(2, R, X) is 0,70y while in U(1,C, x)
the product is due to the above rule, where Det 7T is used instead of 7. Due to
the realization map (4.21), the groups SO(2, R, x) and U(1, C, X ) are isomorphic
to each other.
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An important remark here is that in the realization map (4.21) we used
the fact that —JT'J = I due to Eq. (4.18). By this, we achieved isomorphism
between SO(2, R, %) and U(1,C, x). Indeed, one can see from the form (4.16) of
¢ that the group U(1,C, x) is characterized by one independent parameter a =
Det I = ayag, while SO(2,R, x) is characterized by two independent parameters
a1 and as. So, if we were used the matrix —J2 = JJ = (Det I )1 as a unit matrix
we would obtain SO(2, R, X) characterized by the only parameter a instead of
the two parameters a; and as. Namely, the unit would be of trivialized form
ajaqdiag(l,1) and elements of group SO(2, R, X) would be of the form

A cos /ajast  sin . /ajast
0= vaa, ( —sin /ajagt cos./aiazt ) ) (4.24)

Thus, the lesson is that we should use —J7'J rather than —J.J to define the unit
maftrix in realization map. Of course, we have some features stemming from the
real dimensionality two. See Sec. 4.5 for general consideration of the realization
map, n > 2.

For convenience and to have consistence with the general definition (3.9),
we take £ € U(1,C, %) in the form (4.16). Note that we can replace Det I by
any real parameter but we are using Det I to keep explicit correspondence with
SO(2,R, x).

. In fact, it does not matter which non-zero value the module of £ has because
it can be absorbed by appropriate definition of the product (4.23) and associated
realization map (4.21). For example, we can put £ = Vv Det I exp{iV/Det It}
provided that Det T in Egs. (4.23) and (4.21) is replaced by V' Det 7', obtaining
the same result. Moreover, we can put simply £ = exp{iV Det It} ie J€| =1,
and, accordingly, drop Det T' in Egs. (4.23) and (4.21).

This demonstrates the fact that group U(1, C, X) is isomorphic to usual U(1),
up to the factor V' Det I in the argument of complex number. This factor is of

importance since V Det [ is fixed, and

exp{iV Det It;}exp{iVDet Ity} = exp{iVDet I(t; + t2)} (4.25)

is again element of U(1,C, x) for any t; and t,, while, for example,

exp{iV Det [t,} exp{its} (4.26)

is not element of the group for any t; and .
In other words, U(1,C, ) consists of complex numbers ¢ with modules |¢| =

Det [ and arguments Arg ¢ dividable to v/ Det I, i.e. arguments modulo number

VDet I.

4.3 Action of the group U(1,C, X)

Let us consider the action of group U(1,C, x).
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While U(1) linearly transforms C equipped by standard metrics
|2 = 2? + 97,
the group U(1,C, X) must conserve, by definition (3.2), metrics
]z[é = a17° + apy?,

which is not conformally equivalent to the standard metrics |z|2. In fact, we see
that group U(1) C € and produces motion of C = R2 while group U(1,C, x) c C
and produces, with the action defined by (3.19), motion of C; = Rg, where Rg
is Euclidean (flat) space equipped by the metrics a122 + asy?.

The fact that we can rescale module of £ € U(1,C, x) to 1 without loss of
generality corresponds to the conformal equivalence of the metrics a3 z? + apy?
and b(a12? + apy?), where b is a real constant.

We are interested to find out transformation of C, corresponding to rotation
(4.15) of the space RZ.

Let us consider action of SO(2,R, %) on RZ. Action of (4.15) on vector

r = (z,y) reads Oxr, namely,

OFr = cos «/a1azt Va1 /as sin \J/atazt T (4.27)
—+/ag/a; sin \/a1azt cos /103t vy /) ’

The matrix O = OT has the following particular values:
O©) =1, O(r/2)=JT = (Det T)IJ. (4.28)

The transformation (4.27) is a linear one,

(= 9)(:),

where a, b, and ¢ are real parameters. However, linear transformation of complex
space, z — Az, where A = (a + ib), z = (z +iy) € C, results in

(400

Obviously, the use of modified transformation z Axz = A(Det T)z does
not yield transformation of the form (4.29) because this causes just additional
dilation by the real factor Det 7.

Thus, we are led to consider transformation of the general form

z+ F(z,2).

Let us consider standard R? and make the inhomogeneous dilation (3.33) of its

coordinates,
¢ =z/vai, y =y/Vaz (4.31)



-331-

Then, r? = z2 + y? becomes

= az’? +agy® = r'Ir’ =1 (4.32)
Since 01,2 > 0 the transformation (4.31) is invertible and well defined. Associ-
ated Jacobi matrix is the same as the transformation matrix of (4.31), namely,

( 1/6/51‘ 1/\0/[_5 ) - F (4.33)

and Jacobian is Det 7. This transformation obviously provides the map R? >
RZ due to Eq. (4.32); r = (z,y) € R?, 7' = (2, ¢/) e RZ.

In terms of complex coordinates, using z = (2 + 2)/2, y = (z — Z)/2i we
obtain from the transformation (4.31)

y 2tz z—2Z _, z+Z z-—-Z (4.34)
? "2,/a1+2«/a2’ N C2a .
o , 1 1 I (4.35)
2 _(2ﬁ1‘+2\/65)2+(2\/(ﬂ 2\/52.)z=f(z,z), .
I 1 1 .
z _—(2 /—‘—al +2 [—‘a2)z (2 /——‘al 2 f““az)z—‘f(z? z)’ (4‘36)

Function f in the transformation (4.35) depends on Z, and thus it is not complex-
analytic function (8f/8% # 0), which thus makes non complex-analytic trans-
formation of complex plane C. We write in this case C — C,, to avoid confusion
with the usual convention that transformation of complex plane, C 3 C, means
complex-analytic transformation. Accordingly, we write 2’ € C,.

Function f(z,%) is a sum of holomorphic and antiholomorphic functions,
f(z,2) = fi(z) + f2(2), each of which is a linear function of its argument.

Below, we make various linear transformations of complex plane C, namely,
C + C, and analyze what kind of transformations they induce in complex plane
Cy, namely, C, — C,,.

Let us make linear complex-analytic transformation of C, namely, z + Az,
and see its image in C,. We observe from (4.35) that f1(z) becomes Af;(z) while
f2(%) remains intact, and thus we have no linear transformation of C, which is
of the form 2’ +— Az’. By construction, this describes the action of group U(1),
for {A| = 1. So, the image of U(1)-action on C is some non-linear transformation
in C,.

By making linear non complex-analytic transformation of C, namely, z
Az + Z), we readily obtain that the image of this transformation in C, is linear
complex-analytic transformation, 2’ — A2/, of C,. However, this still does not
describe the action of group U(1, C, x).

By making linear non complex-analytic transformation of C, namely, z
Az + 2) + pu(z — %), we obtain the image of this transformation in C, which is
linear non complex-analytic transformation of C, which do correspond to the
action of group U(1,C, x).
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Indeed, by choosing complex numbers in the form

= L (@atiyab), p= (V@b iyaa) (4.37)

where a and b are arbitrary real numbers, and making non complex-analytic
transformation of C, as above,

2 M+ 7))+ p( - 7)), (4.38)

we obtain directly the following associated transformation of Rg:
7 !
N, a Vaz/aib o\ (4.39)
Yy —v/ai/agb a y
which is of the required form (4.29).

4.4 Group SO(1,1,R, x)
In the usual setting of group SO(1, 1, R), we have the generator of the form

01
X = ( 10 ) , (4.40)
and the usual matrix exponent gives us elements of the proper group in the form
_ | cosh ¢ sinh ¢
0= ( sinh ¢ cosh ¢ ) ) (4.41)

This matrix is pseudo-orthogonal, OGO = G, where G = diag(1,—1), and
Det O = 1, so that the scalar product zGz = (z°)? — (2!)? is conserved; 2°
and z! are local coordinates of two-dimensional pseudo-Euclidean (Minkowski)
space M?2. Also, there is a smooth path from O to I = diag(1, 1)

In the group SO(1,1,R, x), the unit is I = diag(ag,a1); T = (I)~1. The
generator can be chosen here as X = [XT (see Sec. 4.1),

X = agmy ( (1) (1) ) , (4.42)

which supplies us, by the help of the matrix exponent é*¥ = e#XT] with
elements of the group having the form (cf. Eq. (4.15))

0= agcosh /agaid Vaparsinh J/agaio (4.43)
— \+agarsinh Jagaié  ajcosh /aparo ) ’

This matrix conserves the scalar product

2Gz = ag(z°)? — a1(z!)?, (4.44)
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where metrics is

AN i ap 0
G—IG-—( 0 —a ), (4.45)

in the sense that
OxGx0t = OTGTO = G. (4.46)

Also, O can be continuously connected to the identity transformation I by
¢ — 0. It is instructive to check the above psendo-orthogonality (4.46), where
T = diag(1/ag,1/ay) is used for the product, since OW)xIxOt () # I, in
contrast to the expectation that O('t/))xf th(z,;) = I. In fact, this is equal to
O with double angle, O(p)xIx Ot(z/)) O(2¢). Moreover, similar (simple but
tedious) calculations show that in addition to Eq. (4.46), we have

AAAAA

OWGWO! = G, (4.47)
where we have denoted
2 A1 1/&0 0
N L a0

Our comment here is that we can use the pair_ (G W) instead of (I, 7).
~ Action of the matrix Oonr= (a: ,z1) is OTr, namely,

70 = xocosh P+ $11 / ggsinh ¥, 2l = \ /g-l—xosinh P+ z'cosh o, (4.49)
1 ' ap

where we have denoted ¥ = \/agai, for brevity. At z! = 0, we have from

Eq. (4.49) .
IE’ a1
;,TO. = A / Egtanh ’t/) (450)

In the context of special relativity in two dimensions, z° = ct, the Lh.s. of
Eq. (4.50) is the relative speed v/c of the frame of reference (ct, 2') with respect
to the frame of reference (ct’,z'*). Thus,

ap v

tanh ¥ = (4.51)

ai ¢

Inserting this into Eq. (4.49), we obtain by the use of trigonometric relations

sinh ¢ = tanh ¥//1 — (tanh )2 and cosh ¥ = 1//1 — (tanh ¥)2,

1a0 ’U/C

P
IR iy s m

where we have denoted
f= |27 (4.53)
ay C

(4.52)
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Since only the ratio ag/a1 is present in Eq. (4.52), we denote

a1
EN e 4.54
a M% (4.54)

and rewrite it in a more compact form
r v Iy~ 71 - 1 A
t'=(t+ POyl Y, z' = (z" +uvt)y, (4.55)

where we denote the ¥-factor

1

= e
V132
and f = v/(ac).

The following remarks are in order.

(a) We took without proof that the trigonometric relations used above in the
case of metrics diag(a;, —ay) are the same as they are in the case of standard
pseudo-Euclidean metrics diag(1, —1), and note only that the spaces are flat in
both the cases.

(b) Despite the fact that [ depends on two parameters ag and ay, and the
generator X depends on the product ajas, only their ratio (4.54) has appeared
in'the transformations (4.55).

(c) We see from Eq. (4.55) that the only distinction from the conventional
Lorentz transformations is that the constant ¢ is replaced by ac. This can
be understood as follows. Making inhomogeneous dilation (rescaling) of the
coordinates z° — 29/,/Gp and z' + z'/,/aj to obtain metrics G from G, we
simply change the slope of isotropic line, ! = ct to z! = act.

(d) We expect that such properties extend to the action of the higher-
dimensional pseudo-orthogonal group SO(3,1,R, X) on the corresponding four-
dimensional Minkowski space-time, with three different coefficients appearing at
¢ in three main space axeses Oz, Oz?, and Ox® of a chosen coordinate system
(space anisotropic behavior).

(4.56)

4.5 Realization map

The realization map constructed in Sec. 4.2 can be extended to higher dimen-
sions in the following way.

First, we note that GL(r,C, x) and GL(m, R, X), m = 2n, in general have
the units parameterized by n and 2n parameters, respectively. In the two-
dimensional case it appeared fortunately that —J2 = [ exactly for special choice
of the parameters. However, this is not the case in higher dimensions, n > 2, and
some reparameterization is needed to achieve match between the parameters.

Indeed, the 2n X 2n matrix J has the form

j:(fig). (4.57)
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where n x n matrix I= diag(q1,92, .- -,qn) is unit in GL(n,C, x). Note that
Det J = (Det 1)2. The corresponding 2n x 2n unit I, in GL(2n,R, X) can be
found by squaring the matrix J with the help of unit matrix Igm,

fgen = diag(a1, a2, ..., 02,), (4.58)
of GL(m, R, x), m = 2n. Namely,

Ton = —J%J = = JTyend = ( Igl 122 ) , (4.59)

where Tgen =T g';,n and
K = diag(g?/ant1, 5/ ant2, - -, G2 [020), (4.60)
Ky = dla.g(ql/ahqz/az, ,qf;/an). (4.61)

Then, the unit matrix s, depends on 2n independent parameters, with extra
n independent parameters coming from Ige,. The realization map for matrix
M = A+iB, M € GL(n,C, %), is given by

r(M) = Ih,A+ JB, r(M)e GL(2n,C, X). (4.62)
However, Iy, is not equal to fgen even if we identify ¢; = a4, ¢ = 1,...,n.
Explicitly, in this case we have

K; = diag(a?/an.1, az/an,a,. .., ai/azn)

and
K, = diag(aq,as,...,a,).

Only after the reparametrization
a?/anH = Oy, 1=1,...,n, (463)

we obtain K; = diag(@ni1,8n42,-..,02,), and thus achieve the identification
I 2n =~ 1 gen-

Let us consider the case n = 4 for an illustrative purpose. Let GL(2,C, %)
and GL(4,R, X) have the units

aa 0 0 O
IW(%I q‘l), fpen=| o © a03 0 (4.64)
0 0 0 a4
respectively, and Tye, = A_e%. Then, J is
0 0 ¢ O
J= ~(2n g 8 Tl (4.65)
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and unit f4 =J Tgenj has the form

g /a3 20 0 0
- 0 g5/a4 0 0
I = 0 0 ¢fax O . (4.66)
0 0 0 g3/a

Putting ¢1 = a; and g2 = a3, and reparameterizing a?/az + a3 and a3 /ag > a4
we reproduce Iy = Igep.

4.6 Matrix algebra M(2,C, x)

Let us consider M(2, C) matrix algebra consisting of all 2 x 2 matrices over the
field of complex numbers C.

Additive basis of the matrix algebra M(2, C) consists of unit 2 x 2 matrix I
and matrices gy,

. 0 0 1 0 1
0’12((2) ——?j)’ 02=<w1 O), 0'3:(2. O). (4.67)

This means that the algebra with the basis
{I) g1, 02, 03}, (468)

and relations
004 -+ 040 = —215ij1 (469)

over C, ie. the universal enveloping algebra of su(2,C), is isomorphic to
M(2,C). Note that the above o-matrices are traceless and skew-Hermitean
in M(2,C), and are related to usual Pauli matrices by factor i, with labels 1 and
3 interchanged.

Following Santilli, we define new unit matrix

I= ( %1 0 ) . q2>0, IeM(20C), (4.70)
q2
and the associated x-product between the matrices
MXN = MTN, M,N e M(2,C), (4.71)
where /
P pe /¢ O 5
T=1"'= , T eM(2,C). 4.7
(" 1 )s TemEo (@72
Explicitly,
MXN = MTN = ™11 ™2 ) @’ 0 1 T2 (4.73)
Moy Mo 0 gt ngp  Nag

miinig | Myang; miinis 4 Maanon
( ) (4.74)

q1 q2 a1 2
Maginyy 4 MooNgy  MaiTiy | MgaNag
q1 qz2 q1 q2
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We would like to construct an additive basis
{I, i61, i64, 63}, (4.75)

in terms of which elements of the algebra M(2,C, X) are presented as linear
combinations. Namely,

M = wol + 21361 + £2i69 + x3i63, M € M(2,C, X), (4.76)

where x; are parameters. Note that we are not using X-product to multiply
matrices by parameters (numbers) in Eq. (4.76) because parameters are not
elements of the matrix algebra, and we are not considering action of matrices
on a vector.

The criterium to determine 6-matrices is that they, together with the unit
I, must form additive basis in algebra M(2,C, x).

One of the possible ways to construct such a basis is that 6-matrices must
satisfy the following anticommutation relations, instead of the standard (4.69),

6:76; +6,T6; = 215, (4.77)
or, defining x-anticommutator,
{M,N}; = MXN + NXM = MTN + NTM, (4.78)
we rewrite the above as )
{64,6;} 5 = 216;. (4.79)
We have two formal algebraic solutions for these equations,
6; = oy, (4.80)

ie.

A z'q1 0 - 0 a2 A 0 z'q2
g = ( 0 ‘i(]g ) , Og = ( —q 0 ) , O3 = ( iq1 0 . (481)
and R
5“2' = IO’,‘, (482)

i.e.

a i 0 a 0 q1 s 0 ¢
01-( 0 ——z'q2>’ 02-(_q2 0), 03—<iq2 0 |- (4.83)

Indeed, we have identically for (4.82)
&7T&J + &JT&Z == fO’iTjUj + foijai = f(o‘idj + arjai) = —f25ij, (484)

and similarly for (4.80).

Note that the relations (4.84) hold for any invertible 2 x 2 matrix I, not only
for those having the above mentioned diagonal form (4.70). This means that
the algebraic solutions (4.80) and (4.82) are formal.
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We stress that the spaces M(2,C) and M(2,C, x) are isomorphic to each
other. The difference is that they have different bases, B = {I, 0y,02,03} and
B = {I, 61,869,683}, respectively, and different definitions of matrix product.
In view of the solutions (4.80) and (4.82), these bases are related to each other
simply by

B = BI, (4.85)

and

B=1IB, (4.86)
respectively. From this point of view, if one change the unit I by some transfor-
mation matrix, the same matrix should be used to change remaining elements
of the basis. This justifies partially the choice of algebraic solutions in the forms
(4.80) and (4.82).

An important note is that in general matrices &; are not skew-Hermitean and
not traceless. However, due to Eq. (3.58), we must have Trace 6;1" = 0 for ma-
trices (4.80) to meet the condition |Det U} = Det I for the associated Lie group.
This is indeed trivially the case. The problem of the lack of skew-Hermiticity
concerns algebra su(2,C, %), and is considered in the following Section.

4.7 Algebra su(2,C, x) and group SU(2,C, x)
Lgt us find norm of the vector
X = x1i01 + 19169 + 13163 (4.87)

in space su(2,C, ). Using Eq. (4.81) and noting from Eq. (4.77) that 62 = —],

6% = —1I, and 6% = —I, we have (the Killing metrics)
IX[* =Det X = qigo2(z? + 2% + 23) = (Det 1)(2? + 22 + 22). (4.88)
Transformation
X = uxXxu™t, wesu2,C, %), (4.89)

is orthogonal in the sense of the scalar product (4.88), namely,
Det X = Det (ux X xu™%). (4.90)

Thus, any matrix Z € su(2,C, x) makes linear transformation ad Z = 1Z,X]s
of three-dimensional space su(2,C, x).
Metric tensor of space su(2,C, X) due to Eq. (4.88) is, evidently,

31']' = 5ijDet f, (491)

which is conformally equivalent to the usual Euclidean metrics d;; of three-
dimensional Euclidean space R3.

Formally, 6-matrices form representation of algebra su(2,C, x). To prove
this, we must verify the following commutation relations:

[5‘1,6‘2];( - 2&3, [53,&1]>‘< = 26‘2, {6’2,6'3]§< = 26’1. (492)
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One can easily verify by using (4.80) or (4.82) that these relations trivially hold.
Note, however, that in general the matrices &; are not skew-Hermitean. This
give us no possibility to construct associated unitary group with their help.
They become skew-symmetric in the particular case, ¢; = ¢ = ¢, that leads,
however, to reduction of I to scalar matrix

I= dia’g(q5 Q) =ql, (493)

and therefore trivializes the attempt.

Also, application of the duality method developed for so(3,R, X) in Sec. 4.1
to the case of su(2,C, x) does not seem to provide us with an appropriate
algebraic solution. The obstacle is made by oy matrix, which has a diagonal
form whereas none of X,’s has a diagonal form. Explicit calculations show that

o1log ~ a2l = (g1 + @2)os, o1los — o3foy = —(q1 + q2)o2, (4.94)

02f03 - Usfﬂz = Q1Q2T01,

implying that the matrices

~

6; = loif (4.95)

having explicit skew-Hermitean form

. 2 I3
~ _f O A 0 49 A 0  iqiqe
-Ul*( 0 —ig3 ) 02—( ~qgz 0 ) 03"(z‘q1q2 o )

(1.96)
satisfy
[61,62]3 = (g1 + )83, [61,63]x = —(q1 + q2)02, [62,03]5 = q1q2T67.
(4.97)

Here, the last equation includes the matrix 7' so that these commutation rela-
tions are seemed to be not Lie-algebraic. Also, direct calculations show that
x-anticommutators between these ¢-matrices are of the form

{61,061} = =213, {62,62}5 = —2q121, {83,63}; = —2q1ga1, (4.98)

{01,602} = iq1g2(q1~g2)02,  {61,63}5 = iqae(qn —q2)o3, {62,83}; =0.
(4.99)
We note that some non-zero values appear in Eq. (4.99).

Thus, the problem to construct general solution for 6-matrices which obeys
appropriate x-anticommutation and /Jor x-commutation relations, and are skew-
Hermitean, is opened. Note that we have explicit construction for so(3,R, x)
with general values of the parameters a;, i = 1,2, 3; see Sec. 4.1. And this is a
candidate to the algebra isomorphic to su(2, C, X), with unrestricted parameters
gi, © = 1,2. However, we should to note that number of the parameters a; and
g; is different.

Elements of the group SU(2,C, X) can be represented by using the matrix
exponent (see Sec. 3.3),

M =é3¥'% M e SU(2,C, %), (4.100)
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where ' are real parameters.

Direct calculations show that for the representations (4.80) and (4.82) we
obtain matrix exponents, which indeed exhibit the property Det M = Det I,
but they are not unitary. Evidently the latter is a consequence of the fact that
these representations are not skew-Hermitean matrices. In the case of unit of
the form of scalar matrix (4.93), the group SU(2,C, X) is simply isomorphic to
the ordinary group SU(2,C) since g can be absorbed by the parameters t.

In the case of the representation (4.96), we have Trace 51T = (¢1 — a2),
T?cace 62T = 0, Trace ;7 = 0, that means that Det M # Det Ifor M =
€5%'61 and thus we can not construct group SU(2,C, %) despite the fact that
these a—matnces are skew-Hermitean. Instead, we could construct U(2,C, X)
but only if the X-commutation relations (4.97) are acceptable.

A Appendix A

Distributivity implies that abstract product f(M, N) is a linear function in both

the matrices,
f(Ml +M2:N) zf(MlvN)+f(M27N)a

f(M,N1 + Np) = f(M,Ny) + f(M, N2),

restricting possible functions f (M,N) by a polynomial in M and N. Let us
define the product in the form

f(M, N) =T11M71y+13N74 + T5MT6 NT7 + T8 NT9 M 119, (Al)

where 7; are fixed matrices; M, N,7; € M(n,C). Axiom of left and right unit
gives us two equations A )
FLN)=1,

which should be solvable equations for any N to provide us the algebra with
unit. Namely, for (A.1) we have

7'1.?7‘2+7’3N7’4+T5f76NT7+T8NngT10ZN, (A2>

i N1y + 13l74 + s N1elrs + TnggNTm = N, (A.3)

from which we see that to satisfy identically the equations each term in the Lh.s.
of them must be considered separately. Namely,

Tl =0, (A.4)
7’321, 7’4:], (A5)
wsitg =1, 1 =1, (AG)

T,g:I, ngTlOZI, (A7)
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T3lTs = 0, (A.8)

=1 mm=I, (A.9)

5 = 1, rely = 1, (A.10)
relmg =1, T0=1 (A.11)

Therefore, since we assume #ZO0wehave iy = 0or 7 =0 and 3 = 0 or
74 = 0, that rules out first two terms in (A.1). Note that the same result can
be obtained by using the distributivity condition. Further, we obtain

A

I=1Y or f:Tg'l, (A.12)

where we have assumed that 7 and 79 are invertible matrices. This means that
we are left with the following two forms of product,

F(M,N)= MmN or f(M,N)=NnM, (A.13)

which are in essence equivalent to each other.

Putting the constant terms 7, I, and 73174 to zero is an obvious requirement,
while putting the remaining terms of Eqs. (A.2) and (A.3) separately equal to N
needs some comments. To see more closely on the above made separation of the
terms let us check the associativity condition, f(f(M, N),P) = f(M, f(N, P)),

f(f(M> N),P) = 7'5(7'5M7'6N7'7 -+ TsNTgMTl())T6PT7 (A14)
+18 P (15 M6 N7 4+ 18 NT9g M T19) 10,

f(M,f(N, P)) = 7'5M7'6(7'5NT6P7’7 -+ TgPTgNTm)T7 (A.15)
+7‘3(‘T‘5NT6PT7 +T8P7'9NT19)’1'9MT10.

Obviously, the associativity condition is not satisfied for this general form of
the product. The term 7575 N79 M 71076 P77 is present in Eq. (A.14) while such
a term is absent in Eq. (A.15). Therefore, to meet the associativity condition
we must put one of fixed matrices in this term equal to zero. This leads to
discarding either third (75 = 0 or 75 = 0 or 77 = 0) or fourth (g =0o0r79=0
or 719 = 0) term in the definition (A.1), thus yielding its separate consideration.
For 73 = 0 or 79 = 0 or 79 = 0, the associativity condition reads

7‘5’7’5M7’6N7‘77’6P7‘7 = T5MT6T5NT6PT77'7, (A.lﬁ)

from which we find again 75 = 7 = I. For 75 = 0 or 76 = 0 or 77 = 0, we find
similarly 73 = 730 = I. As the conclusion, we obtain the product in the form
(2.3).

For completeness, let us consider higher degrees (> 2) in M or N in definition
of the product. Using axiom of left and right unit, f(I, N )= f(N,I) =N, one
can see that there is no possibility to have these equations identically satisfied
for fixed 7; and any N. For example, the definition

f(M, N) = TlMTQNT3N+NT4MT5NT6 + N NrmgMy, (Al?)
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where 7; are fixed matrices, M, N, 7; € M{(n,C), implies

T]fT2NT3N+NT4iT5N76+NT7N7'8iT9::N, (A].S)
T1NT2f73j+fT4NT5jT6 +fT7iT8NTg=N (A.lg)

These two equations can not be identically satisfied for fixed 7; and arbitrary
N. Indeed, in the first equation, matrix N appears two times in each term of
the Lh.s. so that some of 7; must be of the form N~! to satisfy this equation.
However, we assume that 7;’s are fixed matrices so that they can not be of the
form N—1, where N is an arbitrary matrix. The same reason rules out any
higher degree in M or N. Thus, the form (2.3) is the most general form for
associative and distributive product in matrix algebra with unit.

B Appendix B

Below, we present the proof of the statement that matrices I and I are not
similar to each other. It is based on the construction of the associated invariant
polynomials [2].

Let us consider the matrices of the form (A — A), where A is 2 x 2 matrix
and A is a real number.

Two matrices A and B are similar to each other iff the matrices X = (IA— A)
and Y = (IX — B) have the same invariant polynomials.

For the case under study, A = I and B = I, we have

X = (A= 1)I =diag(A— 1,A—1).) (B.1)

and R
Y = (IA— 1) =diag(A — q1,A — g3). (B.2)

Let us find invariant polynomials of X. Main minors of X are

2nd order minors: (A —1)3, B3
st order minors: (A —1), (A—1). (B.3)

Largest common quotients of the minors are
da(A) =(A—=1)%, (M) =(A-1). (B.4)
Then, the invariant polynomials are
(M) =do/di =(A-1), is(N)=dy =\ -1). (B.5)
Let us find invariant polynomials of ¥. Main minors of Y are

2nd order minors: (A — g1)(A — g2),

Ist order minors: (A —q1), (A~ go). (B.6)

Then, largest common quotients of the minors of are

d2(A) = A= q)(A—q), di())=1. (B.7)
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Thus, invariant polynomials are
i2(A) =da/di = (A~ @) A— @), 1(A)=di =1 (B.8)

We see that the invariant polynomials of I given by (B.5) and of I given by
(B.8) are different. Thus, the matrices I and I are not similar to each other in
the sense of (2.60) and (2.61).

Perhaps, the above presented strict proof is not necessary to see that I and
I are not similar to each other since it is almost obvious. However, we have seen
that I and I are homotopically equivalent in the space of matrices, for ¢; 2 > 0,
that could be thought of as they are related to each other by the similarity
condition I = V=!IV for some matrix V. We have proved explicitly that this
is not the case.

One can easily prove that this property holds for general n-dimensional case,
M(n,C), by noting that n = 2 case forms subspace of the higher-dimensional
Cases.
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