Category of Lie-Santilli Isogroups

S.S. Moskaliuk

Bogolyubov Institute for Theoretical Physics, Metrolohichna Street, 14-b, Kyiv-143, Ukraine, UA-03143
e-mail: mss@bitp.kiev.ua

Abstract. In this work we demonstrate the possibility of category theory to provide a compact method of encoding mathematical isostructures in a uniform way. In this way we constructed a category of isogroups $\hat{\text{Grp}}$, a category of vector isospaces $\hat{\text{Vect}}$, a category of topological vector isospaces $\hat{\text{TopVec}}$ and a category of topological isogroups $\hat{\text{TopGrp}}$. These categories helped us to build a category of Lie-Santilli isogroups $\hat{\text{LSGrp}}$ too.

Keywords: Category theory; Lie groups; Santilli functor

PACS: 02.10.De; 02.20.Sv; 02.20.Qs

INTRODUCTION

As a result of these efforts, the new mathematics can be constructed via the systematic application of axiom-preserving liftings, called isotopies, of the totality of all structures in the mathematics: including all operators and their operations, including the isotopic lifting of numbers, functional analysis, differential calculus, geometries, topologies, Lie theory and others [2, 3].

Category theory groups together in categories the mathematical objects with some common structure (e.g., sets, partially ordered sets, groups, rings, and so forth) and the appropriate morphisms between such objects [4, 5]. These morphisms are required to satisfy certain properties which make the set of all such relations ‘coherent’. Given a category, it is not the case that every two objects have a relation between them, some do and others don’t. For the ones that do, the number of relations can vary depending on which category we are considering.

Definition 1 A category is a quadruple $(\text{Ob, Hom, id, } \circ)$ consisting of:

(C1) a class Ob of objects;

(C2) for each ordered pair (A, B) of objects a set Hom(A, B) of morphisms;

(C3) for each object A a morphism $\text{id}_A \in \text{Hom}(A, A)$, the identity of A;

(C4) a composition law associating to each pair of morphisms $f \in \text{Hom}(A, B)$ and $g \in \text{Hom}(B, C)$ a morphism $g \circ f \in \text{Hom}(A, C)$;

which is such that:

$(M1) \ h \circ (g \circ f) = (h \circ g) \circ f \text{ for all } f \in \text{Hom}(A, B), \ g \in \text{Hom}(B, C) \text{ and } h \in \text{Hom}(C, D)$;

$(M2) \ \text{id}_A \circ f = f \circ \text{id}_A = f \text{ for all } f \in \text{Hom}(A, B)$;

$(M3) \ \text{the sets } \text{Hom}(A, B) \text{ are pairwise disjoint}$.

1 This work was supported in part by the R. M. Santilli Foundation.
CATEGORIES OF ISOGROUPS AND VECTOR ISOSPACES

In [6, 7] we built a category of isogroups \mathbf{Grp} which consists of isogroups G as objects i.e., we constructed the elements for each object \hat{G} of the category \mathbf{Grp} as $\hat{a} \equiv aI \in \mathbf{Grp}$, where the isounit I is defined with the help of an invertible element $T : \hat{I} = T^{-1}$, called isotopic element, and the new composition law is defined by

\[
(\forall a, b \in \mathbf{Grp}) \quad [\hat{a} \circ \hat{b}] \equiv \hat{a}T \hat{b},
\]

satisfying the following axioms:

$\hat{G}.1^o$ For any two elements \hat{a} and \hat{b} there exists an element

\[
\hat{c} = \hat{a} \circ \hat{b}
\]

$\hat{G}.2^o$ This operation is associative, that is, for any three elements $\hat{a}, \hat{b}, \hat{c}$

\[
(\hat{a} \circ \hat{b}) \circ \hat{c} = \hat{a} \circ (\hat{b} \circ \hat{c})
\]

$\hat{G}.3^o$ There exists a isounit \hat{I}, i.e., an element such that for every element \hat{a}

\[
\hat{a} \circ \hat{I} \equiv \hat{a}T \hat{I} = \hat{a}TT^{-1} = \hat{a}
\]

$\hat{G}.4^o$ For each element \hat{a} there exists a symmetric element \hat{a}^{-1} such that

\[
\hat{a} \circ \hat{a}^{-1} = \hat{a}^{-1} \circ \hat{a} = \hat{I}
\]

If the isogroup \hat{G} satisfies in addition the axiom

$\hat{G}.5^o$. For any two elements \hat{a} and \hat{b}

\[
\hat{a} \circ \hat{b} = \hat{b} \circ \hat{a}
\]

then the isogroup \hat{G} is called commutative or Abelian.

And the category of isogroups \mathbf{Grp} also consists of isohomomorphisms $\hat{f} : \hat{G} \rightarrow \hat{G}'$ between isogroups (\hat{G}, \circ) and (\hat{G}', \circ') as morphisms $\hat{f} \in \text{Hom}_{\mathbf{Grp}}(\hat{G}, \hat{G}')$, where the following property holds:

\[
(\forall \hat{a}, \hat{b} \in \hat{G}) \quad [\hat{f}(\hat{a} \circ \hat{b})] = \hat{f}(\hat{a}) \circ \hat{f}(\hat{b})
\]

Thus an isohomomorphism “carries” the composition law \circ on \hat{G} to the composition law \circ' on \hat{G}'. It can be proved easily, that if category \mathbf{Grp} is a monoid and also a groupoid for the fixed isotopic element T, with the above internal composition, it can become an isogroup \hat{G} with unit \hat{I}.

Let $\mathcal{F} : \mathbf{Grp} \rightarrow \mathbf{Grp}$ and $\mathcal{F}' : \mathbf{Grp} \rightarrow \mathbf{Grp}$ be two Santilli functors [6]. A natural transformation $\alpha : \mathcal{F} \rightarrow \mathcal{F}'$ is given by the following data: For every object A in \mathbf{Grp} there is a morphism $\alpha_A : \mathcal{F}(A) \rightarrow \mathcal{F}'(A)$ in \mathbf{Grp} such that for every morphism $f : A \rightarrow B$ in \mathbf{Grp} the following diagram is commutative

\[
\begin{array}{ccc}
\mathcal{F}(A) & \xrightarrow{\alpha_A} & \mathcal{F}'(A) \\
\mathcal{F}(f) \downarrow & & \downarrow \mathcal{F}'(f) \\
\mathcal{F}(B) & \xrightarrow{\alpha_B} & \mathcal{F}'(B)
\end{array}
\]

Commutativity means that the isotopic elements T have to satisfy the following equations i.e., the following compositions of morphisms are equal: $\mathcal{F}(f) \circ \alpha_A = \alpha_B \circ \mathcal{F}'(f)$. The morphisms $\alpha_A, A \in \text{Ob}(\mathbf{Grp})$, are called the components of the natural transformation α.

Let \mathcal{V} be a vector isospace over the isofield \mathcal{F} [6, 7]. A category of vector isospaces \mathbf{Vect} consists of vector isospaces \mathcal{V} as objects equipped with a new external operation \circ which is such to verify all the axioms for a vector isospace, i.e., $\mathcal{V}.1^o - 5^o$ Addition of vectors satisfies axioms $\hat{G}.1 - 5^o$ for a commutative isogroup;

$\mathcal{V}.6^o$ For any vector x and any isoscalar α there exists a vector

\[
(\forall \alpha, x \in \mathcal{V}) \quad (\forall x, y \in \mathcal{V}) \quad y = \alpha \circ x;
\]
a topological vector isospace

\[\hat{U} \] between topological vector isospaces satisfy the following axioms:

\((\forall x \in V) \; (I \circ x = x \circ \hat{I} = x) \); (9)

\((\forall \alpha, \beta \in \hat{F}) \; (\forall x \in V) \; [(\alpha + \beta) \circ x = \alpha \circ x + \beta \circ x]; \) (10)

\((\forall \alpha, x, y \in V) \; [\alpha \circ (x + y) = \alpha \circ x + \beta \circ y]; \) (11)

\((\forall \alpha, \beta \in \hat{F}) \; (\forall x \in V) \; [\alpha \circ (\beta \circ x) = (\alpha \circ \beta) \circ x]; \) (12)

\(\hat{V} \) is called the product of \(x \) by \(\hat{\alpha} \); \n
\(\hat{V} \) Multiplication by \(I \) does not change a vector:

\((\forall \alpha, \beta \in \hat{F}) \; (\forall x \in V) \; [(\alpha + \beta) \circ x = \alpha \circ x + \beta \circ x]; \)

\((\forall \alpha, x, y \in V) \; [\alpha \circ (x + y) = \alpha \circ x + \beta \circ y]; \)

\((\forall \alpha, \beta \in \hat{F}) \; (\forall x \in V) \; [\alpha \circ (\beta \circ x) = (\alpha \circ \beta) \circ x]; \)

\(\hat{V} \) There exist \(n \) linearly independent vectors;

\(\hat{V} \) Any \(n + 1 \) vectors are linearly dependent.

And the category of vector isospaces \(\text{Vect} \) also consists of isocontinuous isolinear transformations as morphisms

\[f : \hat{V} \rightarrow \hat{V}, \]

between vector isospaces \(\hat{V} \) and \(\hat{V}' \) over the same isofield \(\hat{F} \) which preserve the sum and isomultiplication, i.e., which are such that

\((\forall \alpha, \beta \in \hat{F}) \; (\forall x, y \in V) \; [f(\alpha \circ (\beta \circ x) = (\alpha \circ \beta) \circ f(x)]; \)

CATEGORIES OF TOPOLOGICAL ISOGROUPS AND VECTOR ISOSPACES

Let \(\hat{T} \) be a topological vector isospace over the isofield \(\hat{F} \) [8]. A mapping from a topological vector isospace \(\hat{T} \) onto a topological vector isospace \(\hat{T}' \) is called iscontinuous if for each neighborhood \(V(\hat{x}') \) of a point \(\hat{x}' \) in \(\hat{T}' \) there is a neighborhood \(U(\hat{x}) \) of the corresponding point \(\hat{x} \) in \(\hat{T} \) such that the images of all points in \(U(\hat{x}) \) belong to \(V(\hat{x}'); \)

A category of topological vector isospaces \(\text{TopVec} \) consists of topological vector isospaces \(\hat{T} \) as objects, which satisfy the following axioms:

\(\hat{T} \). The union of a finite number of closed subsets is closed;

\(\hat{T} \). The intersection of arbitrary many closed subsets is closed;

\(\hat{T} \). The whole vector isospace \(\hat{T} \) is a closed set;

\(\hat{T} \). The empty set \(\emptyset \) is a closed set.

And the category of topological vector isospaces \(\text{TopVec} \) also consists of isocontinuous isolinear transformations as morphisms \(f \in \text{Hom}_{\text{TopVec}}(I\hat{A}, I\hat{B}); \)

\[f : \hat{T} \rightarrow \hat{T}', \]

between topological vector isospaces \(\hat{T} \) and \(\hat{T}' \) over the same isofield \(\hat{F} \) which preserves the sum and isomultiplication, i.e., which is such that

\((\forall \alpha, \beta \in \hat{F}) \; (\forall x, y \in T) \; [f(\alpha \circ (\beta \circ x) = (\alpha \circ \beta) \circ f(x)]; \)

The isonatural topology in the isofield \(\hat{F} \), with closed and open sets defined as in usual real iso-Calculus, can be specified by the countable system of neighborhoods consisting of the intervals with rational ends.

A bijection from \(\hat{T} \) onto \(\hat{T}' \), which is iscontinuous together with its inverse bijection is called a isohomeomorphism; in this case the topological vector isospaces \(\hat{T} \) and \(\hat{T}' \) are called isohomeomorphic.

Topological isospaces each point of which has a neighborhood isohomeomorphic to the Euclidean isospace [9] endowed with its natural topology are called \(n \)-dimensional topological isomanifolds or \(n \)-isomanifolds.
In [8] we built a category of topological isogroups \(\text{TopGrp} \) which consists of topological isogroups \(\hat{T}G \) as objects i.e., we reconstruct a set of elements for each object \(\hat{T}G \) of the category \(\text{TopGrp} \) as a set of elements is said to be a topological isogroup if

\(\hat{T}G.1^\circ \) This set have to be an isogroup (see (2)–(5));

\(\hat{T}G.2^\circ \) This set have to be a topological vector isospace (see \(\hat{T}.1^\circ \sim \hat{T}.4^\circ \));

\(\hat{T}G.3^\circ \) The isogroup operations \(\hat{x} \rightarrow \hat{\alpha} \circ \hat{x}, \hat{x} \rightarrow \hat{x} \circ \hat{\alpha} \) and \(\hat{x} \rightarrow \hat{x}^{-1} \), where \(\alpha \) is a isoscalar, are isocontinuous mappings from this topological vector isospace onto itself.

And the category of topological isogroups \(\text{TopGrp} \) also consists of isocontinuous isohomomorphisms as morphisms.

CATEGORY OF LIE-SANTILLI ISOGROUPS

The most important for isogometry are topological isogroups that are also topological \(n \)-isomanifolds. These topological groups are called \(n \)-dimensional Lie-Santilli isogroups.

DEFINITION 2 A category of Lie-Santilli isogroups \(\text{LSGrp} \) consists of Lie-Santilli isogroups as objects, and isohomomorphisms as morphisms.

DEFINITION 3 A Lie-Santilli algebra can be defined as an object \(A \) in \(\text{Vect} \), the category of vector isospaces over a isofield \(\hat{F} \) of characteristic not 2, together with a morphism \([\cdot, \cdot]: A \otimes A \rightarrow A\), where \(\otimes \) refers to the monoidal product of \(\text{Vect} \), such that

\[
[A, B] \circ (\text{id} + \tau_{A,A}) = 0, \quad [A, B] \circ ([A, C] \circ \text{id}) \circ (\text{id} + \sigma + \sigma^2) = 0,
\]

where \(\tau(a \otimes b) := b \otimes a \) and \(\sigma \) is the cyclic permutation braiding \((\text{id} \otimes \tau_{A,A}) \ast (\tau_{A,A} \otimes \text{id}) \).

The mapping from a category of Lie-Santilli groups \(\text{LSGrp} \) to a category of Lie-Santilli algebras \(\text{LSAlg} \) is functorial, which implies that isohomomorphisms of Lie-Santilli groups lift to isohomomorphisms of Lie-Santilli algebras, and various properties are satisfied by this lifting: it commutes with composition, it maps Lie-Santilli subgroups, kernels, quotients and cokernels of Lie-Santilli groups to subalgebras, kernels, quotients and cokernels of Lie-Santilli algebras, respectively. The functor \(\mathcal{L} \) which takes each Lie-Santilli group to its Lie-Santilli algebra and each isohomomorphism to its isodifferential one is faithful and exact.

When we use Lie-Santilli groups in physics to describe symmetry, we think of each element \(\hat{g} \) of the group \(\hat{G} \) as a “process”. The element \(\hat{I} \) corresponds to the “process of doing nothing at all”. We can compose processes \(\hat{g} \) and \(\hat{h} \) — do \(\hat{h} \) and then \(\hat{g} \) — and get the product \(\hat{g} \circ \hat{h} \). Crucially, every process \(\hat{g} \) can be “undone” using its inverse \(\hat{g}^{-1} \). So: in contrast to a Lie-Santilli group, which consists of a static collection of “things”, a category of Lie-Santilli groups consists not only of objects or “things” but also morphisms which can viewed as “processes” transforming one thing into another. Similarly, in a 2-category, the 2-morphisms can be regarded as “processes between processes”, and so on.

REFERENCES