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Abstract. The Bose-Einstein correlation is the phenomenon in which protons and antiprotons collide at extremely high
energies; coalesce one into the other resulting into the fireball of finite dimension. They annihilate each other and produces
large number of mesons that remain correlated at distances very large compared to the size of the fireball. It was believed
that Einstein’s special relativity and relativistic quantum mechanics are the valid frameworks to represent this phenomenon.
Although, these frameworks are incomplete and require arbitrary parameters (chaoticity) to fit the experimental data which are
prohibited by the basic axioms of relativistic quantum mechanics, such as that for the vacuum expectation values. Moreover,
correlated mesons can not be treated as a finite set of isolated point-like particles because it is non-local event due to
overlapping of wavepackets. Therefore, the Bose-Einstein correlation is incompatible with the axiom of expectation values
of quantum mechanics. In contrary, relativistic hadronic mechanics constructed by Santilli allows an exact representation of
the experimental data of the Bose-Einstein correlation and restore the validity of the Lorentz and Poincare symmetries under
nonlocal and non-Hamiltonian internal effects. Further, F. Cardone and R. Mignani observed that the Bose-Einstein two-point
correlation function derived by Santilli is perfectly matched with experimental data at high energy.
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INTRODUCTION

The main ingredient of hadronic mechanics [1, 2] is that strong interactions have a nonlocal component of contact,
due to deep wave-overlappings at mutual distances of 1 Fermi. This nonlocal component can not be represented
by the conventional quantum mechanics. However, novel hadronic mechanics encompass entire local and nonlocal
effects with remarkable experimental evidences. Thus, the most fundamental experimental verifications of hadronic
mechanics are, those which manifested the expected nonlocality of the strong interactions. Among them, the most
important tests are those on the Bose-Einstein correlation [3, 4, 5, 6, 7], in which protons and antiprotons are made
to collide at very big or very small energies and annihilate each other in a region called the fireball. The annihilation
produces various unstable hadrons whose final states are given by correlated mesons which are "in phase" with each
other despite large mutual distances compared to the size of the fireball. Correlated mesons can not be treated as a
finite set of isolated point-like particles. It is non-local event due to overlapping of wavepackets. There are several
nonlocal theories which attempted to reduce nonlocal event into a finite set of isolated points distributed over the finite
volume of the fireball. However, these theories are discarded by Santilli for the fact that the Bose-Einstein correlation is
incompatible with the axiom of expectation values of quantum mechanics. It is purely manipulated nonlocal interaction
to verify the quantum laws.

The first exact and invariant formulation of the Bose-Einstein correlation via relativistic hadronic mechanics was
done by R. M. Santilli [8] in 1962. F. Cardone and R. Mignani [9, 10] was the first to verify Santilli’s theoretical
isorelativistic calculation with experimental data (FIGURE 1) and they published their result in 1996.

1 This work is being presented at ICNAAM 2014 being held at Rhodes, Greece during September 22-26, 2014.
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FIGURE 1. The exact fit Santilli’s two-point isocorrelation function with experimental data at high energy

CONVENTIONAL TREATMENT OF THE BOSE-EINSTEIN CORRELATION

Consider a quantum system in 2-dimensions represented on a Hilbert space H with initial and final states |ak〉, |bk〉,k =
1,2. The vacuum expectation values of an observable A are given by [3]

〈A〉= 〈ak|×A×|bk〉= ∑
k=1,2

ak ×Akk ×bk (1)

which is necessarily diagonal, to fulfill the condition that operator corresponds to observable quantity must be
Hermitian. The two-points correlation function of the Bose-Einstein correlation is defined by

C2 =
P(p1, p2)

P(p1)×P(p2)
(2)

where P(p1, p2) is the two particles probability density subjected to Bose-Einstein symmetrization, and P(pk) ,k = 1,2
is the corresponding quantity for the kth particle with 4-momentum, pk. The two-particles density is computed via the
vacuum expectation value

P(p1, p2) =
∫

ψ†
12 (x1,x2;r1,r2)×ψ12 (x1,x2;r1,r2)×F(r1,r2)×d4

r1
×d4

r2
(3)

where ψ12 is the probability amplitude to produce two bosons at r1 and r2 that are detected at x1 and x2. With the use
above equations, one reach in this way the final expression for the two-point correlation function

C2 = 1+ e−Q2
12R2

, (4)

where Q12 = p1 − p2 is the momentum transfer,where R is the Gaussian width and r is generally assumed to be the
radius of the fireball.
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INCOMPATIBILITY OF THE BOSE-EINSTEIN CORRELATION WITH
RELATIVISTIC QUANTUM MECHANICS

The Bose-Einstein correlation given by eq.(4) deviates from experimental data. This lead to the introduction of a first,
completely unknown parameter λ , called "chaoticity parameter", namely;

C2 = 1+λe−Q2
12R2

. (5)

Note that it is impossible to derive the above parameter from any axiom of relativistic quantum mechanics. Hence,
the chaoticity parameter λ introduced in eq.(5) is the first direct evidence of the incompatibility of the Bose-
Einstein correlation with quantum axioms. In order to fit the desired experimental data eq.(5) was further modified
by introducing an increasing number of completely unknown and arbitrary parameter, namely,

C2 = 1+λ1e−Q2
12R2

+λ2e−Q2
12R2

+λ3e−Q2
12R2

+λ4e−Q2
12R2

(6)

which is strongly objected by Santilli.

REPRESENTATION OF THE BOSE-EINSTEIN CORRELATION WITH
RELATIVISTIC HADRONIC MECHANICS

The axiom of isoexpectation value for relativistic hadronic mechanics [8] is given by

〈Â〉〈âk|× T̂ × Â× T̂ ×|b̂k〉= Σi jkâi × T̂ j
i × Â j j × T̂ k

j × b̂k (7)

where T̂ is the isotopic element, and the "hat" denotes quantities defined on isospaces over isofields. The main new
feature is that the operator Â must be Hermitian, thus diagonal, to be observable, but the isotopic element does not
need to be diagonal.The correlation function on an iso-Hilbert space Ĥ with initial and final isostates |âk〉, |b̂k; k = 1,2
and the non-diagonal isotopic element in the explicit form is given by [8]

T̂ = Diag
(
b2

1,b
2
2,b

2
3,b

2
4
)×Γ = Diag

(
1/n2

1,1/n2
2,1/n2

3,1/n2
4
)×Γ. (8)

It observed that the characteristic quantities must represent physically measurable quantities, namely, 1/b2
k = n2

k , k =
1,2,3 must characterize the semiaxes of the Bose-Einstein fireball according to a proper normalization and 1/b2

4 =
n2

4 must characterize the density of the fireball in a way compatible with other experiments. The continuation of
calculations via a simple isotopy of the conventional treatment, the final expression of the two-points isocorrelation
function, derived for the first time by Santilli is given by [8]

Ĉ2 = 1+
1
3 ∑

μ
b2

μ × e−q2
t K2/b2

μ = 1+
1
3

b2
1 × e(−q2

t K2/b2
1) +

1
3

b2
2 × e(−q2

t K2/b2
2) +

1
3

b2
3 × e(−q2

t K2/b2
3)− 1

3
b2

4 × e(−q2
t K2/b2

4), (9)

In the above isorepresentations, all operations are now conventional. Hence, the above expressions are the projections
in our spacetime of the isocorrelation functions on isospace.

EXACT POINCARÉ SYMMETRY UNDER NONLOCAL AND NON-HAMILTONIAN
INTERACTION

As indicated earlier, a crucial insufficiency of the conventional treatment of the Bose-Einstein correlation, is the
inability to provide an invariant representation of the fireball, due to its prolate character under which the conventional
rotational symmetry no longer applies. The Bose-Einstein correlation creates a fireball characterized by a spheroid
prolated in the direction of the proton-antiproton flight. Following its creation, the fireball expands rapidly, resulting in
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the correlated mesons. Consequently, the original characteristic quantities, here denoted b
′2
k = 1/n2

k , have an explicit
dependence on time. By assuming that the prolateness is along the third axis, we have

K2(t) = b
′2
1 (t)+b

′2
2 (t)+b

′2
3 (t) �= const, b

′2
3 (t)� b

′2
1 (t) = b

′2
2 (t). (10)

However, the fireball must preserve its shape during its expansion when considered as isolated from the rest of the
universe. This implies that all characteristic quantities have the same factorizable time dependence. In conclusion, the
fireball can be studied at the time of its formation with constant characteristic quantities b2

k = 1/n2
k and the following

isoinvariant formulated on the Euclide-Santilli isospace [11] with isounit

R̂2 =
(
x2

1b2
1 + x2

2b2
2 + x2

3b2
3
)× Î =

(
x2

1

n2
1
+

x2
2

n2
2
+

x2
3

n2
3

)
× Î, (11)

Î = Diag
(
1/b2

1,1/b2
2,1/b2

3
)
= Diag

(
n2

1,n
2
2,n

2
3
)
. (12)

The reconstruction of the exact Lorentz symmetry Ô(3) [11] for the Bose-Einstein correlation follows the same lines.
Since the speed of light is assumed to be locally varying, we have mutated light cones of the type,

n̂2 =
(
x2

3 ×b2
3 − x2

4 ×b2
4
)× Î =

x2
3

n2
3
− x2

4

n2
4
, (13)

Î = Diag
(
1/b2

3,1/b2
4
)
= Diag

(
n2

3,n
2
4
)
. (14)

It is again easy to see that the mutated light cone in our spacetime is the perfect light cone in isospace, called light
isocone, because, again, the mutation of each axis is complemented by the inverse mutation of the corresponding unit.

THEORETICAL PREDICTION

It is important now to identify the theoretical prediction of isorepresentation so that we can compared them below with
experimental data.

Prediction 1: The minimum value of the two-points isocorrelation function, first identified by Santilli,

ĈMin
2 = 1 (15)

evidently holding for infinite momentum transfer.
Prediction 2: The maximal value is predicted to be

ĈMin
2 = 1+

1
3
+

1
3
+

1
3
= 1.67 (16)

evidently holding for null momentum transfer.
Prediction 3: Isorepresentation also predicts the maximum value of the isodensity, occurring for ĈMax

2 . In fact, for
qt = 0 we have no correlations, in which case we have

b2
k = 1, k = 1,2,3, K2 = b2

1 +b2
2 +b2

3 = 3, (17)

ĈMax
2 = 1+

K4

3
− K2b2

4
3

= 1.67, (18)

b2
4 = 2.33, n2

4 = 0.429, b4 = 1.526, n4 = 0.654. (19)

Prediction 4: By assuming that K2 = 3 and that the fireball is very prolate,with b2
3 = 30b2

1 = 30b2
2, we obtain the

following prediction on the remaining characteristic quantities

b2
1 = b2

2 = 0.043, b2
3 = 2.816, b2

1 = n2
1 = n2

2 = 10.666, n2
3 = 0.355. (20)

From the isoaxioms, Santilli also have the following additional predictions:
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Prediction 5: The maximal causal speed within the fireball is bigger than that in vacuum,Vmax = c0 × b4
b3

> c0.
Prediction 6: Time t within the fireball flows faster than time predicted by special relativity, t = γ̂ × t0 > γ × t0.
Prediction 7: Lengths ‘l inside the fireball are smaller than lengths predicted by special relativity,
l = γ̂−1 × l0 < γ−1 × l0.
Prediction 8: Mass behavior with speed is bigger than that predicted by special relativity, m = γ̂ ×m0 > γ ×m0.
Prediction 9: The energy equivalence of the fireball is bigger than that predicted by special relativity or, equivalently,

for a given energy, the mass is smaller, E = m×Vmax > E0 = m× c2
0.

Prediction 10 : Frequencies of light emitted inside the fireball, exist the same isoblueshifted, namely, with an
increase of frequency as compared to the corresponding behavior predicted by special relativity, ω = γ̂ ×ω0.

Prediction 11: The speed of light within the fireball is bigger than that in vacuum, c = c0 > b4 > c4 by smaller than
the maximal causal speed, c = c0 ×b4 <Vmax = c0

b4
b3

.

EXPERIMENTAL VERIFICATION

F. Cardone and R. Mignani [9, 10] in 1992 had contested the eq.(15) for actual experimental data. The Bose-Einstein
two-point correlation function derived by Santilli is perfectly matched with experimental results at high energy. The
numerical values of the characteristic functions for the fireball of the Bose-Einstein correlation resulting from this
exercise are b1 = 0.267± 0.054, b2 = 0.437± 0.035, b3 = 1.661± 0.013 and b4 = 1.653± 0.015. A most important
feature of the above data is that they characterize the medium inside the fireball as being iso-Minkowskian of Group
III, Type 9, thus confirming that all hadrons heavier than kaons have the same iso-Minkowskian features. The fit of
FIGURE 1 and the above values provide that the experimental data do indeed lie between the theoretically minimum
and maximal value; the experimental data confirm all eleven theoretical predictions; the experimental proof confirms
the reconstruction of the exact character of the Poincare symmetry for the Bose-Einstein correlation. F. Cardone and R.
Mignani investigation provides remarkable experimental verification of Santilli isorelativity and relativistic hadronic
mechanics. This experimental verification on Bose-Einstein Correlation reveals the nonlocality of strong interactions
of correlated mesons.

CONCLUDING REMARKS

Santilli’s thorough investigation found that Einstein’s special relativity and relativistic quantum mechanics is not the
valid frameworks to represent the Bose-Einstein correlation because there is a large deviation of experimental results
from theoretical ones. Moreover, these representations fail to tender logical explanation for introduction of chaoticity
parameters which are needed to fit the experimental data. Further, it is observed that there was several conceptual
flaws in treating correlated mesons as a finite set of isolated point-like particles as this is purely non-local event
with deep overlapping of wavepackets and can not be treated by conventional quantum mechanics. The relativistic
hadronic mechanics constructed by Santilli is appropriate for the representation of Hamiltonian and non-Hamiltonian
type interactions. It allows an exact representation of the experimental data. Further it restors the exact validity of the
Lorentz and Poincare symmetries. Santilli’s theoretical calculations on Bose-Einstein two-point correlation function
are verified by F. Cardone and R. Mignani. These theoretical calculations are perfectly matched with experimental
data at high energy.
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