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Abstract. The concept of ‘Isotopy’ as formulated by Ruggero Maria Santilli [1, 2, 3] plays a vital role in the development of
Iso mathematics. Santilli defined iso-fields of characteristic zero. In this paper we extend this definition to define Iso-Galois
fields [4] which are essentially of non-zero characteristic. Isotopically isomorphic realizations of a group define isopermutation
group which gives a clear cut distinction between automorphic groups and isotopic groups.
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INTRODUCTION

During a talk at the conference Differential Geometric Methods in Mathematical Physics held in Clausthal, Germany,
in 1980, Ruggero Maria Santilli submitted new numbers based on certain axiom preserving generalization of the mul-
tiplication, today known as isotopic numbers or isonumbers in short [1]. This generalization induced the so-called
isotopies of the conventional multiplication with consequential generalization of the multiplicative unit, where the
Greek word “isotopy" implied meaning “same topology". Subsequently, Rugero Maria Santilli submitted a new con-
jugation, under the name isoduality which yields an additional class of numbers, today known as isodual isonumbers
[1]. The new ‘ Isomathematics’ eventually led Santilli to formulate a new scientific branch now a days called Hadronic
Mechanics.
In this paper we plan to extend the subject of Santilli’s iso-field to define Iso-Galois fields [4] which are essentially
of non-zero characteristic. In doing so we will start with a brief review of Santilli isomathematics [5] and [6]. Iso-
topically isomorphic realizations of a group define isopermutation group which gives a clear cut distinction between
automorphic groups and isotopic groups. The preliminary results of our efforts are given below [4].

Santilli’s Isofield

Definition 1. Given a field F with elements α,β ,γ, . . ., sum α + β , multiplication αβ , and respective units 0 and
1, “Santilli’s isofields" are rings of elements α̂ = α 1̂ where α are elements of F and 1̂ = T̂−1 is a positive- definite
n× n matrix generally outside F equipped with the same sum α̂ + β̂ of F with related additive unit 0̂ = 0 and a new
multiplication α̂ ∗ β̂ = α̂ T̂ β̂ , under which 1̂ = T̂−1 is the new left and right multiplying unit of F in which case F̂
satisfies all axioms of a field.

This new algebraic structure has revolutionized contemporary mathematics and found its applications in so

far unexplored (unexplained) and unknown territories of quantum mechanics and quantum chemistry [5, 6].

The resulting new theory of numbers has become the basis of recent studies of nonlinear-nonlocal, non-Hamiltonian

systems in nuclear particle and statistical physics [7]. Santilli iso-numbers, which are the mathematical basis of
Hadronic Mechanics, are also introduced and reviewed in [8].

Santilli’s Isofields [1] and [5] are of two types, isofield of first kind; wherein the isounit does not belong to the
original field, and isofield of second kind; wherein the isounit belongs to the original field. The elements of the
isofield are called as isonumbers. This leads to number of new terms and parallel developments of conventional
mathematics.
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We mention two important propositions by Santilli [2] which classify isofields of second kind and isofields of first
kind respectively.

Proposition 1. The necessary and sufficient condition for the lifting (where the multiplication is lifted but elements
are not) F(a,+,×) −→ F̂(a,+,×̂), ×̂ = ×T̂×, 1̂ = T̂−1 to be an isotopy (that is for F̂ to verify all axioms of the
original field F) is that T̂ is a non-null element of the original field F.

Proposition 2. The lifting (where both the multiplication and the elements are lifted)
F(a,+,×)−→ F̂(â,+,×̂), â = a× 1̂, ×̂=×T̂×, 1̂ = T̂−1 constitutes an isotopy even when the multiplicative isounit
1̂ is not an element of the original field.

In [4] we answer the open problems posed in [10], namely;

• Can we construct finite isofields of first kind ?
• Can we construct finite isofields of second kind ?

in the affirmative.

ISO-GALOIS FIELDS

Definition 2. A field having finite number of elements is called a Galois field.

In view of Proposition 1 we can easily derive the following new Proposition.

Proposition 3. The necessary and sufficient condition for the lifting (where the multiplication and elements both are
lifted) F(a,+,×)−→ F̂(â,+,×̂),×̂=×T̂×, 1̂ = T̂−1 to be an isotopy (that is for F̂ to verify all axioms of the original
field F) is that T̂ is a non-null element of the original field F.

Thus for a given field F(a,+,×) with a non-null element T̂ ∈ F we can construct two types of isofields isotopic to
F as;

1. The isofield F̂m = F̂(a,+,×̂) isotopic to F in which only the multiplication is lifted but the elements are not lifted.
2. The isofield F̂em = F̂(â,+,×̂) isotopic to F in which the elements and the multiplication both are lifted.

Given a field F the following two Propositions give the relationship between the F̂m and F̂em.

Proposition 4. If F is a field, a,b ∈ F and, x and y are the corresponding isotopic (or conventional) products of a and
b in F̂m and F̂em respectively ( i.e. x ∈ F̂m and y ∈ F̂em), then x = yT̂ 2 where T̂ is the isotopic element for F̂m and F̂em.

Proposition 5. If F is a field such that T̂ is a non-null element of F, then lifting of multiplication in F by T̂ without
lifting the elements of F identically is same as simultaneous isotopic lifting of elements in F and multiplication by
T̂−1.

e.g. consider the the field of reals R. Let the isotopic element be 3. Then lifting of the product of 5 and 7 by
3 yields 5×̂7 = 5.3.7 = 105. Also, lifting the numbers 5 and 7 by 3 and product by 1

3 yields the same result;
(5.3). 1

3 .(7.3) = 5.3.7 = 105.

Corollary 1. Every isofield of second kind with isoelement T̂ is an isofield of first kind with isoelement 1
T̂

.

Definition 3. If F is an iso-field and F is finite, then F is called an Iso-Galois field.

Definition 4. Let F be a Galois field. If G is an Iso-Galois field of F wherein the prescribed multiplicative identity is
from the field F itself, then the Iso-Galois field G is called an Iso-Galois field of second kind.

Definition 5. Let F be a Galois field. If G is an Iso-Galois field of F wherein the prescribed multiplicative identity is
not from the field F, then the Iso-Galois field G is called an Iso-Galois field of first kind.

If G is an Iso-Galois field constructed from the field F then we call the field F as the trivial iso-field.
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ISO-GALOIS FIELDS OF SECOND KIND

Consider a Galois field F8 as a set of following matrices of integers modulo 2.

(0) =

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠ ,(1) =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ ,(2) =

⎛
⎝ 0 1 0

0 0 1
1 1 0

⎞
⎠ ,(3) =

⎛
⎝ 0 0 1

1 1 0
0 1 1

⎞
⎠ ,

(4) =

⎛
⎝ 1 1 0

0 1 1
1 1 1

⎞
⎠ ,(5) =

⎛
⎝ 0 1 1

1 1 1
1 0 1

⎞
⎠ ,(6) =

⎛
⎝ 1 1 1

1 0 1
1 0 0

⎞
⎠ ,(7) =

⎛
⎝ 1 0 1

1 0 0
0 1 0

⎞
⎠

For an isofield it will be sufficient to consider the multiplication table of non-zero elements of F8.

Let us choose the iso-element T̂ = (4) ≡ 4 ∈ F8 in the above composition table. Then the iso-unit element is
1̂ = 1

T̂
= 1

4 = 4−1 = 5. We can construct the corresponding composition table for isomultiplication in F̂m using the fact
that the isomultiplication ×̂ is defined as a×̂b = aT̂ b.
e.g. 6×̂7 = 6 ·4 ·7 = 1 using original composition table.
Similarly, we can construct the corresponding composition table for isomultiplication in F̂em using the fact that the
isomultiplication ×̂ is defined as â×̂b̂ = a

T̂
T̂ b

T̂
.

We know that for a ∈ F8, â = a · 1
T̂
= a ·5. Hence first we construct the corresponding isonumbers. Thus, 2̂ = 2 · 1

4 =

2 ·5 = 6. Similarly, 3̂ = 7, 4̂ = 1, 3̂ = 7, 4̂ = 1, 5̂ = 2, 6̂ = 3 and 7̂ = 4.
Also the isoproduct of the isonumbers 6̂ and 7̂ is 6̂×̂7̂ = 3 ·4 ·4 = 2 using original composition table.

Remark. 1. The function f : F8→F8 defined by f (x) = 5x is not an isomorphism. 2. However, the isofunction f̂ : x→ x̂
is an isomorphism.

Theorem 1. If F is a Galois field such that F̂ is an Iso-Galois field of second kind, where T̂ ∈ F is an isoelement and
x̂ = T̂−1x, x ∈ F then the function f : F → F defined by x �→ T̂−1x is not an isomorphism but is an isotopism, whereas
the isofunction f̂ : F → F̂ is an isomorphism.

Theorem 2. If F is a Galois field of order pm and n is the number of involutions in F then there exist pm− n− 1
number of distinct Iso-Galois fields of kind two of F.

ISO-GALOIS FIELDS OF FIRST KIND

Consider a Galois field F of order 16 represented by the polynomials a+ bx+ cx2 + dx3, a,b,c and d are integers
modulo 2. The polynomials are generated by the powers of x using the rule x4 = 1+ x.
The elements of the field are; (0) = (0,0,0,0), (1) = (1,0,0,0), (2) = (0,1,0,0), (3) = (0,0,1,0), (4) = (0,0,0,1),
(5) = (1,1,0,0), (6) = (0,1,1,0), (7) = (0,0,1,1), (8) = (1,1,0,1), (9) = (1,0,1,0), (10) = (0,1,0,1), (11) =
(1,1,1,0), (12) = (0,1,1,1), (13) = (1,1,1,1), (14) = (1,0,1,1), (15) = (1,0,0,1) The set F1 = {0,1,6,11} forms a
subfield of F . We consider an element T̂ = 2 such that T̂ does not belong to F1 and form an Iso-Galois field of F1. The
isounit 1̂ = 1

T̂
= T̂−1 = 2−1 = 15. The numbers of F1 are converted to following isonumbers as 1̂ = 15, 6̂ = 6.15 = 5

and 1̂1 = 11.15 = 10. Thus we get the isofield is F̂1 = {0,15,5,10} with isomultiplication of the type; the isoproduct
of 5 and 10 is given by 5.T̂ .10 = 5.2.10 = 15.
Similarly, if T̂ = 7 then 1̂ = 1

T̂
= 7−1 = 10. The numbers of F1 are converted to following isonumbers as 1̂ = 10,

6̂ = 6.10 = 15 and 1̂1 = 11.10 = 5. Thus the isofield is F̂1 = {0,10,15,5} with the corresponding isomultiplication.

Theorem 3. If F is a Galois field of order pn and F1 is a subfield of F of order pm such that F \F1 has r number of
involutions, then there exist pn− pm− r number of distinct Iso-Galois fields of first kind of F1.
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ISOTOPICALLY ISOMORPHIC REALIZATION

Santilli’s isofields have multiplicative group which is isotopically isomorphic realization (when the isounit is from the
field itself) or isotopically isomorphic representation (when the isounit is from outside the field) of the multiplicative
group of the original field. For a given group G if we consider all permutations of the group elements, then there exist
permutations which are the right regular representations, and permutations which are the left regular representations
of G. In this case, each permutation is actually an isogroup with respect to the induced isounit and isomultiplication.
Thus the permutation group of a group G always contains the group of automorphisms of G and the group of
isopermutations (left and right) of G. Hence representation of a group G as ( left and/or right ) isopermutation group
can have extensive applications in cryptography, coding theory and biological sciences wherein the codes and the keys
are to be continuously changing for the strongest security.

Isotopism of the fields [1, 2, 3] defined by R.M. Santilli induces isotopism of the groups in the following manner.

Definition 6. If G is a group then the permutation fl ( or fr ) of the elements of G by a ∈ G from the left (or right) is
an isogroup Ĝ with isomultiplication ×̂ defined on it. We say that Ĝ is the left-isotopically isomorphic realization (or
right-isotopically isomorphic realization) of the group G.

Thus, G itself is the isotopically isomorphic realization (both left and right) of the group G where a = e.

Definition 7. If G is a group then the set of all fls ( or frs ) corresponding to the left-isotopically isomorphic
realizations (or right-isotopically isomorphic realizations) of G is called the left-isopermutation group (or right-
isopermutation group).

Definition 8. A group for which both left-isopermutation group and right-isopermutation group coincide is called an
Iso-permutation group.

Remark:- 1) Note that if the group G is abelian then both left-isotopically isomorphic realizations and right-
isotopically isomorphic realizations of G are same. Hence G is an isopermutation group.
2) Also, the left-isopermutation group of G is the left regular representation of G which is faithful. Similarly, the
right-isopermutation group of G is the right-regular representation of G which is faithful.

Proposition 6. The isomorphic realizations of a group G consist of a class of automorphisms of the group G and the
class of translations of the group G by the elements from the group G itself.

Proposition 7. Permutations which represent the isotopically isomorphic groups of a group G form a subgroup of the
group SG.

Proposition 8. If G is an abelian group of order n then the number of isotopically isomorphic realizations of G is n.

Proposition 9. If G is a non-abelian group of order n then the number of isotopically isomorphic realizations of G is
2n−1.

Proposition 10. Holomorph of a group is the semidirect product of Aut(G) and left-isopermutation group (or right-
isopermutation group) of G.

Proposition 11. If G is a group then the left-isopermutation group of G (right-isopermutation group of G) is the
centralizer of right-isopermutation group of G (left-isopermutation group of G) in the holomorph of the group G.

The work is in progress to cover additional relevant aspects of isopermutation group and will also be presented
at ICNAAM 2014 in its Session 109 hosted by the R. M. Santilli Foundation being held at Rhodes, Greece during
September 22-26, 2014.
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