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Representation of nuclear 
magnetic moments via a Clifford 
algebra formulation of Bohm’s 
hidden variables
Ruggero Maria Santilli 1,3* & Garret Sobczyk 2,3

In this paper, we outline the research conducted by the first named author and his associates on the 
axiom-preserving, thus isotopic completion of quantum mechanics into hadronic mechanics according 
to the historical legacy by A. Einstein, B. Podolsky and N. Rosen that quantum mechanics is not a 
complete theory and review the ensuing exact representation of the magnetic moment and spin of the 
Deuteron in its ground state thanks to the isotopic completion of Pauli’s matrices with an explicit and 
concrete content of D. Bohm’s hidden variable � . We then outline the independent studies conducted 
by the second named author on the representation of the conventional Pauli’s matrices via geometric 
Clifford algebras. We finally show that the combination of the two studies allows a mathematically 
rigorous, numerically exact and time invariant geometric representation of the magnetic moment, 
spin and hidden variable of the Deuteron in its ground state.

In this paper, we combine the studies by the first named author, the physicist R. M. Santilli, and the independ-
ent studies by the second named author, the mathematician G. Sobczyk, to present a mathematically rigorous, 
numerically exact and time invariant representation of the magnetic moment and spin of the Deuteron in its 
ground state.

We begin with an outline of the inability by quantum mechanics to achieve an exact representation of nuclear 
magnetic moments under the assumption of the tabulated values of the magnetic moments of the proton and 
of the neutron in vacuum1

where µN is the unit called nuclear magneton.
As an example, the magnetic moment predicted by quantum mechanics (qm) for the Deuteron under value 

(1) is given by

while the experimentally measured value is given by

resulting in a deviation of the theoretical prediction in excess of about 3% of the experimental value,

with larger deviations for heavier nuclei (Fig. 1).
Additionally, quantum mechanics has been unable to achieve a consistent representation of the spin Sd = 1 

of the Deuteron in its ground state, since the only stable bound state predicted by quantum mechanics at short 
distance for a proton and a neutron is the singlet with antiparallel spins and null total angular momentum Jd = 0 . 

(1)µp = +2.79285µN , µn = −1.91304µN ,

(2)µ
qm
D = µp + µn = (2.79285− 1.91304) µN = 0.87981µN ,

(3)µex
D = 0.85647µN ,

(4)µ
qm
D − µex

D = 0.02334µN ≈ 2.95%µex
D ,
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As a result of this occurrence, the spin Sd = 1 of the Deuteron is represented via a collection of orbital contribu-
tions yielding Jd = 13 that cannot exist in the ground state; and other unresolved aspects.

Fermi4, Weisskopf3 and other founders of nuclear physics formulated the hypothesis that in the transition from 
isolated particles in vacuum to members of a nuclear structure, protons and neutrons experience a deformation of 
their extended charge distribution with consequential change of their magnetic moments (1) while conserving their 
spin 1/2 (see the statement at the top of p. 31 of Refs.3,5 for a preliminary experimental verification). Despite 
its simplicity, the above Fermi-Weisskopf hypothesis has profound mathematical and theoretical implications 
because it requires the transition from the quantum mechanical representation of particles as non-deformable 
points to a covering representation of particles as extended, therefore deformable.

In fact, an important axiomatic limitation of quantum mechanics is precisely its strict locality, that is, the sole 
possibility of characterizing particles as being point-like in vacuum, thus solely admitting action-at-a-distance 
potential interactions (hereon called Hamiltonian interactions).

By contrast, experimental measurements have established that nuclear volumes are generally smaller than 
the sum of the volume of the nucleon constituents. Consequently, nuclei are composed by extended nucleons in 
condition of partial mutual penetration of their dense charge distributions, resulting in Hamiltonian as well as 
new interactions expected to be non-linear (in the wave function), non-local (because defined over volumes) 
and not representable with a Hamiltonian (hereon called non-Hamiltonian interactions).

Additional experiments have established deviations of the predictions of quantum mechanics from experi-
mental values for: the anomalous magnetic moment of the muons6; atoms in condensed matter7; heavy ions 
physics8; and other fields. The above insufficiencies of quantum mechanics supports: 

(1)	 The historical 1935 argument by A. Einstein, B. Podolsky and N. Rosen that “quantum mechanics is not a 
complete theory” (EPR argument)2;

(2)	 The historical completions of quantum mechanics, such as the non-linear completion by Heisenberg9, the 
non-local completion by de Broglie and Bohm10, and the completion via hidden variables by Bohm11;

(3)	 The studies over the past fifty years conducted by R. M. Santilli and other scholars on the EPR completion 
of quantum mechanics into the axiom-preserving hadronic mechanics12–15 for the representation of the 
dimension, shape and density of hadrons with Hamiltonian and non-Hamiltonian interactions (see Ref.14 
for detailed studies, Refs.16–20 for recent accounts, Ref.21 for a recent overview, proceedings22 on the 2020 
International Teleconference on the EPR argument, and independent works23–30).

The above studies have achieved a numerically exact and time invariant representation of the magnetic 
moment and spin of the Deuteron in its true ground state (that with null orbital contributions Jd = 0 ) thanks 
to an axiom-preserving, thus isotopic completion of Pauli’s matrices with an explicit and concrete realization of 
Bohm’s hidden variable � , which completion was first introduced in Eq. (6.28.20), p. 354, Vol. II of Ref.14, used 
in various applications such as the verification of the EPR argument16, and then applied to the representation of 
the experimental data of the Deuteron in its ground state, resulting in the numeric value � = 2.65557 (see the 
latest Ref.31 and prior references quoted therein).

Independently from the above studies, the mathematician G. Sobczyk has conducted systematic studies on 
the representation of the conventional Pauli matrices, via geometric Clifford algebras (see Refs.32–36 and refer-
ences quoted therein).

In this paper we show that, by joining the studies by R. M. Santilli and G. Sobczyk, geometric Clifford algebras 
can provide a mathematically rigorous, numerically exact and time invariant representation of the magnetic 
moment, spin and hidden variable of the Deuteron in its ground state.

Figure 1.   This figure illustrates the well known Schmidt limits in nuclear physics, which establish deviations 
of the predictions of quantum mechanics for nuclear magnetic moments from their experimental values, 
beginning with that for the smallest nucleus, the Deuteron. These and other insufficiencies of quantum 
mechanics in nuclear physics, such as that for nuclear spins, supports the need of a suitable completion of 
quantum mechanics according to the 1935 historical Einstein–Podolsky–Rosen argument2.
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Outline of isotopic methods
In this section, we outline the isomathematical and isomechanical branch of hadronic mechanics14 (see18–20 for a 
recent review). Let ξ : {(a, b, . . .),×, I} be the universal enveloping associative algebra of quantum mechanics 
with generic elements a, b product ab = a× b and conventional multiplicative unit I = 1 . The central assump-
tion of isotopic methods, first introduced in p. 71, Vol. II13, is the EPR completion of ξ : {(a, b, ..),×, I} into the 
isoassociative algebra ξ̂ : {(a, b . . .), ⋆, Î} characterized by the axiom-preserving product called isoproduct

where the quantity T̂ , called the isotopic element, is positive-definite but otherwise possesses an arbitrary func-
tional dependence on local variables such as relative coordinates r, momenta p, wavefunctions ψ , etc. hereon 
tacitly implied.

Completion (5) of the product evidently implies the corresponding compatible completion of the multiplica-
tive unit 1 into the isounit of ξ̂ : {(a, b, . . .), ⋆, Î}37

with realizations of the type15

where: n2kρ , k = 1, 2, 3 represents the nucleon semi-axes which are hereon assumed to be the same for all nucleons, 
with normalization for the sphere

where n23 is directed along the spin axis; n24ρ represents the nucleon density also assumed for simplicity to be the 
same for all nucleons; and Ŵ represents non-linear, non-local and non- potential interactions.

Consequently, the representation of extended particles via isotopic methods requires two operators, the con-
ventional Hamiltonian H for the representation of Hamiltonian interactions, and the isotopic element T̂ for the 
representation of the dimension, shape and density of particles as well as their non-Hamiltonian interactions.

Via the use of isomathematics and isomechanics, Santilli achieved in 199438 (see also Ref.39 and the review/
update20) an exact representation of the magnetic moment of the Deuteron and of other stable nuclei via a quan-
titative representation of the Fermi–Weisskopf hypothesis4,3 permitted by realizations (7).

Since, by main assumption, the spin of nucleons remains S = 1/2 , and the magnetic moment of nucleons is 
linked to the spin via the known gyromagnetic factor g

Santilli38 reached the following completion of the gyromagnetic factor for individual nucleons (called iso-renor-
malization because it is characterized by non-Hamiltonian interactions)

The knowledge of the nucleon density n4 , from the fit of particle physics experiments40,41 and of deviation (4) 
for the deformation of n3 , allowed a numeric representation of the magnetic moment of the Deuteron and of 
other nuclei.

The representation of the spin Sd = 1 of the Deuteron as a stable two-body problem of spin 1/2 particles in 
the ground state (i.e., with null value of the angular momentum) was first reached in Section 8.2.5, p. 90 on of 
Ref.15, and then studied in detail in Ref.31 jointly with the first known achievement of the numeric value of Bohm’s 
hidden variable � for the Deuteron, thanks to the axial triplet coupling permitted by hadronic mechanics with the 
proton and the neutron coupled along their symmetry axis with parallel spin42 (Figs. 2 and 3).

Isotopic methods also allowed a representation of the spin Sd = 1 of the Deuteron in its ground state thanks 
to the axial triplet coupling of the proton and the neutron42 (see Section 2.7.2 of Ref.20, Section 8.2.5 of Ref.15 
and the latest Ref.31).

(iii) Accurate fits without the conjecture of unknown parameters or particles of the Bose-Einstein 
correlation40,41, the behavior of the mean lives of unstable hadrons with speed43,44, the anomalous magnetic 
moment of the muons45, and new vistas for the possible achievement of controlled nuclear fusions15,42.

Subsequently, Santilli16 achieved in 1998 a verification of the EPR argument via the Lie-isotopic completion 
of the Lie algebras of quantum mechanics (see Refs.13,14, independent study24 and the recent update46) applied 
to the isotopies ˆSU(2) of the SU(2)-spin algebra (see Section 3 of Ref.19 for a recent review). The main results of 
this study are: 

	 (I)	 The confirmation of the validity of Bell’s inequality47 for point-like particles under electromagnetic 
interactions and its inapplicability (rather than its violation) for extended particles under strong inter-
actions with Hamiltonian and non-Hamiltonian interactions and consequential recovering of the 
classical picture for systems of extended spin 1/2 particles under strong interactions16.

	 (II)	 The progressive recovering of Einstein’s determinism2 with the increase of the density of strongly 
interacting systems, and its full recovering at the limit of Schwartzschild horizon17.

(5)a ⋆ b = aT̂b, T̂ > 0,

(6)Î = 1/T̂ > 0, Î ⋆ a = a ⋆ Î = a ∀ a ∈ ξ̂ ,

(7)T̂ = 1/Î = �ρ=1,2,...,NDiag .

(

1

n21ρ
,
1

n22ρ
,
1

n23ρ
,

1

n24,ρ

)

e−Ŵ > 0,

(8)n21 + n22 + n23 = 3,

(9)µ = gS,

(10)µ =
n3

n4
gS.
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	 (III)	 The conversion of quantum mechanical strongly divergent perturbative series into strongly convergent 
isotopic series, evidently in view of the very small value of the isotopic element T̂ of Eq. (9), sandwiched 
in between all products. Apparently, this result sets up the foundations for the elimination of divergen-
cies in particle physics (see Chapters 11 and 12, Vol. II of Ref.14 and upgrade15). As an example isotopic 
methods achieved the first known attractive force between the identical electrons of valence bonds (see 
Chapter 4 on of48) whose resulting strong valance bond permitted the first known exact representation 
of experimental data for the hydrogen49 and water50 molecules without divergent perturbative series.

Representation of nuclear magnetic moments and spins via geometric Clifford 
algebras
Consider the fundamental representation of the SU(2)-spin algebra on R3 given by the celebrated Pauli’s matrices 
σk , here recalled with the symbols of Clifford’s geometric algebra32–36

Figure 2.   In this figure, we illustrate the sole stable couplings predicted by hadronic mechanics for nuclear 
fusions (see Fig. 3, p. 152, of Ref.42), which include: the conventional singlet coupling with a plane symmetry and 
antiparallel spins (on the left) called ‘planar singlet coupling’; and the novel triplet coupling with a symmetry 
axis and parallel spins (on the right) called ‘axial triplet coupling’. The remaining possible couplings (which 
are given by the planar triplet with parallel spins and the axial singlet with antiparallel spins not shown in this 
figure) have been proved to be unstable, and therefore are ignored for nuclear fusions42.

Figure 3.   In this figure, we illustrate on the left the structure model of the Deuteron permitted by hadronic 
mechanics as a bound state under strong interactions of a proton and a neutron in ‘axial triplet coupling’ 
(Figure 2). This model has permitted the first known representation of the spin Sd = 1 of the Deuteron in its 
true ground state (Section 8.2.5, p. 90 on of Refs.15,31), here denoted 2−H − 1� to indicate the presence of 
Bohm’s hidden variable in the spin of particles according to the iso-Pauli matrices of Eq. (18)16. In the right, 
we illustrate the structure model of the Helium, here denoted 4−He − 2� , as a bound state under strong 
interactions of two nuclei 2−H − 1� with antiparallel spins. This model allows a representation of the null spin 
and magnetic moment of Helium in its ground state.
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(where e3 refers hereon to the spin direction) with commutation rules

and enveloping associative algebra ξ with products of the type eiej . The spin S = 1/2 can be characterized by the 
eigenvalue equations on a Hilbert space H with basis |b >

Santilli introduced in the 1983 Vol. II of13 the EPR completion ξ̂ of the universal enveloping algebra ξ of Lie 
algebras, including that of SU(2) via non-unitary transformations

of the associative product, resulting in the iso-product of ξ̂

with ensuing non-unitary transformation of the multiplicative unit I of SU(2) into the iso-unit of ˆSU(2)

Santilli then introduced in the 1995 Vol. II of14 the realization of the isotopic element T̂ and isounit Î = 1/T̂ 
in terms of Bohm’s hidden variables �11

resulting in the following iso-Pauli matrices first introduced in Eq. (6.8.20), p. 254, Vol. II14,16

The classification of all possible isotopies of Pauli’s matrices was subsequently provided in Section 3, Ref.19.
It should be noted that Santilli derived iso-Pauli matrices (18) from the isotopy in (3+ 1)-dimensions of 

Dirac’s gamma matrices thanks to the isotopy of the spinorial covering of the Poincaré symmetry P̂(3.1) Ref.52.
Consequently, iso-Pauli matrices (18) are invariant over time when formulated on the Hilbert-Myung-Santilli 

isospace Ĥ53 over the isofield of isocomplex isonumbers Ĉ37.
Note also the isomorphism between the Lie-Santilli isoalgebra ˆSU(2) and the conventiional Lie algebra SU(2) 

which is established by the preservation under isotopy of the SU(2) structure constants in the iso-commutation 
rules

It is important to note that, despite their seemingly generalized structure (18), the iso-Pauli matrices do 
indeed characterize the spin S = 1/2 of nucleons when formulated via isomathematics14,51 on isospace Ĥ with 
isobasis |b̂ >

The primary meaning of Santilli’s iso-Pauli matrices (18) is therefore that of introducing the new notion of 
hadronic spin whose numeric values are conventional yet possessing a novel degree of freedom given by the 
explicit and concrete realization of Bohm hidden variable �.

Independently from the above studies, Sobczyk32–36 studied the representations of the conventional Pauli 
matrices (11) in terms of Clifford’s algebra G3 = G3(R

3) with standard basis

where e1, e2, e3 are interpreted as unit vectors along the x, y, z-axes of the coordinates space of te Euclidean 
3-space R3 , with properties

We then interpret the quantities

(11)e1 =

(

0 1

1 0

)

, e2 =

(

0 − i
i 0

)

, e3 =

(

1 0

0 − 1

)

,

(12)[ei , ej] = eiej − ejei = i2ǫijkek ,

(13)
Sk =

1
2
ek ,

e3|b >= ±|b >,

e2̂|b >= (e1e1 + e2e2 + e3e3)|b >= 3|b > .

(14)UU†  = I ,

(15)
U(eiej)U

† = (UeiU
†)(UU†)−1(UejU

†) = êiT̂ êj = êi ⋆ êj ,

êi = UeiU
†, êj = UejU

†, T̂ = (UU†)−1

(16)UIU† = Î = 1/T̂ .

(17)Î = Diag .(�−1, �), T̂ = Diag .(�, �−1), DetÎ = 1,

(18)ê1 =

(

0 �

�
−1 0

)

, ê2 =

(

0 − i�
i�−1 0

)

, ê3 =

(

�
−1 0

0 − �

)

.

(19)[êi , êj]
∗ = êi ⋆ êj − êj ⋆ êi = êiT̂ êj − êjT̂ êi = i2ǫijk êk .

(20)
Ŝk =

1
2
êk ,

ê3T̂|b̂ >= ±|b̂ >,

ê2̂ = (ê1T̂ ê1 + ê2T̂ ê2 + ê3T̂ ê3)T̂|b̂ >= 3|b̂ > .

(21)G3 = G3(R
3) := spanR{1, e1, e2, e3, e1e2, e1e3, e2e3, i := e1e2e3},

(22)e
2
1 = e

2
2 = e

2
3 = 1.
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to be unit bivectors defining the oriented planar directions of the xy-, xz-, and yz-planes, respectively, with squares

The unit trivector i = e123 = e1e2e3 , in the center of the algebra G3 , also has square −1.
The geometric algebra G3 is isomorphic to the familiar 2× 2 complex matrix algebra M2(C) , which defines 

the coordinate matrices of G3 with respect to the spectral basis,

where u± := 1
2
(1± e3) are mutually annihilating idempotents satisfying the rules

as can be easily verified.
The complex 2× 2 matrix

where i ≡ e123 , is the coordinate matrix of the geometric number A ∈ G3 with explicit form,

According to the above realization of our Clifford geometric algebra, Pauli matrices (11) are the coordinate 
matrices of the unit vectors e1, e2, e3 defined by

where again i = e1e2e3 is the unit trivector in the geometric algebra G3 . Thus, the so called Pauli vectors 
ek ≡ ek , k = 1, 2, 3 , are identified with the unit vectors ek along the xyz-axes (for details, see Refs.32–36.

By upgrading and extending Ref.31, we now study the representation of nuclear magnetic moments via the 
reformulation of iso-Pauli matrices (18)16 in terms of geometric algebra (21)33. For this purpose, we note that 
when formulated on the associative envelope ξ , the iso-Pauli matrices satisfy all algebraic properties of the con-
ventional Pauli matrices. Consequently, we here introduce the representation of iso-Pauli matrices (18) in terms 
of Clifford geometric algebra G̃3 = G̃3(R

3) with the iso-basis

and main properties equivalent to (22)–(29), including their interpretation in terms of vectors, bivectors and 
trivectors,

The standard basis of unit iso-vectors {ê1, ê2, ê3} define the the x, y, z iso-coordinate axes, respectively. The 
iso-spectral basis is

where û± := 1
2
(1± ê3) are mutually annihilating iso-idempotents. In the standard iso-basis of Ĝ3,

where

is the unit iso-trivector of the associative geometric algebra G̃3 . It must be remembered that for the iso-basis 
vectors êk,

for k = 1, 2, 3 , where the ⋆ denotes the iso-geometric product. The products in Eqs. (35) and (36) are also 
iso-products.

(23)e12 = e1e2 = −e21, e13 = e1e3, e23 = e2e3,

(24)e
2
12 = e1e2e1e2 = −e1e2e2e1 = −e

2
1e

2
2 = −1.

(25)
(

u+ e1u−
e1u+ u−

)

,

(26)u+u− = 0, u+ + u− = 1, e3u± = ±u±,

(27)[A] =

(

a11 a12
a21 a22

)

,

(28)A = a11u+ + a12e1u− + a21e1u+ + a22u−.

(29)e1 = e1u+ + e1u−, e2 = ie1u+ − ie1u−, e3 = u+ − u−,

(30)G̃3 = G̃3(R
3) := spanR{1, ê1, ê2, ê3, ê1ê2, ê1ê3, ê2ê3, i := ê1ê2ê3},

(31)ê
2
1 =ê

2
2 = ê

2
3 = 1,

(32)ê12 =ê1ê2 = −ê21, ê13 = ê1ê3, ê23 = ê2ê3,

(33)ê
2
12 =ê1ê2ê1ê2 = −ê1ê2ê2ê1 = −ê

2
1 ê

2
2 = −1.

(34)
(

û+ ê1û−
ê1û+ û−

)

,

(35){ê1, ê2 = iê1ê3, ê3},

(36)î = ê1ê2ê3,

(37)ê
2
k = êk ⋆ êk = 1,
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We now show that the hidden variable � of Ref.16 can provide a second representation of the deformation 
of the magnetic moment of nucleons of Refs.38,39 with consequential exact representation of nuclear magnetic 
moments31.

By introducing the realization of the hidden variable �

with respect to the standard basis (21), the iso-Pauli unit Î , the iso-reciprocal T̂ , and the iso-vector basis {êk} , 
expressed in the geometric algebra G3 , are given by

which are a different expression of, but equivalent to, Eqs. (16) and (17). Consequently

which expression is equivalent to the second part of Eq. (15).
By recalling that e3 characterizes the nucleon spin S = 1/2 , we reach the important result that the replacement 

of the standard basis of the geometric Clifford algebra G3 of Pauli’s matrices (11) with their iso-Pauli form (18), 
implies the EPR completion of e3 into the expression defined on the iso-basis |b̂ > of the iso-Pauli matrices

Recall that the quantum mechanical (qm) relationship between magnetic moments µ and spins S occurs via 
the gyromagnetic factor g of Eq. (9), and that the corresponding relation for the isotopic branch of hadronic 
mechanics (hm) is given by an expression of the type38

where K is an isorenormalization constant of the gyronamgentic factor g created by the the new notion of spin 
1/2 represented by iso-Pauli matrices (18) with Bohm’s hidden variable �14.

By using property (41), we reach the relation

Recall also that: 1) Bohm’s hidden variable � is associated with the spin of a particle according to Eq. (18); 2) 
The proton and the neutron have the same spin 1/2 and essentially the same mass, thus being characterized by the 
same � ; and 3) The quantum mechanical representation of the magnetic moment of the Deuteron is in excess of 
about 3% according to Eq. (4). By also selecting the value for conformity with the selected spin orientation (Fig. 3)

we can write the expression per each nucleon

from which we obtain the isorenormalized values of the magnetic moment of the proton and of the neutron

with corresponding value for the magnetic moment of the deuteron

From this, we obtain the numeric value

with consequential confirmation of the numeric value of Bohm’s hidden variable for the Deuteron first achieved 
in Ref.31

Its invariance over tine follows from the derivation of iso-Pauli matrices (18) from the Lie-Santilli isosymmetry 
P̂(4.1)16,52.

The representation of the magnetic moment of 4−He − 2 is a consequence (Fig. 3), but that for other stable 
nuclei requires the still missing consistent representation of nuclear spins which was initiated in Ref.54 and will 
be studied in a forthcoming paper.

We should finally note that we have not used the full isotopic Clifford algebra Ĝ introduced by da Rocha and 
Vaz Jr. (see55 with important applications to flavor quark theories), since we have merely introduced the conven-
tional geometric formulation G̃3 in terms of iso-Pauli matrices (18). This is due to the fact that the full geometric 
isotopy Ĝ3 of G3 would have required the use of isoproduct (5) with the isotopic element T̂ = e−φe3 = 1/Î , and 

(38)� = eφ ≥ 0,

(39)Î = cosh φ + e3 sinh φ = eφe3 , T̂ = cosh φ − e3 sinh φ = e−φe3 ,

(40)ê1 = e1 Î = T̂e1, ê2 := e2 Î = T̂e2, ê3 := e3 Î = Îe3,

(41)ê3|b̂ >= e3 Î|b̂ >= e3e
φe3 |b̂ > .

(42)µhm|b̂ >= Ŝ|b̂ >= KgS|b̂ >,

(43)µhm|b̂ >= eφe3µqm|b̂ >= eφe3gS|b̂ > .

(44)e3|b̂ >= −|b̂ >,

(45)µhm,k ≈ (1+ φe3)µqm,k = (1− φ)µqm.k , k = p, n,

(46)µ̂p = +(1− φ)2.79285µN , µ̂n = −(1− φ) 1.91304µN ,

(47)
µhm
D = (1− φ) 2.79285− (1− φ) 1.91304 µN

= (1− φ) 0.87981 µN = µex
D = 0.85647 µN ,

(48)φ = 1− 0.87981/0.85647 = 1− 0.02334 = 0.97666,

(49)� = eφ = e0.97666 = 2.65557.
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the consequential lack of representation in Eq. (41) of the magnetic moment of the Deuteron (3) for spin Sd = 1 
in the ground state.

The understanding is however that the full iso-Clifford isogeometric isoalgebra Ĝ3N is expected to be impor-
tant for the numerically exact and time invariant representation of the spins and magnetic moments of nuclei 
with N ≥ 2 nucleons.

Concluding remarks
Various experiments have established that the quantum mechanical prediction of the magnetic moment of the 
Deuteron is about 3% in excess of the experimental value, Eq. (4), with bigger deviations for bigger nuclei (Fig. 1)1.

The basic event studied in this paper to achieve an exact representation of nuclear magnetic moments consists 
of the fact that a rotating charge distribution creates a magnetic field along the rotation axis. When the charge 
distribution is deformed into a prolate ellipsoid, the magnetic field decreases, and when it is deformed into an 
oblate ellipsoid it increases (Fig. 2).

This evidence led Fermi4, Weisskopf3 and other founders of nuclear physics, to suggest the hypothesis that 
the difference between quantum mechanical predictions of nuclear magnetic moments and their experimental 
values may be due to deformations of the charge distributions of protons and neutrons under strong nuclear 
interactions.

The study of this historical hypothesis required the completion of quantum mechanics according to the 1935 
historical argument by Einstein, Podolsky and Rosen, that quantum mechanics is not a complete theory2, because 
quantum mechanics can only characterize point-like particles that, as such, cannot be deformed.

Extensive studies over the past half a century conducted by R. M. Santilli and other scholars12–22 (see Refs.23–30 
for independent reviews) have shown that the extended character of nucleons, their deformations and their con-
sequential non-Hamiltonian interactions can be represented via the axiom-preserving, non-unitary completion 
of the universal enveloping associative algebra of quantum mechanics in terms of associative isoproduct aT̂b of 
Eq. (5) where T̂ , called the isotopic element, is positive-definite, yet possesses an arbitrary functional dependence 
on any needed local variable.

The dimension, shape and density of nucleons as well as their deformations and non-Hamiltonian interactions 
are then represented with the new isotopic element T̂ according to realizations of type (7).

These studies lead to the construction of the axiom-preserving non-unitary completion of quantum mechan-
ics into hadronic mechanics13–15 (see Refs.18–20 for a recent review) which coincides with quantum mechanics at 
the abstract, realization-free level. Via the use of the isomathematical and isomechanical branch of hadronic 
mechanics, Santilli38 achieved in 1994 the first known numerically exact and time invariant representation of 
the magnetic moment of the Deuteron and other nuclei according to the Fermi- Weisskopf hypothesis via a 
mere 1.5% prolate deformation of the charge distribution of protons and neutrons when they are members of 
a nuclear structure.

In subsequent studies, Santilli16 introduced the broader notion of hadronic spin for extended particles under 
strong interactions, which spin is illustrated by iso-Pauli matrices (18), possess conventional spin values, and 
exhibits an explicit and concrete realization of Bohm’s hidden variable �11 in term of the isotopic element T̂ , thus 
being hidden in the axiom of associativity.

In this paper we have shown, apparently for the first time, that the indicated notion of hadronic spin with 
Bohm’s hidden variable � allows a second numerically exact and time invariant representation of the magnetic 
moment of the Deuteron and of other nuclei. The representation has been possible thanks to the reformulation 
of Santilli’s isotopy of Pauli matrices (first introduced in p. 254, Vol. II of Ref.14 and used in Ref.16 for the verifica-
tion of the EPR argument) in terms of the conventional Clifford’s algebras, Refs.32–36.

In a nutshell, we can say that the Copenhagen interpretation of quantum mechanics deals with the simplest 
possible realization of quantum axioms, while the EPR completion of quantum into hadronic mechanics deals 
with progressively broader realizations of the same axioms for systems with progressively increasing complexity.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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