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1. Introduction

In 1948, A.A. Albert [1] defined a generally non associative algebra U with
elements a, b, c, ..., and product ab over a field of characteristic zero as being
Lie-admissible (Jordan-admissible) when the attached antisymmetric algebra U−

(attached symmetric algebra U+) which is the same vector space as U equipped
with the product [a, b] = ab− ba (the product {a, b} = ab + ba) verifies all axioms
of a Lie algebras (Jordan algebra). In the same paper [1], Albert identified the
flexible algebras with product

(1.1) (A,B) = λAB − (1− λ)BA,
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(where A,B, ... are Hermitean n-dimensional matrices, λ is a scalar and AB is the
conventional associative product) as a realization of Lie-admissible and Jordan-
admissible algebras.

In 1967, R.M. Santilli [2] noted that the algebras with product (1.1) do not
admit Lie algebras in their classification and, consequently, cannot be used for the
construction of covering theories. Consequently, Santilli introduced the product

(1.2)
(A, B) = λAB − µBA = α(AB −BA) + β(AB + BA),

λ = α + β, µ = β − α,

(where λ, µ, λ±µ are non-null scalars) which is jointly Lie-admissible and Jordan-
admissible while admitting Lie algebras in their classification.

By recalling that the theories based on Lie algebras are reversible over time
because of the anti-Hermiticity of the Lie product [A,B] = −[A, B]†, Santilli
introduced product Lie-admissible product (1.2) to break the anti-Hermiticity of
the Lie product for the intent of initiating quantitative studies on processes that
are irreversible over time via a covering Lie-admissible theory admitting reversible
Lie processes as particular cases. For that scope, Santilli [3], [4] introduced in 1968
the following infinitesimal and finite generalizations of Heisenberg equations

(1.3a) i
dA

dt
= (A,H) = λAH − µHA,

(1.3b)
A(t) = U(t)A(0)V (t)† = eHtµiA(0)e−iλtH ,

U = eHtµi, V = eiλtHUV † 6= I,

where H is the Hamiltonian.
By noting that equation (1.3b) is non-unitary, thus not invariant under the

time evolution, Santilli introduced in 1978 [5], [6] the following most general known
realization of products that are jointly lie-admissible and Jordan-admissible

(A,B) = ARB −BSA = (ATB −BTA) + {AWB + BWA} =

= [A,B]∗ + {A,B}∗ = (ATH −HTA) + {AWH + HWA},
R = T + W,S = W − T,

(1.4)

where R, S, R±S are now non singular operators. In this broader realization, the
attaches product [A,B]∗ = ATB−BTA and {A,B}∗ = AWB+BWA still verify
the Lie and Jordan axioms, respectively, but characterize broader algebras called
Lie-Santilli and Jordan-Santilli isoalgebras, where the prefix ”iso” is interpreted
in the Greek sense of preserving Lie axioms.

In the same papers [5], [6], Santilli introduced the most general possible broad-
ening of Heisenberg’s equations in their infinitesimal and finite form with a Lie-
isotopic and Jordan-isotopic structure defined over a field of characteristic zero

(1.5a) i
dA

dt
= (A,H) = ARH −BSA,
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(1.5b)
A(t) = U(t)A(0)V (t)† = eHStiA(0)e−itRH ,

U = eHSti, V = eHRti, UV † 6= I,

and assumed them as the foundation of a Lie-admissible covering of quantum
mechanics for irreversible processes proposed under the name of hadronic me-
chanics [6].

In the 1990s, Santilli noted that equation (1.5) are indeed the most general
possible equations with a Lie-isotopic-admissible and Jordan-isotopic-admissible
structure that persist under arbitrary (non-singular) non-unitary transforms. How-
ever, the operators R and S are not invariant under time evolution (1.5b). But
said operators represent the irreversible component of the systems considered.
Therefore, as proposed in 1978, generalized dynamical equations (1.5) do not ad-
mit consistent physical applications.

In order to achieve the invariance over time of the R and S operators, Santilli
had to build a new mathematics, today known as Santilli genomathematics (where
the prefix ”geno” is now intended in the Greek sense of inducing new axioms),
which can be defined as a mathematics admitting the generalized units 1> = 1/S
(<1 = 1/R) and corresponding ordered multiplications A > B = ASB (A <
B = ARB) at all levels, including numeric field, functional analysis, differential
calculus, etc, for the representation of motion forward (backward) in time and
basic rules

1> = 1/S,A > B = ASB, 1> > A = A > 1> = A, (1.6a)

<1 = 1/R, A < B = ARB, <1 < A = A << 1 = A, (1.6b)

Real, complex and quaternionic numbers, when equipped with the above forward
and, separately, backward generalized units and products, were shown in Ref. [7]
of 1993 to verify the abstract axioms of a numeric field and are now called San-
tilli forward and backward genoreal, genocomplex and genoquaternionic numbers.
Corresponding forward and backward generalization of functional analysis, dif-
ferential calculus, and other aspects of applied mathematics were introduced by
Santilli in memoir [8] of 1996, The invariance of the R and S operator under a
Lie-admissible and Jordan-admissible time evolution (1.5) was first proved in Ref.
[9] of 1997.

Santilli additionally noted that genomathematics is indeed effective for the
initiation of quantitative studies on irreversible processes while admitting, for the
first time, a direct connection to thermodynamics [10-13], but said forward and
backward genomathematics are insufficient for quantitative studies of biological
structure because they are single-valued (in the sense that each ordered products
A > B and A < B yield one single result). To initiate quantitative studies on
complex biological structures such as the DNA, Santilli introduced in 1996 [8]
the following ordered multi-valued realization of genomathematics today known
as Santilli multi-valued, forward and backward hypermathematics

1̂> = {1>
1 , 1>

2 , 1>
3 , ..., 1>

n } = {1/S1, 1/S2, ..., 1/Sn}
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(1.7a) 1>
k = 1/Sk < 0, k = 1, 2, ..., n

(1.7b) A>̂B = AS1B + AS2B + AS3B + ... + ASnB,

(1.7c) <1̂ = {<1̂1,
< 1̂2,

< 1̂3, ...,
< 1̂n} = {R1, R2, R3, ..., Rn},

(1.7d) A<̂B = AR1B + AR2B + AR3B + .... + ARn,

whose multi-valued character is evident.
It should be indicate that Santilli forward and backward hypermathematics

are different than hyperstructures (see, e.g., Refs. [14]–[19]) for numerous reasons,
such as: the former are based on classical operations while the latter are charac-
terized by hyper operations; the former are formulated over rings verifying the
axioms of a numeric field, while the latter are not; etc.

Jointly, T. Vougiouklis [20]–[30] introduced the most general known formula-
tion of hyperstructures, today known as Vougiouklis Hv hyperstructures, which are
relevant for the study of irreversible processes, such as biological structure, since
Santilli forward and backward genomathematics are expected to show limitations
due to their formulations via classical operations. Therefore, in this paper, we
shall reformulated Santilli hypermathematics in terms of Vougiouklis.

2. The hyperstructures

In this section we present an introduction on the theory of hyperstructures.
The largest class of hyperstructures were introduced in 1990 [24] and are called

Hv-structures. They satisfy the weak axioms where the non-empty intersection
replaces the equality. Some basic definitions are the following:

In a set H equipped with a hyperoperation (abbreviation as hope)

· : H ×H → P (H)− {∅},

we have the following properties in abbrevated notation
WASS, the weak associativity : (xy)z ∩ x(yz) 6= ∅,∀x, y, z ∈ H and
COW, the weak commutativity : xy ∩ yx 6= ∅,∀x, y ∈ H.
The hyperstructure (H, ·) is called Hv-semigroup if it is WASS, and it is called

Hv-group if it is a reproductive Hv-semigroup, i.e.,

xH = Hx = H, ∀x ∈ H.

As it is well known, in the classical theory, F. Marty stated in 1934 that
the quotient of a group with respect to any subgroup is a hypergroup. Also, the
quotient of a group with respect to any partition (or any equivalence relation) is
an Hv-group illustrating the motivation to introduce the Hv-structures [24], [26].

In an Hv-semigroup the powers of an element h ∈ H are defined as follows:
h1 = {h}, h2 = h · h, ..., hn = h ◦ h ◦ ... ◦ h, where (◦) denotes the n-ary circle
hope, i.e., take the union of hyperproducts, n times, with all possible patterns of
parentheses put on them. An Hv-semigroup (H, ·) is called cyclic of period s, if
there exists an element h, called generator, and a natural number s, the minimum
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one, such that H = h1 ∪ h2... ∪ hs. We define analogously the cyclicity for the
infinite period [13]. If there is an element h and a natural number s, the minimum
one, such that H = hs, then (H, ·) is called single-power cyclic of period s.

More complicated hyperstructures can be defined: in a similar way, such as
(R, +, ·) is called Hv-ring if (+) and (·) are WASS, the reproduction axiom is valid
for (+), and (·) is weak distributive with respect to (+), i.e.,

x(y + z) ∩ (xy + xz) 6= ∅, (x + y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

Let (R, +, ·) be an Hv-ring, (M, +) be a COW Hv-group and there exists an
external hope

· : R×M → P (M) : (a, x) → ax

such that ∀a, b ∈ R and ∀x, y ∈ M we have

a(x + y) ∩ (ax + ay) 6= ∅, (a + b)x ∩ (ax + bx) 6= ∅, (ab)x ∩ a(bx) 6= ∅,

then M is called an Hv-module over F . In the case of an Hv-field F , which is
defined later, instead of an Hv-ring R, then the Hv-vector space is defined.

The main tool to study hyperstructures is the fundamental relation. In 1970
M. Koscas defined in hypergroups the relation β and its transitive closure β*. This
relation connects the hyperstructures with the corresponding classical structures
and is defined in Hv-groups as well. T. Vougiouklis [26, 28] introduced the γ*
and ε* relations, which are defined in Hv-rings and Hv-vector spaces, respectively.
Vougiouklis also named all these relations β*, γ* and ε* Fundamental Relations
because they play a very important role to the study of hyperstructures especially
in their representation theory.

Definition 2.1. The fundamental relations β*, γ* and ε*, are defined in Hv-
groups, Hv-rings and Hv-vector space, respectively, as the smallest equivalences
so that the quotient would be group, ring and vector space, respectively. ([23],
[24], [26], [28])

To specifying the above motivation, we note the following: Let (G, ·) be a
group and R be an equivalence relation (or a partition) in G, then (G/R, ·) is
an Hv-group, therefore we have the quotient (G/R, ·)/β* which is a group, the
fundamental one. Remark that the classes of the fundamental group (G/R, ·)/β*
are a union of some of the R-classes. Otherwise, the (G/R, ·)/β* has elements
classes of G where they form a partition which classes are larger than the classes
of the original partition R.

The way to find the fundamental classes is given by the following:

Theorem 2.2. Let (H, ·) be an Hv-group and denote by U the set of all finite prod-
ucts of elements of H. We define the relation β in H by setting xβy iff {x, y} ⊂ u
where u ∈ U . Then β* is the transitive closure of β.

Analogous to the above theorem, in the case of an Hv-ring [26], is the fol-
lowing:
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Theorem 2.3. Let (R, +, ·) be an Hv-ring. Denote by U the set of all finite
polynomials of elements of R. We define the relation γ in R as follows:

xγy iff {x, y} ⊂ u where u ∈ U.

Then the relation γ* is the transitive closure of the relation γ.

An element is called single if its fundamental class is singleton [26].
Fundamental relations are used for general definitions. Thus, an Hv-ring

(R, +, ·) is called Hv-field if R/γ* is a field. The elements of an Hv-field are
called Hv-numbers or hyper-numbers

Let (H, ·), (H, ∗) be Hv-semigroups defined on the same set H. The hope (·)
is called smaller than the hope (∗), and (∗) greater than (·), iff there exists an

f ∈ Aut(H, ∗) such that xy ⊂ f(x ∗ y), ∀x, y ∈ H.

Then we write · ≤ ∗ and we say that (H, ∗) contains (H, ·). If (H, ·) is a
structure then it is called basic structure and (H, ∗) is called Hb − structure.

Theorem 2.4. (The Little Theorem). Greater hopes than the ones which are
WASS or COW, are also WASS or COW, respectively.

This Theorem leads to a partial order on Hv-structures and mainly to a
correspondence between hyperstructures and posets.Therefore we can obtain an
extreme large number of Hv-structures just putting more elements on any result.
Using the partial ordering with the fundamental relations, one can give several
definitions to obtain constructions used in several applications [28]:

Let (H, ·) be hypergroupoid. We remove h ∈ H, if we consider the restriction
of (·) in the set H − {h}. h ∈ H absorbs h ∈ H if we replace h by h and h does
not appear in the structure. h ∈ H merges with h ∈ H, if we take as product of
any x ∈ H by h, the union of the results of x with both h, h, and consider h and
h as one class with representative h.

A class of Hv-structures is the following:
An Hv-structure is called very thin iff all hopes are operations except one,

which has all hyperproducts singletons except only one, which is a subset of car-
dinality more than one. Therefore, in a very thin Hv-structure in a set H there
exists a hope (·) and a pair (a, b) ∈ H2 for which ab = A, with cardA > 1, and
all the other products, with respect to any other hopes (so they are operations),
are singletons.

A large class of Hv-structures is the following [29]:
Let (G, ·) be groupoid (resp., hypergroupoid) and f : G → G be a map. We

define a hope (∂), called theta-hope, we write ∂-hope, on G as follows

x∂y = {f(x)·y, x·f(y)}, ∀x, y ∈ G. (resp. x∂y = (f(x)·y)∪(x·f(y)), ∀x, y ∈ G)

If (·) is commutative then ∂ is commutative. If (·) is COW, then ∂ is COW.
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Let (G, ·) be a groupoid (or hypergroupoid) and f : G → P (G)−{∅} be any
multivalued map. We define the (∂), on G as follows

x∂y = (f(x) · y) ∪ (x · f(y)), ∀x, y ∈ G

Let (G, ·) be a groupoid, fi : G → G, i ∈ I, be a set of maps on G. The

f∪ : G → P(G) : f∪(x) = {fi(x)|i ∈ I, }
is the union of fi(x). We have the union ∂-hope (∂), on G if we take f∪(x). If
f ≡ f ∪ (id), then we have the b − ∂ − hope.

Motivation for the definition of the theta-hope is the map derivative where
only the multiplication of functions can be used. The basic property is that if
(G, ·) is a semigroup then for every f, the (∂) is WASS.

Another well known and large class of hopes is given as follows [22], [26]:
Let (G, ·) be a groupoid then for every P ⊂ G, P 6= ∅, we define the following

hopes called P-hopes : for all x, y ∈ G

P : xPy = (xP )y∪x(Py), P r : xP ry = (xy)P∪x(yP ), P l : xP ly = (Px)y∪P (xy).

The (G, P ),(G,P r) and (G,P l) are called P-hyperstructures. The most usual case
is if (G, ·) is semigroup, then xPy = (xP )y ∪ x(Py) = xPy and (G,P ) is a
semihypergroup but we do not know about (G,P r) and (G,P l). In some cases,
depending on the choice of P, the (G,P r) and (G,P l) can be associative or WASS.

A generalization of P -hopes, introduced by Davvaz, Santilli, Vougiouklis in
[17], [18] is the following:

Construction 2.5. Let (G, ·) be an abelian group and P any subset of G with
more than one elements. We define the hope ×P as follows:

x×p y =

{
x×P y = x · P · y = {x · h · y|h ∈ P} if x 6= e and c 6= e

x · y if x = e and y = e

we call this hope Pe-hope. The hyperstructure (G,×p) is an abelian Hv-group.

Hv-structures are used in Representation Theory of Hv-groups which can be
achieved either by generalized permutations or by Hv-matrices [25,] [26]. Repre-
sentations by generalized permutations can be faced by translations. Hv-matrix is
called a matrix if has entries from an Hv-ring. The hyperproduct of Hv-matrices
is defined in a usual manner. The problem of the Hv-matrix representations is
the following:

Definition 2.6. Let (H, ·) be Hv-group, find an Hv-ring R, a set

MR = {(aij) | aij ∈ R}
and a map

T : H → MR : h 7→ T (h) such that T (h1h2) ∩ T (h1)T (h2) 6= ∅,∀h1, h2 ∈ H.
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Then, the map T is called Hv-matrix representation.
If the T (h1h2) ⊂ T (h1)(h2),∀h1, h2 ∈ H is valid, then T is called inclusion

representation.
If T (h1h2) = T (h1)(h2) = {T (h)|h ∈ h1h2}, ∀h1, h2 ∈ H, then T is called

good representation and then an induced representation T* for the hypergroup
algebra is obtained.

If T is one to one and good then it is a faithful representation.

In the representations of Hv-groups there are two difficulties: To find an Hv-
ring or an Hv-field and an appropriate set of Hv-matrices. Hopes on any type of
ordinary matrices can be defined [17], they are called helix hopes.

Using several classes of Hv-structures one can face several representations.
Some of those classes are as follows:

Definition 2.7. Let M = Mm×n be a module of m × n matrices over a ring R
and P = {Pi : i ∈ I} ⊆ M. We define, a kind of, a P-hope P on M as follows

P : M×M → P(M) : (A,B) → APB = {AP t
i B : i ∈ I} ⊆ M

where P t denotes the transpose of the matrix P.

The hope P, which is a bilinear map, is a generalization of Rees’ operation
where, instead of one sandwich matrix, a set of sandwich matrices is used. The
hope P is strong associative and the inclusion distributivity with respect to addi-
tion of matrices

AP (B + C) ⊆ APB + APC for all A,B,C in M

is valid. Therefore, (M, +, P ) defines a multiplicative hyperring on non-square
matrices. Multiplicative hyperring means that only the multiplication is a hope.

Definition 2.8. Let M = Mm×n be a module of m×n matrices over R and let us
take sets S = {sk : k ∈ K} ⊆ R,Q = {Qj : j ∈ J} ⊆ M,P = {Pi : i ∈ I} ⊆ M.
Define three hopes as follows

S : R×M → P(M) : (r, A) → rSA = {(rsk)A : k ∈ K} ⊆ M

Q
+

: M×M → P(M) : (A,B) → AQ
+
B = {A + Qj + B : j ∈ J} ⊆ M

P : M×M → P(M) : (A, B) → APB = {AP t
i B : i ∈ I} ⊆ M

Then (M, S,Q
+
, P ) is a hyperalgebra over R called general matrix P-hyperalgebra.

In a similar way, a generalization of this hyperalgebra can be defined if one
considers an Hv-ring or an Hv-field instead of a ring and using Hv-matrices.

3. Lie-hyperalgebras

Since the algebras are defined on vector spaces, we now present the analogous to
the above Theorem 2.3, on Hv-vector spaces. The proof is similar.
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Theorem 3.1. Let (V, +) be an Hv-vector space over the Hv-field F. Denote by
U the set of all expressions consisting of finite hopes either on F and V or the
external hope applied on finite sets of elements of F and V. We define the relation
ε in V as follows:

xεy iff {x, y} ⊂ u where u ∈ U.

Then the relation ε* is the transitive closure of the relation ε.

Proof. Let ε be the transitive closure of ε, and denote by ε(x) the class of the
element x. First we prove that the quotient set M/ε is a module over R/γ*.

In M/ε the sum (⊕) and the product (⊗) using the γ* classes in R, are
defined in the usual manner:

ε(x)⊕ ε(y) = {ε(z) : z ∈ ε(x) + ε(y)},
γ*(a)⊗ ε(x) = {ε(z) : z ∈ γ*(a) · ε(x)}∀a ∈ R, x, y ∈ M.

Take x′ ∈ ε(x), y′ ∈ ε(y). Then we have x′εx iff ∃x1, ..., xm+1 with x1 = x′,
xm+1 = x and u1, ..., um ∈ U such that {xi, xi+1} ⊂ ui, i = 1, ...m, and y′εy iff
∃y1, ..., ym+1 with y1 = y′, yn+1 = y and v1, ..., vn ∈ U such that {yj, yj+1} ⊂ vj,
i = 1, ...n. From the above, we obtain

{xi, xi+1}+ y1 ⊂ ui + v1, i = 1, ...m− 1,

xm+1 + {yj, yj+1} ⊂ um + vj, j = 1, ...n.

The sums

ui + v1 = ti, i = 1, ...m− 1 and um + vj = tim+j−1, j = 1, ...n

are also elements of U, therefore tk ∈ U for all k ∈ {1, ..., m + n− 1}.
Now, pick up elements z1, ..., zm+n such that

zi ∈ xi + y1, i = 1, ..., n and zm+j ∈ xm+1 + yj+1, j = 1, ..., n.

Therefore, using the above relations, we obtain {zk, zk+1} ⊂ tk, k = 1, ..., m+n−1.
Thus, every element z1 ∈ x1 + y1 = x′ + y′ is ε equivalent to every element
zm+n ∈ xm+1 + yn+1 = a + b. Thus, ε(x)⊕ ε(y) is a singleton, so we can write

ε(x)⊕ ε(y) = ε(z) for all z ∈ ε(x) + ε(y)

In a similar way, using the properties of γ∗ in R, one can prove that

γ*(a)⊗ ε(x) = ε(z) for all z ∈ γ ∗ (a) · ε(x).

The WASS and the weak distributivity on R and M guarantee that the associa-
tivity and the distributivity are valid for the quotient M/ε over R/γ*. Therefore
M/ε is a module over R/γ*.
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Now, let σ be an equivalence relation in M such that M/σ is a module over
R/γ*. Denote σ(x) the class of x. Then σ(x)⊕σ(y) and γ*(a)⊗σ(x) are singletons
for all a ∈ R and x, y ∈ M, i.e.,

σ(x)⊕ σ(y) = σ(z) for all z ∈ σ(x) + σ(y),

γ ∗ (a)⊗ σ(x) = σ(z) for all z ∈ γ ∗ (a) · σ(x).

Thus, we can write, for every a ∈ R, x, y ∈ M and A ⊂ γ*(a), X ⊂ σ(x),
Y ⊂ σ(x),

σ(x)⊕ σ(y) = σ(x + y) = σ(X + Y),

γ ∗ (a)⊗ σ(x) = σ(ax) = σ(A ·B)

By induction, we extend these relations on finite sums and products. Thus, for
every u ∈ U , we have the relation σ(x) = σ(u) for all x ∈ u. Consequently,

x ∈ ε(x) implies x ∈ σ(x) for every x ∈ M.

But σ is transitively closed, so we obtain:

x′ ∈ ε(x) implies x′ ∈ σ(x).

That means that ε is the smallest equivalence relation on M such that M/ε is a
module over R/γ*, i.e., ε = ε*.

The general definition of an Hv-Lie algebra was given in [30] as follows:

Definition 3.2. Let (L, +) be an Hv-vector space over the Hv-field (F, +, ·),
φ : F → F/γ* the canonical map and ωF = {x ∈ F : φ(x) = 0}, where 0 is the
zero of the fundamental field F/γ. Similarly, let ωL be the core of the canonical
map φ′ : L → L/ε* and denote by the same symbol 0 the zero of L/ε*. Consider
the bracket (commutator) hope:

[, ] : L× L → P (L) : (x, y) → [x, y].

Then L is an Hv-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear, i.e.,

[λ1x1 + λ2x2] ∩ (λ1[x1, y] + λ2[x2, y]) 6= ∅
[x, λ1y1 + λ2y2] ∩ (λ1[x, y1] + λ2[x, y2]) 6= ∅,

∀x, x1, x2, y, y1, y2 ∈ L, λ1, λ2 ∈ F

(L2) [x, x] ∩ ωL 6= ∅, ∀x ∈ L

(L3) ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= ∅, ∀x, y ∈ L

This is a general definition thus one can use special cases in order to face problems
in applied sciences.
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Now, we can see theta hopes in Hv-vector spaces and Hv-Lie algebras:

Theorem 3.3. Let (A, +, ·) be an algebra over the field F. Take any map f : A → A,
then the ∂-hope on the Lie bracket [x, y] = xy − yx, is defined as follows

x∂y = {f(x)y − f(y)x, f(x)y − yf(x), xf(y)− f(y)x, xf(y)− yf(x)}.

Then (A, +, ∂) is an Hv-algebra over F, with respect to the ∂-hopes on Lie bracket,
where the weak anti-commutativity and the inclusion linearity is valid.

Remark that if we take the identity map f(x) = x,∀x ∈ A, then x∂y =
{xy − yx}, thus we have not a hope and remains the same operation.

4. An application

During last decades hyperstructures have a variety of applications in other bran-
ches of mathematics and in many other sciences. These applications range from
biomathematics -conchology, inheritance- and hadronic physics or on leptons to
mention but a few. The hyperstructures theory is closely related to fuzzy theory;
consequently, hyperstructures can now be widely applicable in industry and pro-
duction, too. In several books and review papers [8], [10], [11], [13], [14], [15], [21],
[26], [31] one can find numerous applications.

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic
Mechanics problems. Santilli proposed a ”lifting” of the n-dimensional trivial
unit matrix of a normal theory into a nowhere singular, symmetric, real-valued,
positive-defined, n-dimensional new matrix. The original theory is reconstructed
such as to admit the new matrix as left and right unit. The isofields needed in
this theory correspond into the hyperstructures were introduced by Santilli and
Vougiouklis in 1996 [20] and they are called e-hyperfields. The Hv-fields can give
e-hyperfields which can be used in the isotopy theory in applications as in physics
or biology. We present in the following the main definitions and results restricted
in the Hv-structures.

Definition 4.1. A hyperstructure (H, ·) which contain a unique scalar unit e, is
called e-hyperstructure. In an e-hyperstructure, we assume that for every element
x, there exists an inverse x−1, i.e. e ∈ x · x−1 ∩ x−1 · x. Remark that the inverses
are not necessarily unique.

Definition 4.2. A hyperstructure (F, +, ·), where (+) is an operation and (·) is
a hope, is called e-hyperfield if the following axioms are valid:

1. (F, +) is an abelian group with the additive unit 0,

2. (·) is WASS,

3. (·) is weak distributive with respect to (+),
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4. 0 is absorbing element: 0 · x = x · 0 = 0,∀x ∈ F ,

5. exist a multiplicative scalar unit 1, i.e. 1 · x = x · 1 = x,∀x ∈ F ,

6. for every x ∈ F there exists a unique inverse x−1, such that 1 ∈ x·x−1∩x−1·x.

The elements of an e-hyperfield are called e-hypernumbers. In the case that
the relation 1 = x ·x−1 = x−1 ·x is valid, we say that we have a strong e-hyperfield.

Now, we present a general construction which is based on the partial ordering
of the Hv-structures and on the Little Theorem.

Definition 4.3. The Main e-Construction. Given a group (G, ·), where e is the
unit, then we define in G, a large number of hopes (⊗) as follows:

x⊗ y = {xy, g1, g2, ...},∀x, y ∈ G− {e}, and g1, g2, ... ∈ G− {e}
g1, g2,... are not necessarily the same for each pair (x,y). Then (G,⊗) becomes
an Hv-group, actually is an Hb-group which contains the (G, ·). The Hv-group
(G,⊗) is an e-hypergroup. Moreover, if for each x,y such that xy = e, so we have
x⊗ y = xy, then (G,⊗) becomes a strong e-hypergroup

The proof is immediate since we enlarge the results of the group by putting
elements from G and applying the Little Theorem. Moreover one can see that
the unit e is a unique scalar and for each x in G, there exists a unique inverse
x−1, such that 1 ∈ x · x−1 ∩ x−1 · x and if this condition is valid then we have
1 = x · x−1 = x−1 · x. So the hyperstructure (G,⊗) is a strong e-hypergroup.

The above main e-construction gives an extremely large number of e-hopes.
These e-hopes can be used in the several more complicate hyperstructures to
obtain appropriate e-hyperstructures.

One can see that we can have more strict hopes. The reason we gave the above
example is to see that there is a large variety of e-hyperstructures we can construct
from given classical structures. One can see that some classes of e-hyperstructures
and their properties and results connected them with the classical theory. The
representation theory and the Lie algebras as well as in hypermatrix theory large
classes of e-hyperstructures appear and can offer to Lie-Santilli algebraic theory
models to represent their theory

5. The Santilli’s Lie-admissibility in hyperstructures

Now, we present the Santilli’s admissibility in hyperstructures in a general form:

Definition 5.1. Let (L, +) be an Hv-vector space Hv-field (F, +, ·), φ : F →
F/γ* the canonical map and ωF = {x ∈ F : φ(x) = 0}, where 0 is the zero of
the fundamental field F/γ. Similarly, let ωL be the core of the canonical map
φ′ : L → L/ε* and denote by the same symbol 0 the zero of L/ε*. Consider the
Hv-Lie algebra over F taking the bracket(commulator) hope:

[, ] : L× L → P(L) : (x, y) → [x, y]
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Take any two subsets R,S ⊆ L then the general Santilli’s Lie-admissible
hyperalgebra is obtained by reformulating the Lie bracket into the hope:

[, ]RS : L× L → P(L) : [x, y]RS = xRy − ySx.

Notice that [x, y]RS is not a single element but a set

[x, y]RS = xRy − ySx = {xry − ysx/r ∈ R and s ∈ S}.
Remark that this definition is, in some way, a generalization of the P -hopes.

Special cases, but not degenerate, are the ”small” and ”strict” ones:

(a) R=e. Then [x, y]RS = xy − ySx = {xy − ysx/s ∈ S}
(b) S=e. Then [x, y]RS = xRy − yx = {xry − yx/r ∈ R}
(c) R = {r1, r2} and S = {s1, s2}. Then

[x, y]RS = xRy−ySx = {xr1y−ys1x, xr1y−ys2x, xr2y−ys1x, xr2y−ys2x}

Since the above is the most general definition one can take special cases in order
to obtain applications. Therefore if one take e-hyperstructures used in Lie-Santilli
theory then the admissibility is transferred in an obvious reason. Finally using the
fundamental structures the classical algebraic structures and the hyperstructures
are connected.

Now, we can transfer the Santilli’s admissibility problem, presented in the
Introduction, into the hyperstructure theory. The Santilli’s admissibility in the in
the hyperstructure theory can be achieved in the following ways: (a) The use of
an Hv-field instead of an ordinary field. (b) The replacement, or enlargement, of
the single valued external or internal operations on vectors by multivalued ones.
(c) The replacement of the selected elements R and S by sets of elements.

Therefore, (i) In equation (1.1), the hyperstructure form can be faced by
using the elements λ from an Hv-field or the external operation λA could be a
hope or, of course, both the above generalizations can be used.

(ii) In the realization presented by equation (1.4), the hyperstructure form
can be achieved by using an Hv-field or by replace R and S (consequently, T and
W ) by sets of elements. In the later case, since they are P-hopes, one can use also
the Construction 2.5 as well.

(iii) The case of equation (1.7) is already a generalization into the multivalued
case. In fact, this generalization is an Hb-hope since it is an extension of an single
valued operation. However, if we replace S1, S2, ..., Sn and R1, R2, ..., Rn by sets
of elements, then we obtain enlarged hopes.

6. Concluding remarks

As it is well known, the correlation of two or more atoms of a DNA can yield
entire organs during the growth of a biological structure with a very large number
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of atoms. But biological correlations can be mathematically represented with the
multiplication that, for the DNA is expected to be multi-valued. Therefore, San-
tilli [8], [13] suggested hypermathematics with ordered basic rules (1.7) in which
the product of two quantities can yield a large number of ordered results. However,
rules (1.7) are classical and, as such, they cannot provide the most general possible
mathematics as expected for the DNA in view of its complexity. This insufficiency
has been resolved in this paper via Vougiouklis Hv formulation of Santilli’s classi-
cal Lie-admissible hyperstructures (1.7). Specific initial applications to the DNA
are in progress for reporting in a subsequent paper.
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